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Rigidity - Introduction

We’ll use the terms jammed and rigid interchangeably (cf. Bob Connelly’s
talk).

Recall that a sphere packing is rigid if it admits no local deformations, i.e.
we can’t move the spheres continuously without making them overlap
(apart from using isometries of the ambient space).

If we can show a packing is not rigid, it might lead the way toward
improving the sphere packing for density.

We’ll be concerned with spherical codes, i.e. finite sets of points on the
surface of a sphere. Think of these points as vertices of spherical caps. So
want to study sphere packing on the surface of a sphere, and ask about
local improvements and rigidity.
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Introduction II

Previous work by Donev, Torquato, Stillinger and Connelly describes a
linear programming algorithm to test infinitesimal jamming of sphere
packings. We’ll study the analogous algorithm for spherical codes.

In Euclidean space, infinitesimally jammed if and only if jammed (Roth,
Whiteley, Connelly).

However, on the spherical code the proof does not work - so things are
more complicated. Also, less complicated because finitely many points/no
periodic boundary conditions.

The spherical codes we study are mathematically very interesting, and
quite often related to dense sphere packings. Insights here may lead to
insights in Euclidean space.

We also use these techniques to set new records for kissing numbers in
dimensions 25− 31.
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Spherical codes

Definition

A spherical code C is a finite subset of a sphere Sn−1 ⊂ Rn.

Some symmetrical examples:

1 N vertices of a regular N-gon on S1.

2 Vertices of Platonic solids on S2 (tetrahedron, octahedron, cube,
icosahedron, dodecahedron).

3 Vertices of a 24-cell, 600-cell or 120-cell in S3.

4 240 roots of E8 lattice on S7.

Good spherical codes: have large angular distance between distinct points.
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Spherical codes II

Definition

The angular distance θ(C ) of the code C is the minimal angular separation
between distinct points.

We may ask, given N, how to place the points of C such that θ(C ) is
maximized.

Conversely, given θ0, what is the maximum number of points N in a code
C with θ(C ) ≥ θ0?

For θ0 = π/3, the latter problem becomes the kissing number problem.

Answers only known in dimensions 1, 2, 3 (Schütte and van der Waerden),
4 (Musin), 8 and 24 (Odlyzko-Sloane and Levenshtein).
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Sphere packings

Definition

A sphere packing in Rn is a collection of spheres/balls of equal size which
do not overlap (except for touching). The density of a sphere packing is
the volume fraction of space occupied by the balls.

A central question is to find a/the densest packing in Rn.
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The usual suspects

In low dimensions, the best sphere packings seem to come from lattices, as
do some of the best kissing configurations.

The simplex lattice An = {x ∈ Zn+1 :
∑

xi = 0} in the zero-sum
hyperplane in Rn+1.

The checkerboard lattice Dn = {x ∈ Zn :
∑

xi even }.
The special root lattice E8 = D8

⋃
(

D8 + (12 , . . . ,
1
2)
)

.

E7, the orthogonal complement of an A1 inside E8.

E6, the orthogonal complement of an A2 inside E6.

The Leech lattice Λ24, the densest lattice in R24.
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Some records

The densest lattices in low dimensions are

n 1 2 3 4 5 6 7 8 24
Λ A1 A2 A3 D4 D5 E6 E7 E8 Leech

The best known kissing numbers in low dimensions are

n 1 2 3 4 5 6 7 8 24
Λ 2 6 12 24 40 72 126 240 196560

But in most dimensions (e.g. 10) the best known packings or kissing
numbers come from non-lattices.
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Rigidity

We may try to improve a given spherical code or sphere packing by local
deformations.

Definition

We say C is locally jammed if no point of C can be continuously moved,
while keeping the others fixed, and without decreasing the minimal
distance of the code below θ(C).

Definition

We say C is collectively jammed if the only continuous motions of the
points of C which do not decrease the minimum distance below θ(C), are
the continuous rotations.

Abhinav Kumar (MIT) Rigidity of spherical codes July 27, 2011 9 / 31



Linear programming

We can write a linear program to check whether any infinitesimal motions
are allowed. The idea is due to Donev, Stillinger, Torquato and Connelly,
who implemented it for sphere packings in Euclidean space.

Let x1, . . . , xN be vectors describing the centers of N spheres of radius R .
If spheres i and j are adjacent, we have |xi − xj | = R .

We take an infinitesimal motion xi + tyi of these sphere centers. The
condition for this to be admissible is

|xi − xj + t(yi − yj)| ≥ R

for i , j in contact (the other constraints are irrelevant for t small).
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Infinitesimal rigidity by LP

This simplifies to
〈xi − xj , yi − yj〉 ≥ 0

to first order.

This is a linear condition in the coordinates of the yi .

It can be shown that a packing in Euclidean space is infinitesimally rigid if
and only if it is rigid.

