Decadal Emergence Variations of the Observed Inter-annual Rainfall Patterns over West Africa

Jürgen Bader and Belén Rodríguez-Fonseca

Max Planck Institute for Meteorology, Hamburg, Germany Departamento de Geofisica y Meteorolologia, Facultad de Fisicas, Universidad Complutense de Madrid, Spain

Trieste, July 22, 2011

Observed Summer (JAS) rainfall anomaly

- strong drying trend from the fifties
- abundant rainfall in the fifties and early sixties (Wet-Mode)
- drought since approximately 1970s (Dry-Mode)

Observed and Simulated Sahelian Rainfall

Giannini et al. 2003 (Science): Correlation 0.6

⇒ AGCM forced by observed SSTs are able to simulate the devolution of low-frequency rainfall

juergen.bader@zmaw.de

Observed Interannual Summer (JAS) rainfall anomaly patterns

EOF1 (dipole)

EOF2 (monopole)

PCs of the observed interannual Summer (JAS) rainfall anomaly patterns

PC1 (Dipole)

PC2 (Monopole)

juergen.bader@zmaw.de

Max-Planck-Institut für Meteorologie

Running variance of the PCs of the observed interannual Summer (JAS) rainfall anomaly patterns

PC1 (dipole)

PC2 (monopole)

juergen.bader@zmaw.de

Max-Planck-Institut für Meteorologie

Correlation analysis of the observed interannual Summer (JAS) rainfall

correlation coefficient

Sahel-Guinea Coast

juergen.bader@zmaw.de

Max-Planck-Institut für Meteorologie

Scatterplot Sahel-Guinea Coast rainfall

non-filtered data used!

Correlation between JAS SSTs and the rainfall dipole pattern (PC1)

wet-mode (1950s)

dry-mode (1990s)

Correlation between JAS SSTs and the rainfall monopole pattern (PC2)

wet-mode (1950s)

dry-mode (1990s)

The covariability of interannual SSTs has changed

correlation between ETA SSTs and global SSTs (wet)

correlation between ETA SSTs and global SSTs (dry)

hypothesis/scientific questions

- ► What role does the decadal change of the interannual covariability between SSTs play?
- ► Is the out-of-phase relationship between tropical South Atlantic SSTs and eastern Pacific SSTs in recent years the cause for the weakend dipole occurence?

SST-sensitivity experiments

strategy: pick a year with a observed strong monopole or dipole pattern and try to simulate them by prescribing only SST anomalies:

1958 (dipole year), and 1997 (monopole year)

SST sensitivity experiments with the AGCM ECHAM5

- ► ECHAM5 run in T42 horizontal resolution and 19 vertical level
- ▶ forced by different SST seasonal cycles (12 monthly values)
- ▶ other external forcing kept constant e.g GHGs
- ▶ integration length 21 years, first year is cut off.
- ▶ only the summer (JAS) response is shown

Simulation of the dipole rainfall anomaly in 1958

interannual SST anomaly in 1958

simulated rainfall anomaly

ECHAM is able to simulate the observed dipole pattern over WA

Simulated JAS humidity flux and precipitable water response

units $\frac{kg}{kg} \frac{m}{s}$ and kg/m^2

- reduced humidity flux to the Guinea Coast
- enhanced humidity flux to the west Sahel

Simulated JAS evaporation response

units mm/day

reduced evaporation over the tropical South Atlantic ocean

Simulated JAS vertically integrated horizontal moisture divergence response m/s^2

- reduced moisture convergence along the Guinea Coast
- enhanced moisture convergence over the west Sahel

Simulation of the monopole rainfall anomaly in 1997

interannual SST anomaly in 1997

simulated rainfall anomaly

Velocity potential and circulation response for 1997 (monopole pattern)

JAS velocity potential response 200hpa (scaled)

JAS wind x-p cross-section response

juergen.bader@zmaw.de

| Max-Planck-Institut | für Meteorologie

Humidity Flux and Moisture divergence for 1997

Simulated JAS Moisture flux response

Simulated JAS moisture divergence

Conclusions

- changes in the decadal emergence of interannual rainfall anomaly patterns over west Africa
- simulations show significant impact of SSTs on the interannual rainfall patterns
- covariability changes of the interannual SSTs seems to be an important cause of the decadal emergence changes of the interannual rainfall patterns

Thank you very much for your attention!

- changes in the decadal emergence of interannual rainfall anomaly patterns over west Africa
- simulations show significant impact of SSTs on the interannual rainfall patterns
- ► covariability changes of the interannual SSTs seems to be an important cause of the decadal emergence changes of the interannual rainfall patterns