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Presentation of the talk

Overview of the statistical mechanics (mean field) approach to the random
packing problem

The packing problem is a constraint satisfaction problem

Discrete random constraint satisfaction problems (R-CSP) have been studied
in detail by the statistical mechanics community
Franz, Kirkpatrick, Krzakala, Kurchan, Marsili, Mézard,
Monasson, Montanari, Parisi, Ricci-Tersenghi, Semerjian,
Zdeborová, Zecchina, and many others
in a very fruitful exchange with the mathematicians

Review of results for simple R-CSP: structure of solution and local algorithms

Difficulties in extending these results to the packing problem

Results from the replica method (briefly)
Cardenas, Franz, Kirkpatrick, Mézard, Monasson, Parisi,
Thirumalai, Wolynes, FZ

At this conference, see the talks by:
Brito, Chakraborty, Charbonneau, Ellenbroek, O’Hern, Kurchan,
Miyazaki, Ramezanpour
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Random Constraint Satisfaction Problems The coloring problem

The coloring problem

Input: A graph of N nodes and M links, and q colors.
Problem: Assign a color to each node in such a way that no link connects two
nodes of different colors
A constraint satisfaction problem
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Random Constraint Satisfaction Problems The coloring problem

The coloring problem as a packing problem

Input: A graph of N nodes and M links, and q types of particles.
Problem:
• On each site, put one particle (hard-core exclusion)
• If a site is occupied by a particle of color i , then adjacent sites cannot be
occupied by particles of the same color (nearest-neighbor exclusion between
particles of the same color)
A packing problem for a non-additive mixture of q types of particles
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Random Constraint Satisfaction Problems Statistical mechanics approach

Coloring problem as a statistical mechanics problem

Input: A graph of N nodes and M links, and “Potts spins” σi ∈ {1, 2, · · · , q}.
Problem:
• Define the Hamiltonian H =

�
�i,j� δσi ,σj

• Compute the partition function: Z (β) =
�

σ1,··· ,σN
e−βH

• The ground state energy is EGS = limβ→∞
�
− β−1 log Z (β)

�

A coloring exists ⇔ EGS = 0, and Z (β =∞) =number of solutions
No coloring exist ⇔ EGS > 0, and EGS =minimal number of monochromatic links
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Random Constraint Satisfaction Problems Statistical mechanics approach

Coloring of random graph as “spin glass” problem

Solving the problem for each given graph is too hard
Introduce an ensemble of random graphs: e.g. Erdös-Rényi ensemble
Random Constraint Satisfaction Problem (R-CSP)

Key property of random graphs: locally tree-like for N →∞ and M = cN/2
Typical loops are long ∼ log(N)

The neighbors of a given spin are “far away” from each other
Hence, they are decorrelated (in absence of the central spin)
In physics, this is called a “mean field” model
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Random Constraint Satisfaction Problems Statistical mechanics approach

Coloring of random graph as “spin glass” problem

Mean field statistical mechanics methods (replica and cavity methods)

allow to compute exactly the partition function

More precisely, the free energy averaged over the random graph:

f (β, c) = lim
N→∞ , M=cN/2

E
�
− 1

βN
log Z (β)

�

From this, all the information on the problem can be reconstructed: ground state
energy, number of solutions, etc.
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Random Constraint Satisfaction Problems Phase transitions in R-CSP

Phase transitions in R-CSP, at zero temperature

Structure of the set of the solutions: [Krzakala et al. PNAS 104, 10318 (2007)]

Cluster without frozen variable
Cluster with frozen variables

CONDENSATION RIGIDITY UNCOL

connectivity

Uncolorable phaseColorable phase

CLUSTERING

c c c cc srd

(i) (ii) (iii) (iv) (v) (vi)

Phase transitions in Random CSP:

c < cd : Most of the solutions form a unique cluster

cd < c < cc : The solutions form many (∼ eNΣ) clusters

cc < c < cs : A small number of clusters dominate

cr < c < cs : Frozen variables in a cluster

c > cs : No colorings, EGS > 0 (UNSAT)
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Random Constraint Satisfaction Problems Phase transitions in R-CSP

