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What is numerical cubature?

Given X ⊆ R
d and a (normalized) measure μ on X , we want to

estimate: ∫
X

f (�x)dμ ≈ f (F )
def
=

∑
k

wk f (�pk).

We want to choose F so that the formula is exact for polynomials
of degree ≤ t.

Example

Simpson’s rule.

∫ 1

0
f (x)dx ≈ 1

6
f (0) +

2

3
f (

1

2
) +

1

6
f (1).

Simpson’s rule is exact if f ∈ R[x ]≤3. One says quadrature in one
dimension and cubature in higher dimensions.
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The cubature problem

Given X , μ and t ∈ N, find F so that

∫
X

P(�x)dμ = P(F )

for P ∈ R[�x ]≤t . F is a t-cubature formula. We want positive and
interior (PI) formulas: wk > 0 and F ⊆ X . These are also called
weighted t-designs (Delsarte).

The basic t-cubature or t-design problem is to minimize the
number of points.

Cubature in 1D (quadrature) was solved by Gauss and Christoffel.
But in ≥2D, cubature is an open-ended problem, just like the
sphere packing problem.
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An exact duality

• Delsarte found that t-designs are dual to sphere packings.
First, an exact duality.

• Suppose that the domain X is a compact abelian group. Then
an embedding X ⊆ R

N can be viewed as a “polynomial
structure” on X . In math-speak, X is an affine algebraic
variety (or a subset of one).

• If the affine algebraic structure is compatible with the group
action, the structure is equivalent to an integer-valued metric
on its Pontryagin dual X̂ . (I.e., X̂ is the Fourier space of X .)

• If F ⊆ X is a subgroup (or “lattice”), then it has a dual
F ∗ ⊆ X̂ . Fact: F is a t-design if and only if F ∗ has minimum
distance t + 1.

• Packings at radius r ↔ sets with min distance t + 1 = 2r + 1.
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An exact duality

Example

X = (R/2πZ)d = the d-torus with trigonometric polynomials

P(�θ) = P(cos θ1, sin θ1, . . . , cos θd , sin θd),

using the usual degree. Then X̂ = Z
d with the �1 or taxicab

metric.

Example

Let X = (Z/2)d be bit strings of length d , and define t-designs to
be orthogonal arrays of strength t. Then X̂ = (Z/2)d with the
Hamming metric.
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An exact duality

Example (Noskov)

Let X = (R/2πZ)2 and let F be the five points drawn below.
Then F is a trigonometric 2-design. It is dual to a discrete sphere
packing (in fact a tiling) of radius 1.

0 2π
0

2π

←→

The discrete �1 spheres are “Aztec diamonds”, or “plus signs”
when r = 1.
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Delsarte’s duality

Delsarte found another duality. Suppose that X is a 2-point
symmetric metric space. This means that X has a symmetry group
which is transitive on pairs of points x and y at fixed distance
dist(x , y). Then symmetry induces a polynomial structure on X
using harmonic functions.

Examples

The sphere X = Sd−1. Hamming space X = (Z/2)d .

Delsarte’s method: Given F ⊆ X with minimum distance r , write
down linear relations that the radial pair correlation function σ
must satisfy. Namely, σ(s) ≥ 0,

∫
σ(s)ds = 1, σ(s) = 0 for

0 < s < r , and the transform σ̂(k) ≥ 0. By linear programming,
these relations yield an upper bound on |F | = 1/σ(0).
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Delsarte’s duality

Delsarte, McEliece, Rodemich, Rumsey, Welch, Odlyzko, Sloane,
Kabatiansky, Levenshtein, etc., found that the Delsarte method
yields excellent bounds, sometimes optimal. Cohn and Elkies
generalized the method to X = R

d ; it is thought to be optimal
when d ∈ {2, 8, 24}.

The duality is that similar equations yield a lower bound on |F |,
where F is a PI t-design; sometimes F is optimal for both.

packings designs

σ(s) ≥ 0 σ(s) ≥ 0∫
σ(s)ds = 1

∫
σ(s)ds = 1

σ̂(k) ≥ 0 σ̂(k) ≥ 0

σ(s) = 0, 0 < s < r σ̂(k) = 0, 0 < k ≤ t

min σ(0) max σ(0)
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Trigonometric cubature and discrete sphere packings

Problem
Trigonometric t-cubature F on (R/2πZ)d for fixed t and d → ∞.
Or, packings F ∗ in Z

d at radius r with t = 2r .

For r = 1, let F ∗ be the set of �x with

x1 + 2x2 + 3x3 + · · · + dxd ≡ 0 (mod 2d + 1).

Then this is a tiling of d-dimensional plus signs.
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Trigonometric cubature and discrete sphere packings

What about for higher r? Suppose that p ≥ 2d + 1 is prime.
Define a group homomorphism φ : Z

d → (Z/p)r by

φ(�x) =
r∑

k=1

xk(k, k3, k5, . . . , k2r−1) ∈ (Z/p)r .