So we can test rigidity of sphere packings by an algorithm (among periodic
packings with a fixed number of translates).
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LP for spherical codes

Essentially the same idea applies to spherical codes. Let C consist of
x1, . . . , xN . We use deformation vectors yi which are in the tangent space.
The infinitesimal constraint is that 〈xi , yi 〉 = 0, which is linear in the yi .

The distance constraint is that 〈xi + tyi , xj + tyj〉 ≤ 〈xi , xj〉 whenever xi
and xj are at the smallest distance. The first order condition is
〈xi , yj〉+ 〈xj , yi 〉 ≤ 0.

The linear program asks if some value 〈xi , xj〉 can be changed: the first
order change in this quantity is 〈xi , yj〉+ 〈xj , yi 〉. This is the objective
function.
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Curvature effects

We really have a collection of linear programs. If the objective function is
always 0, we conclude that the spherical code is collectively jammed.

In practice, to try to unjam a code, we apply a random linear combination
of these objective functions.

However, if we do get a nonzero answer, it does not necessarily mean that
the code is not rigid. (Infinitesimal rigidity for spherical codes can be
strictly stronger than rigidity)

Using dot products as above gets rid of orthogonal motions.
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An

Let’s begin with the kissing configurations of the root lattices
An,Dn,E6,E7,E8.

Example

A2: jammed, provably the best kissing configuration on S1, using angles.

Example

A3: locally jammed, but not collectively. In fact, one can move the points
around to achieve any permutation while still maintaining the minimum
distance.

Similarly, we can contruct an explicit unjamming of the An kissing
configuration for n ≥ 4, using the one for n = 3.
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A3 unjamming by picture

Cuboctahedron:

1 3

2

65

4

2

51

4

3 6

Move pairs toward each other (twists the triangles).
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D4

Example

The kissing configuration of D4 is jammed.

Proof.

This spherical code has 24 points. Normalize them to have length
√
2.

Distinct vectors have inner products in {0,±1,−2}. If 〈x , y〉 = ±1, then x

and y span a copy of A2, which is infinitesimally rigid. So their inner
product does not change to first order. The −2 inner product occurs
between antipodal vectors, so it does not change to first order.
If 〈x , y〉 = 0, we can “connect” them by intermediate vectors which have
inner product 1 with x and y and use these to show that 〈x , y〉 does not
change.
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Dn, n > 4 and E6,E7,E8

Example

The kissing configurations of Dn, n > 4 and E6,E7,E8 are all jammed.

The proof is by “embedding” A2 and D4 into these lattices. The ±1 inner
products do not change because the vectors concerned span a copy of A2,
and A2 is jammed. Similarly, the 0 inner products do not change because
for any two orthogonal vectors in Dn, there is a copy of D4 inside Dn

containing them.
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Competitors in 5, 6, 7 dimensions

The best known kissing configurations in these dimensions are not unique.
There is one more 40-point kissing configuration in R5, competing with
that of D5.

There are three more 72-point kissing configuration in R6, competing with
that of E6.

There are three more 126-point kissing configuration in R7, competing
with that of E7.

Computer verification (rigorous, with rational numbers) shows they are all
infinitesimally rigid.
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E8 and Λ9

Next is the E8 kissing configuration of 240 points. This is the unique best
code of its minimal angle, so it is rigid.

Example

In 9 dimensions, the best kissing configuration coming from a lattice is
that of the laminated lattice Λ9. It consists of the 240 points from E8 in
the “equatorial” hyperplane, as well as points of the form
(0, . . . , 0,±1, 0, . . . , 0,±1).

These last 32 points lie above or below the “deep holes” of the E8 kissing
configuration, and they, along with the smallest vectors of D8 ⊂ E8, make
up the root system of D9.
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Λ9

We know D9 is infinitesimally jammed, so it’s futile to try to move its
minimal vectors. We are left with the half-integer vectors (±1

2 , . . . ,±
1
2 , 0),

with an even number of minus signs.

It turns out that these points are not even locally jammed, so we can
move them out of the equatorial plane, showing that the kissing
configuration of Λ9 is not rigid.
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Other kissing configurations in 9, 10, 11, 12 dimensions

R9: 306 points from the non-lattice packing P9a.

R10: 500 points from the non-lattice packing P10b.

R11: 582 points from the non-lattice packings P11c .

R12: 840 points from the non-lattice packings P12a.

These are eleven such spherical codes in dimension 11 and seventeen in
dimension 12. We proved that they are all jammed.
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Coxeter-Todd

Example

The best known lattice kissing configuration in R12 is that of the
Coxeter-Todd lattice K12, which is the densest known lattice in that
dimension. It has 756 minimal vectors.

