

2254-9

Workshop on Sphere Packing and Amorphous Materials

25 - 29 July 2011

Calculations of the Probabilities of Jammed Packings

Corey S. O'Hern

Dept.of Mech. Eng. & Mat. Sci. Dept.of Physics, Yale University P.O. Box 208286, New Haven, CT 06520 U.S.A.

Outline

- 1. Jammed packings do not occur with equal probability.
- 2. Basins of attraction for jammed packings.
- 3. Contact percolation critical point(s).

Important Point #1

To accurately measure packing probabilities, one must identify all possible packings...

... first studies must be performed on small systems.

Motivation

• In small systems, we can show that jammed packings occur with very different probabilities. So what?

• In large systems, it appears that packings occur with equal probability, *i.e.* each packing occurs once, but within a narrow set of structural properties (for a given protocol).

• But if the protocol is changed, a different narrow set of packings will occur.

• The problem of understanding packing probabilities in small systems is similar to understanding protocol dependence of packings in large systems.

GG, JB, CSO, MS, Phys. Rev. E 80 (2009) 061304.

Deposition Algorithm in Simulations

$$\boxed{\begin{array}{c} \hline g = \frac{m_S g}{k \sigma_S} \\ \hline \end{array}}$$

•All geometric parameters identical to those for experiments •Terminate algorithm when $F_{tot} < F_{max} = 10^{-14}$ •Vary random initial positions and conduct $N_{trials} = 10^8$ to find 'all' mechanically stable packings for small systems N=3 to 10.

Mechanically Stable Frictionless Packings

Distinct MS packings distinguished by particle positions
of constraints ≥ # of degrees of freedom

Mechanical Stability and Distinguishability

$$M_{\alpha,\beta} = \frac{\partial^2 V(\vec{r})}{\partial r_{\alpha} \partial r_{\beta}} \bigg|_{\substack{\alpha,\beta=x, y, z, \text{ particle}\\ \text{index}\\\vec{r}_0 = \text{positions of}\\ \text{MS packing}}} \|_{\vec{r}=\vec{r}_0}$$

Calculate d N- d eigenvalues

Packing Probabilities Are Robust*

 Rare MS packings in exps are rare in sims; frequent MS packings in exps are frequent in sims

Calculations of Basin Volumes

 $P_i = V_i / L^{dN}$

X₁

(Dissipation) rate dependence and basin volume

fast rate; ϕ_f =0.622

slow rate; ϕ_f =0.730 fast rate; different IC; ϕ_f =0.730

N=4 packings

Prob=0.413250%

Prob=6.065950%

039

Prob=0.187150%

Prob=2.868100%

00000000000000000000000000000000000000
00000000000000000000000000000000000000
00000000000000000000000000000000000000

Prob=26.197200%

CONGOSOS CONSTANT
0000000000000000000
ROBBROBROPEOLOS
000000000000000000000000000000000000000
000000000000000000000000000000000000000
000000000000000000
0000000000000000000
<u>50105400400105105501</u>

Prob=30.415850%

Prob=33.852450%

Prob=0.000050%

N=6

N	N _s
4	7*
6	75*
8	500
10	3983
12	16935

What determines MS packing probabilities: Density landscape for hard spheres

Method 1 (small I): Probability to return to a given MS packing

Method 2 (large I): Random initial conditions

Basin Volumes

$$P_{i} = \frac{V_{i}}{L^{dN}} \qquad \qquad V_{i} = \int_{0}^{\sqrt{dN}} S_{i}(l) dl$$

 $S_i(l) = A_{dN} f_i(l) l^{dN-1} \rho_i N_s! N_l!$ weighted basin profile function

 $f_i(I)$

unweighted basin profile function

Weighted/Unweighted basin profile functions

•Probability of MS packing determined by large I, not core region I_c

Do local properties determine probability?

Thermal Quench Rate Dependence

Future Directions

Particles with fewer than 3 contacts

• Study φ_i and quench rate dependence of probabilities

What important processes signal jamming and determine packing probabilities?

Contact Percolation

Cooperative Motion

'Random' Continuum Percolation

 $X_p = N\pi R_p^2/L^2$

Critical Scaling Exponents

How is the percolation transition influenced by spatial correlations?

Constant NVE Hard Sphere Dynamics

"Porosity for the penetrable-concentric-shell model of two-phase disordered media: Computer simulation results", S. B. Lee & S. Torquato, J. Chem. Phys. 89 (1988) 3258.

ϕ_0 -dependent Percolation

Percolation Transitions

Inelastic Hard Sphere Dynamics

φ₀=0.3

Inelastic Dynamics

Sticky Disks

	elastic disks	sticky disks
D	1.91	1.88
τ	2.02	2.04
ν	1.38	1.92

Study cooperative motion/correlation lengths below jamming?

http://jamming.research.yale.edu/

The O'Hern group in the Summer 2010: (back row from left to right) Carl Schreck, Thibault Bertrand, Robert Hoy, and Mark Shattuck; (front row from left to right) Tianqi Shen, Alice Zhou, Corey O'Hern, Sarah Penrose, Amy Werner-Allen, S. S. Ashwin, and Guo-Jie Gao.

NSF DMS-0835742, Duration: 9-1-08 to 8-31-12 NSF CBET-0967262, Duration: 2-15-10 to 2-14-13 NSF-PHY-1019147, Duration: 7-1-10 to 6-30-15 NSF-DMR-1006537, Duration: 9-1-10 to 8-31-13

