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Soft sphere packings
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2D polydisperse disk packings:
disordered solids with 

properties determined by 
Δφ=φ-φc
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Marginal stability and scaling away from it
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Which is the odd one out?
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Elastic network description of packings
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Effective Medium Theory?
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EMT assumes that the 
map from old to new 

positions is affine ΔE =
1
2

∑
i �=j

kiju
2
‖ −

fij

rij
u2
⊥

assuming affine deformation:
u‖ ∼ ε

u⊥ ∼ ε

ΔE ∼ kzε2



Effective Medium Theory?
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Effective Medium Theory Why does EMT fail?
Makse et al., PRL 1999
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Non-affinity!
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z = 4.09 p = 5 · 10−6 z = 4.52 p = 5 · 10−4 z = 5.87 p = 3 · 10−2



EMT’s main assumption fails horribly near φc
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Effective Medium Theory Why does EMT fail?
Makse et al., PRL 1999
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Why does EMT seem to work?
Ellenbroek et al., EPL 2009



Rigidity percolation
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Traditional example:
Diluted triangular lattice
Each bond present with probability p
Threshold value pc

Fractal rigid backbone
Second order transition
Elastic moduli vanish at the transition

Moukarzel, 1999
Jacobs and Thorpe, 1995

What can we learn from rigidity percolation 
models that are closer to soft disk packings?



Random Networks
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Packings are almost like random networks... but not quite!

Start from high density packing

Randomly delete/cut bonds while
keeping at least 3 bonds per node



Families of networks
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(a) Jammed 
     Packings

(b) Spring Networks
     with pre-stress

(c) Spring Networks
     w/o pre-stress

(d) Randomly cut
     Networks

decompress

cut



Comparing the elastic moduli
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What else can we learn from this?
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Characterizing non-affinity
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Note that we can vary dN coordinates 
to minimize zN/2 energy contributions

Change in elastic energy due to displacements u
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Study statistics of the “displacement angle” α
while varying z



What α do we expect?
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l

Cutting out this piece will give something 
floppy if there are more boundary bonds 

than excess bulk bonds

�∗ ∼ 1

Δz
uij

rijα

(a) Floppy mode (b) Soft mode

l*

α

Wyart et al., EPL (2005), PRL (2008)
Ellenbroek et al., EPL (2009)

u‖
u⊥

∼ Δz



Probability densities of α
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Ellenbroek et al., EPL (2009)(2009)

randomly cut networks
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Except for compression
of packings!



What’s behind this?
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With all spring 
constants identical,

the dynamical matrix 
M is purely geometric

ΔE =
1
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∑
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uiMijuj

If the geometry is such that the space of force-
balanced networks contains a solution with all forces 
repulsive, compression will be hard.

M. Wyart,  arXiv:0806.4653v2 (2008)



Summary (moduli)

19

Non-affinity diverges as unjamming is approached.

Elastic behavior of random networks is the 
same as that of sheared packings.

The compression response of packings is 
anomalous.



How to theorize more?
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Square lattice with randomly
added next-nearest-neighbor bonds

Learning about jamming from rigidity percolation:
What are suitable models?
• we want a non-fractal structure at the transition
• we want isostaticity at the transition

1

2



Rigidity transition
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For what p is the resulting structure rigid?
How does this p depend on system size?



Defining variables and mapping
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(n+m)-dimensional space 
of floppy modes

Each crosslink sets two
coordinates to be equal A connected graph represents 

a rigid configuration



Connectivity of simple random graph
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Construct recurrence relation by considering all 
possible sizes k of the cluster that node x belongs to

1 −F1(n, p) =
n−1∑
k=1

(
n − 1
k − 1

)
F1(k, p)qk(n−k)

illustrating k=5 term

F1(n, p) = P[random graph with n vertices and
edge probability p is connected]

x

Gilbert,  Ann. Math. Statist. (1959)

q = 1 − p



Connectivity of bipartite random graph

24

Generalize recurrence relation by considering all 
possible sizes k,l of the cluster that node x belongs to

P[random graph with m green and n 
red vertices and edge probability p is 

connected]
x

Ellenbroek and Mao,  arXiv:1107.3933 (2011)

F(m,n, p) =
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)
F(k, l, p)qk(n−l)ql(m−k)



Connectivity of bipartite random graph
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in the limit 

1 =
m∑

k=1

n∑
l=0

(
m − 1
k − 1

)(
n

l

)
F(k, l, p)qk(n−l)ql(m−k)

m = n → ∞

Upper bound on F from1-F(n,n,p) ≥ P[graph contains at least 1 isolated node]

Lower bound on F from F(k,l,p)≤1

Bounds coincide to lowest order in 1/n : F(n, n, p) → 1 − 2nqn



Testing the limiting form of F
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F(n, n, p) → 1 − 2nqn
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Closed symbols: numerical test of graph connectivity
Open symbols: evaluation of recurrence formula
Lines: Limiting form of F



Scaling of the threshold probability
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F(n, n, pR(n)) = 1/2

Define critical p as function of system size through

From our work,  rigorously pR ≥ ln 2n

n

and numerically pR � ln 4.93n

n

From Palásti (1963) it can be derived that pR =
ln(2n/ ln 2)

n
≈ ln 2.89n

n

pR =
lnn

n
+ O(1/n) as n → ∞



Finite size scaling of the numerical data
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Generic rigidity?
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If we move away from the perfect square lattice to something 
with the same topology but with disordered positions...

• having one crossbar in each row and column is still not 
sufficient, and no longer necessary for rigidity

• the structure can be rigid even for non-connected graphs
• the order of the rows becomes important (not all green 

nodes are equivalent anymore)
• graph mapping used so far becomes pretty hopeless

...but numerically we can use the pebble game!
Jacobs and Thorpe, PRL (1995), PRE (1996)



Conclusion (square lattice)
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The threshold p for NNN rigidity percolation on the 
square lattice goes to zero with increasing system size 

 transition at isostatic point

Now what if we want to learn about jamming from this?

Recent work by Xiaoming Mao, Anton Souslov, Tom Lubensky, Andrea Liu

Mao et al., PRL 104, 085504 (2010)
Souslov et al., PRL 103, 205503 (2009)

pR =
lnn

n
+ O(1/n) as n → ∞



Summary
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Effective medium theory has nothing to say about elasticity 
of packings close to unjamming.

Random networks tell us that what’s special
about packings is that they resist compression so strongly.

It’s fun to link together bits of known math to write down
an exact expression, even if the relevant asymptotics were already known.

Ellenbroek, Zeravcic, Van Saarloos, Van Hecke, EPL 87, 34004 (2009)
Ellenbroek, Mao, arXiv:1107:3933 (2011)

and references therein



Thank you so much...
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