The linear program gives a first-order unjamming of K12, but the obvious
motion xi → (xi + tyi )/

√

1 + t2|yi |2 doesn’t work. We can make a choice
of first-order deformation, set up a linear program for a second order
deformation, which also gives a non-trivial answer. But the obvious lift
doesn’t work ...
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Unjamming Coxeter-Todd

Thankfully, we can exploit the Eisenstein lattice structure of K12 to unjam
this kissing configuration. It splits into 126 disjoint hexagons, which are
far enough apart that they can be rotated independently through small
angles, without changing the minimal distance.

The key property is that for distinct minimal vectors x , y of K12

(considered as a Z[ω] lattice inside C6, we have not just Re 〈x , y〉 ≤ 2 but
also the stronger property 〈x , y〉 =

∑

xiyi ≤ 2.

This fact is equivalent to an assertion about the 126-point code in CP
5

obtained by taking the quotient by C× or by the sixth roots of unity.

We have shown that the kissing configuration of K12 is not rigid.
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Barnes-Wall lattice

Example

The densest lattice in R16 is the Barnes-Wall lattice, a laminated lattice.
Its kissing arrangement of 4320 vectors is also the best known in this
dimension.

The linear program was too large to run on a computer. However, we
showed by using A2 and D4 embeddings, and the automorphism group of
this lattice, that the kissing configuration is jammed, so no local
improvements are possible.

There is a very large number of competitors, which are not known to be
rigid.
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Leech lattice

The Leech lattice kissing arrangement of 196560 vectors is an optimal
code, unique for its size and minimal distance. Therefore it is certainly
rigid.

The inner products between distinct vectors lies in {0,±1/4,±1/2,−1}.
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Λ25

Example

The (previous) record for kissing number in R25 was 196560 + 96, from
the kissing configuration of the laminated lattice Λ25. It consists of taking
the Leech minimal vectors on the equatorial hyperplane, along with the
remaining vectors of D25 (a 24-dimensional cross-polytope above and
below).

The kissing configuration of Λ25 is unjammed, just like that of Λ9.
However, using this to try improve the kissing number is quite difficult.
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Dimension 25

We found two different ways to beat the kissing number in R25.

One way is to look for a large kissing configuration which still contains
CLeech as a cross-section. This leads to a small improvement. We describe
the other method, which easily generalizes to give improvements in higher
dimensions.

Within CLeech, we searched by computer (simulated annealing) for a subset
S such that for distinct x , y in S , the inner product is never 1/2, i.e.
〈x , y〉 ≤ 1/4.

The largest S we found has size 480. In fact, smaller S will also work.
Here’s one that’s easy to describe.
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288 vectors

There is a copy of the Nordstrom-Robinson code of size 256 in the
Barnes-Wall lattice (replace 0 by 1 and 1 by −1). In fact, together with
the cross-polytope formed by twice the 32 standard coordinate directions
and their negatives in R16, these generate the Barnes-Wall lattice.

Since the Barnes-Wall lattice is a cross-section of the Leech lattice, we
obtain an S of cardinality 288. Then let

C′ =
{

(x , 0) : x ∈ CLeech\S
}

⋃

{

(x cos θ,±2 sin θ) : x ∈ S
}

.

For 1/4 ≤ sin2 θ ≤ 1/3, this code has minimal angle at least π/3.

Also |C ′| = |CLeech|+ |S | > 196560 + 96.
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Dimensions 26 through 31

We beat the previous kissing numbers in all these dimensions (which are
all from laminated lattices starting from Leech).

Example

In dimension 26, we obtain a kissing number of 196560 + 4 · 480, which
beats the previous record by 768.

This uses the following fact:

Lemma

There exist two disjoint 1/2-avoiding sets S1 and S2 of size 480 in CLeech.
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Independent sets

Then let

C ′′ =
{

(x , 0) : z ∈ CLeech\(S1 ∪ S2)
}

⋃

{

(x cos θ, 2ωj sin θ) : x ∈ S1, j = 0, 2, 4
}

⋃

{

(x cos θ, 2ωj sin θ) : x ∈ S2, j = 1, 3, 5
}

Here ω is a primitive sixth root of unity in C considered as R2, and
sin θ = 1/

√
3.

Proof.

Probabilistic method! Let S1 be fixed. Then the expected number of
elements of S1

⋂

gS1 (where g runs over the elements of the
automorphism group of the Leech lattice) is 4802/196560 ≈ 1.17. So
there exists S2 = gS1 which intersects S1 in at most one element. S1 can
be chosen antipodal, so in fact they don’t intersect at all.
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Some open questions

1 Find an example of a spherical code which is rigid but not
infinitesimally rigid.

2 Find an algorithm to test whether a spherical code is rigid.

3 Are there optimal (or near-optimal) kissing configurations in high
dimensions which have no contacts at all?

4 Are there exponentially large (in the dimension) kissing configurations
which are jammed?
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Reference: “Rigidity of spherical codes”, Henry Cohn, Yang Jiao, Abhinav
Kumar and Salvatore Torquato, arXiv:1102.5060.

Thank you!
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