Then
F ∗ = Λ

def
= ker φ

is a sphere packing with density → 1/r ! as d → ∞, i.e., within a
constant factor of the volume bound.

Theorem (K.)

For each t, trigonometric t-designs exist with O(d�t/2�) points.

It is easy to boost t to 2r + 1 by restricting to even points.
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Trigonometric cubature and discrete sphere packings

Theorem (Stroud)

A volume bound holds for any t-cubature formula.

We match Stroud’s bound of O(d�t/2�) points, for each fixed t.

• Λ is a modified Craig lattice (Conway and Sloane). These
lattices were described for Euclidean spheres, but they are
even better for discrete �1 spheres. (�1 ≈ �2 for small r .)

• An analogy:

Z/2 Z

Hamming code plus lattice

BCH code Craig lattice

• Is there a competitive statistical mechanics approach? Note:
These constructions yield deeply overdetermined t-designs.
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A statistical mechanics result

Wandzura and Xiao (2001) used simulated annealing to find good
t-cubature on the triangle Δ2 for large t:
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It looks like a sphere covering with anisotropy near the boundary.
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t-designs are coverings

Theorem (K.)

A t-design on the simplex Δd has covering radius O(1/t) when
pulled back to an orthant section of Sd under the map

π : (x0, x1, . . . , xd) �→ (x2
0 , x2

1 , . . . , x2
d )

in barycentric coordinates.

This is for weighted t-designs. For unweighted t-designs, the result
is even stronger, because crowding at the edges forces more points
in the middle just to make the weights equal.
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Positive islands

The proof uses a polynomial P(�x) of degree t with

∫
Δd

P(�x)d�x > 0,

but which is only positive on a small positive island:

+

−

−

−
−

Any PI formula has a point in the island, so it is an sphere
covering in a metric in which the islands are approximately round.
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Archimedes’ theorem and t-designs

Theorem (Archimedes)

An axis projection of S2 preserves normalized volume.

2
3

1
6

1
6

This explains Simpson’s rule: It is the projection of a set in S2

which is a 3-design by symmetry. But that is another story.
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Archimedes’ theorem and t-designs

• Archimedes’ map generalizes to the moment map

π : CPd → Δd CP1 = S2.

• Here CPd is an affine real algebraic variety in coordinates
Re zjzk and Im zjzk , and

π(�z) = (|z0|2, |z1|2, . . . , |zd |2)

in barycentric coordinates on Δd . Because CPd is a projective
toric variety, its moment map π preserves volume and is linear.

• In physics-speak, CPd is the space of quantum states in the
Hilbert space C

d+1. It is also a classical phase space, and π is
a vector of conservation laws from d commuting symmetries.
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Archimedes’ theorem and t-designs

Example

The 240 kissing points of E8 ⊆ S7 (the sphere kissing problem
solution in 8 dimensions) project to 60 or 40 points on CP3.
Those project to 3-designs on Δ3 with 8 and 11 points.

They are described in Abramowitz and Stegun (1964)! Again,
another story.
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The positive island

We actually define P on CPd , rotate it to the desired position, and
project to Δd by averaging over fibers. Before rotation,
P(�z) = P(|z0|). It is made using numerical quadrature on [0, 1]
with μ(x) = xd−1. I.e., P(|z0|) comes from a Jacobi polynomial.

Sd
≥0

CPd

π
Δd
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Tao’s question

Terry Tao posed this “congestion” (conjecture or question) in
MathOverflow.

Question (Tao)

Suppose that K is a symmetric convex body in R
d which and Λ is

a lattice packing of K. Then is the reciprocal lattice a covering of
rK ∗, where K ∗ is the reciprocal convex body, with r = d/2 or at
least r = O(d)?

The constant d/2 is from the putative worst case of a d-cube.
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Tao’s question

I can prove r = O(d3/2) using the positive island method.

• First, replace K with an ellipsoid E . By John’s theorem, this
sacrifices a factor of O(d1/2). Apply a linear map to make E
a standard sphere.

• Let f : R
d → R be a band-limited function, i.e., f̂ (�k) = 0

when ||�k|| > t. We can view f as a “polynomial” of degree t.
Then we can define Fourier t-designs on R

d with t ∈ R≥0

(cf., Cohn and Elkies).

• Λ∗ is a t-design with t = 2 by duality. Does that force it to
have a good covering radius? We can let f be a band-limited
positive island function using a Bessel function, with radius
O(d). QED.
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Open problems

• In the discrete �1-ball or �2-ball packing problem, what if
d , r → ∞ together at some rate?

• A t-design on a simplex Δd has covering radius O(1/t) on
the orthant. Is this an optimal local density estimate?

• What is the answer to Tao’s question?
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