Phase transitions in R-CSP, at zero temperature

Structure of the set of the solutions: [Krzakala et al. PNAS 104, 10318 (2007)]

Cluster without frozen variable
Cluster with frozen variables

CONDENSATION RIGIDITY UNCOL

connectivity

Uncolorable phaseColorable phase

CLUSTERING

c c c cc srd

(i) (ii) (iii) (iv) (v) (vi)

Condition for the clustering transition: ∀c ≤ cd one has

µ(·): uniform measure over solutions
σi : a randomly drawn spin
σ�: set of spins at distance � from i

lim
�→∞

lim
N→∞

E
�

σ�

µ(σ�)
�

σi

|µ(σi |σ�)−µ(σi )| = 0
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Random Constraint Satisfaction Problems Phase transitions in R-CSP

Phase transitions in R-CSP, at zero temperature

Structure of the set of the solutions: [Krzakala et al. PNAS 104, 10318 (2007)]

Cluster without frozen variable
Cluster with frozen variables

CONDENSATION RIGIDITY UNCOL

connectivity

Uncolorable phaseColorable phase

CLUSTERING

c c c cc srd

(i) (ii) (iii) (iv) (v) (vi)

Condition for the condensation transition: draw n random spins i1, · · · , in,
then one has, ∀n and ∀c ≤ cc ,

lim
N→∞

E
�

σi1 ,··· ,σin

|µ(σi1 , · · · , σin
)− µ(σi1) · · ·µ(σin

)| = 0

Hence cc is really a “phase transition”!

Francesco Zamponi (LPTENS) Random CSP and packings Trieste, July 27, 2011 10 / 24



Random Constraint Satisfaction Problems Phase transitions in R-CSP

Phase transitions in R-CSP, at zero temperature

Structure of the set of the solutions: [Krzakala et al. PNAS 104, 10318 (2007)]

Cluster without frozen variable
Cluster with frozen variables

CONDENSATION RIGIDITY UNCOL

connectivity

Uncolorable phaseColorable phase

CLUSTERING

c c c cc srd

(i) (ii) (iii) (iv) (v) (vi)

Condition for the satisfiability transition: ∀c > cs , one has

lim
N→∞

P(Z > 0) = 0
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Random Constraint Satisfaction Problems Phase transitions in R-CSP

Phase transitions in R-CSP, at zero temperature

Structure of the set of the solutions: [Krzakala et al. PNAS 104, 10318 (2007)]

Cluster without frozen variable
Cluster with frozen variables

CONDENSATION RIGIDITY UNCOL

connectivity

Uncolorable phaseColorable phase

CLUSTERING

c c c cc srd

(i) (ii) (iii) (iv) (v) (vi)

In the limit of large q, one has
cd ∼ q(log q + log log q + O(1))

[Theorem: Sly CMP 288, 943 (2009)

Gerschenfeld, Montanari, IEEE FOCS’07, 194 (2007)]

cc ∼ 2q log q − log q − 2 log 2 + o(1)
Existence of this transition proven in a similar model

[Coja-Oghlan, Zdeborova, arXiv:1107.2341]

cs ∼ 2q log q − log q − 1 + o(1)
[Theorem (2q log q): Achlioptas, Naor, Ann. Math. 162, 1335 (2005)]
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Random Constraint Satisfaction Problems Phase transitions in R-CSP

Phase transitions in R-CSP, at non-zero temperature

The temperature-connectivity phase diagram:
[Krzakala, Zdeborová, EPL 81, 57005 (2008)]

c

Liquid

T

cs

Uncolorable

Glass

Tc(c)

Td(c)

cccd

Cluster without frozen variable
Cluster with frozen variables

CONDENSATION RIGIDITY UNCOL

connectivity

Uncolorable phaseColorable phase

CLUSTERING

c c c cc srd

(i) (ii) (iii) (iv) (v) (vi)
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Random Constraint Satisfaction Problems Consequences for local algorithms

Consequences for local algorithms

c

Liquid

T

cs

Uncolorable

Glass

Tc(c)

Td(c)

cccd

Theorem: [Montanari, Semerjian, J. Stat. Phys. 125, 23 (2006)]

Local Monte-Carlo algorithms do not equilibrate for T < Td(c)

