Workshop on Sphere Packing and Amorphous Materials

25-29 July 2011

Calculations of the Probabilities of Jammed Packings

Corey S. O'Hern
Dept.of Mech. Eng. \& Mat. Sci.
Dept.of Physics, Yale University P.O. Box 208286, New Haven, CT 06520 U.S.A

Calculations of the probabilities of jammed packings

Corey S. O'Hern
Department of Mechanical Engineering \& Materials Science Department of Physics
Yale University

What is the best packing?

What is the most probable packing (given a protocol)? ${ }^{\circ}$

0 -

Outline

1. Jammed packings do not occur with equal probability.
2. Basins of attraction for jammed packings.
3. Contact percolation critical point(s).

Important Point \#1

To accurately measure packing probabilities, one must identify all possible packings...
...first studies must be performed on small systems.

Motivation

- In small systems, we can show that jammed packings occur with very different probabilities. So what?
- In large systems, it appears that packings occur with equal probability, i.e. each packing occurs once, but within a narrow set of structural properties (for a given protocol).
- But if the protocol is changed, a different narrow set of packings will occur.
- The problem of understanding packing probabilities in small systems is similar to understanding protocol dependence of packings in large systems.

GG, JB, CSO, MS, Phys. Rev. E 80
(2009) 061304.

Deposition Algorithm in Simulations

$$
\bar{g}=\frac{m_{s} g}{k \sigma_{s}}
$$

-All geometric parameters identical to those for experiments
-Terminate algorithm when $\mathrm{F}_{\text {tot }}<\mathrm{F}_{\text {max }}=10^{-14}$
-Vary random initial positions and conduct $\mathrm{N}_{\text {trials }}=10^{8}$ to find 'all' mechanically stable packings for small systems $\mathrm{N}=3$ to 10 .

Mechanically Stable Frictionless Packings

2

3
-Distinct MS packings distinguished by particle positiduns -\# of constraints \geq \# of degrees of freedom

Mechanical Stability and Distinguishability

$$
\begin{aligned}
& M_{\alpha, \beta}=\left.\frac{\partial^{2} V(\vec{r})}{\partial r_{\alpha} \partial r_{\beta}}\right|_{\vec{r}=\vec{r}_{0}} \\
& \alpha, \beta=x, y, z, \text { particle } \\
& \text { index } \\
& \begin{array}{c}
\vec{r}_{0}=\begin{array}{c}
\text { positions of } \\
\text { MS packing }
\end{array}
\end{array}
\end{aligned}
$$

Calculate d N - d eigenvalues

Packing Probabilities Are Robust*

- Rare MS packings in exps are rare in sims; frequent MS packings in exps are frequent in sims

Calculations of Basin Volumes

(Dissipation) rate dependence and basin volume

$\mathrm{N}=4$ packings

Prob $=0.413250 \%$

Prob=6.065950\%

Prob=26.197200\%

Prob $=30.415850 \%$

Prob=0.000050\%

Prob=0.187150\%

Prob=2.868100\%

Prob $=33.852450 \%$

$\mathrm{N}=6$

N	N_{s}
4	7^{*}
6	75^{*}
8	500
10	3983
12	16935

What determines MS packing probabilities: Density landscape for hard spheres

Method 1 (small I): Probability to return to a given MS packing

Method 2 (large I): Random initial conditions

Basin Volumes

$$
P_{i}=\frac{V_{i}}{L^{d N}} \quad V_{i}=\int_{0}^{\sqrt{d N}} S_{i}(l) d l
$$

$$
S_{i}(l)=A_{\mathrm{dN}} f_{i}(l) l^{d N-1} \rho_{i} N_{s}!N_{l}!
$$

$\mathrm{f}_{\mathrm{i}}(\mathrm{l})$
weighted basin profile function
unweighted basin profile function

Weighted/Unweighted basin profile functions

-Probability of MS packing determined by large I , not core region I_{c}

Do local properties determine probability?

Thermal Quench Rate Dependence

Future Directions

- Rattlers

Particles with fewer than 3 contacts

- Study ϕ_{i} and quench rate dependence of probabilities

What important processes signal jamming and determine packing probabilities?

Contact Percolation

Cooperative Motion

'Random’ Continuum Percolation

Critical Scaling Exponents
Cluster Size Distribution

X_{c}	1.13
ϕ_{c}	0.678
D	1.91
τ	2.02
v	1.33

How is the percolation transition influenced by spatial correlations?

Constant NVE Hard Sphere Dynamics
"Porosity for the penetrable-concentric-shell model of two-phase disordered media:
Computer simulation results", S. B. Lee \& S. Torquato, J. Chem. Phys. 89 (1988) 3258.

ϕ_{0}-dependent Percolation

Percolation Transitions

Inelastic Hard Sphere Dynamics

$$
\begin{aligned}
& 100000000000
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{l}
2000000800000 \\
000000000000
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \phi_{0}=0.3
\end{aligned}
$$

Inelastic Dynamics

Sticky Disks

	elastic disks	sticky disks
D	1.91	1.88
τ	2.02	2.04
v	1.38	1.92

Study cooperative motion/correlation lengths below jamming?

The O'Hern group in the Summer 2010: (back row from left to right) Carl Schreck, Thibault Bertrand, Robert Hoy, and Mark Shattuck; (front row from left to right) Tianqi Shen, Alice Zhou, Corey O'Hern, Sarah Penrose, Amy Werner-Allen, S. S. Ashwin, and Guo-Jie Gao.

NSF DMS-0835742, Duration: 9-1-08 to 8-31-12 NSF CBET-0967262, Duration: 2-15-10 to 2-14-13 NSF-PHY-1019147, Duration: 7-1-10 to 6-30-15 NSF-DMR-1006537, Duration: 9-1-10 to 8-31-13