This means that sampling is hard in this region - it takes a time ∼ exp(N)

This means that dynamics becomes very algorithm-dependent in this region

This does not mean that finding a solution is hard in this region
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Random Constraint Satisfaction Problems Consequences for local algorithms

Consequences for local algorithms

c

Liquid

T

cs

Uncolorable

Glass

Tc(c)

Td(c)

cccd

Sometimes, even thermal annealing is able to find a solution for c > cd

Several algorithms (WalkSAT, Belief Propagation, etc.) are able to find
solutions quite close to cs

The point cj where the algorithm fails is algorithm-dependent
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Random Constraint Satisfaction Problems Consequences for local algorithms

Consequences for local algorithms

Cluster without frozen variable
Cluster with frozen variables

CONDENSATION RIGIDITY UNCOL

connectivity

Uncolorable phaseColorable phase

CLUSTERING

c c c cc srd

(i) (ii) (iii) (iv) (v) (vi)

Main message: whatever local algorithm will get stuck in one cluster

There is a wide distribution of clusters and it is hard to predict in which
cluster a given algorithm will get stuck

In some cases, a more precise analysis can be done
[Krzakala, Zdeborová PRB 81, 224205 (2010)]

[Ricci-Tersenghi, Semerjian, J. Stat. Mech. P09001 (2009)]
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Random Constraint Satisfaction Problems A bridge between coloring and packing problemss

A bridge between coloring and packing problems

On each site, a variable ri ∈ [0, 1]d

“a continuous color”

Hamiltonian H =
�
�i,j� v(|ri − rj |)

with v(r) = (D − r)2θ(D − r)

Random graphs as for the COL problem

Same qualitative phase diagram:

[Mari, Krzakala, Kurchan,

PRL 103, 025701 (2009)]

ϕ

Liquid

T

ϕGCP

Jammed states

Glass

TK(ϕ)

Td(ϕ)

ϕKϕd
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The sphere packing problem Mean field phase diagram

Mean field phase diagram for the sphere packing problem

The temperature-packing fraction phase diagram:

N particles in a volume V
d dimensions

H =
�
�i,j� v(|ri − rj |)

v(r) = (D − r)2θ(D − r)

Z (β) =
�

dr1 · · · drN e−βH

ϕ

Liquid

T

ϕGCP

Jammed states

Glass

TK(ϕ)

Td(ϕ)

ϕKϕd

ϕGCP ϕ
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The sphere packing problem Mean field phase diagram

Mean field phase diagram for the sphere packing problem

The temperature-packing fraction phase diagram:

New difficulties:

Neighbors are correlated

Geometry, crystallization

New interesting properties:
(C.Brito’s talk)

Mechanical properties

Soft modes

Scaling laws

A large correlation

ϕ

Liquid

T

ϕGCP

Jammed states

Glass

TK(ϕ)

Td(ϕ)

ϕKϕd

ϕGCP ϕ
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The sphere packing problem Mean field phase diagram

Mean field phase diagram for the sphere packing problem

The temperature-packing fraction phase diagram:

New difficulties:

Geometry, crystallization

Because of crystallization, the
amorphous region becomes
metastable

Additional history dependence
effects

In large dimensions,
crystallization is suppressed
(P.Charbonneau’s talk)

ϕ

T

ϕGCP

Jammed states

Glass

TK(ϕ)

Td(ϕ)

ϕKϕdϕm

Tm(ϕ)

Liquid

ϕGCP ϕ

Francesco Zamponi (LPTENS) Random CSP and packings Trieste, July 27, 2011 17 / 24



The sphere packing problem Mean field phase diagram

Mean field phase diagram for the sphere packing problem

The temperature-packing fraction phase diagram:

New difficulties:

Neighbors close to each others,
hence correlated

Mean field theory cannot be used

In large dimensions:
z = 2d (isostaticity)
z ≥ ed (− log sin(π/3)) (individual kissing number)

[Wyner, Bell System Tech. J. 46, 2111 (1967)]

Neighbors are “far” from each others

The liquid lacks any short range structure
The Van der Waals equation is exact
Parisi, Slanina, PRE 62, 6554 (2000)

Skoge et al., PRE 74, 041127 (2006)
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The sphere packing problem Mean field phase diagram

Mean field phase diagram for the sphere packing problem

Mean field theory of the glass transition in hard spheres has been formulated in
many (almost) equivalent ways:

Density functional theory
Singh, Stoessel, Wolynes, PRL 54, 1059 (1985)

Random First Order Transition (RFOT) theory
Kirkpatrick, Thirumalai, Wolynes, PRA 40, 1045 (1989)

Mode Coupling Theory
W. Gotze, Oxford University Press (2009)

Replica Theory
Mézard, Parisi, PRL 82, 747 (1999); Parisi, FZ, RMP 82, 789 (2010)

It might be exact for d →∞ and it is a reasonable approximation at finite d
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The sphere packing problem Mean field and large d

Mean field theory should be exact in large d

ϕ

Liquid

T

ϕGCP

Jammed states

Glass

TK(ϕ)

Td(ϕ)

ϕKϕd

pfluid(ϕ) = 1 + 2d−1ϕ 1−Ad ϕ
(1−ϕ)d

pfv(γ,ϕ) = d ϕj(γ)[1−f (γ)]
ϕj(γ)−ϕ

10 15 20 25 30
2d
ϕ

0

0.05

0.1

1/p

fluid EOS (fit)
threshold glass (extr.)
ideal glass (RT)
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ϕj
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γ1/2

0

0.05

0.1

0.15

f

Decreasing γ
0.1, 0.03, ... , 0.00003

ϕK

ϕGCP

ϕd

ϕth

Compression of 9-dimensional hard spheres at constant rate
while doing local moves (event-driven collisions)

[Skoge, Donev, Stillinger, Torquato, PRE 74, 041127 (2006)]

[Charbonneau, Ikeda, Parisi, FZ, arXiv:1107.4666]
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The sphere packing problem Mean field and large d

Mean field theory should be exact in large d

0 8 16 24 322dϕ
0
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20

40

2d
ϕ

ϕK     (RT+CS)
ϕGCP  (RT+CS)
ϕd      (num.)
ϕth     (num.)

Large d scaling: ϕGCP ∼ 2−dd log d

The liquid equation of state approaches the mean field one upon increasing d
Replica theory captures well the trend with increasing dimension
There is a discrepancy with Mode-Coupling Theory (Miyazaki’s talk)

[Charbonneau, Ikeda, Parisi, FZ, arXiv:1107.4666]
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The sphere packing problem Mean field and 3d

Mean field theory is not so bad in d = 3
Scaling around jamming:

T = 0
T = 10−5 · · · 10−8

ϕ

g m
ax

0.6450.640.6350.630.6250.62

1000

100

p ∼ g(D) ∼ (ϕj − ϕ)−1

0.1 1 10!
10

-4
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-3

10
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10
-1

10
0

g(!)/g(D)

Donev et al.
Theory

g(r)
g(D) = ∆

�
r−D

D
p
�

= ∆(λ)

[Parisi, FZ, RMP 82, 789 (2010)]

[Berthier, Jacquin and FZ, PRL 106, 135702 (2011) and arXiv:1106.4663]
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The sphere packing problem Mean field and 3d

Mean field theory is not so bad in d = 3
Binary mixtures: jamming density and interparticle contacts
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All packings are predicted to be globally isostatic.
Partial contact numbers are almost independent of ϕj .

[Biazzo, Caltagirone, Parisi, FZ, PRL 102, 195701 (2009)]
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Conclusions

Conclusions

ϕ

Liquid

T

ϕGCP

Jammed states

Glass

TK(ϕ)

Td(ϕ)

ϕKϕd

A glass transition temperature Td (ϕ). Below it, history dependence and lack of
equilibration.

Jamming happens inside the glass region. The “random close packing” point depends on
the algorithm used to create amorphous packings.

Mean field theory predicts the existence of a “glass close packing”, that would be reached
only through an infinitely slow annealing. This is an upper bound to any amorphous
jammed state.

In large d , ϕGCP ∼ 2−d
d log d . Amorphous packings seem to evolve smoothly with

dimension.

Mean field theory might be exact at large d , and it is a reasonable approximation in low d .

Still at low d crystallization is important.
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