Workshop on Sphere Packing and Amorphous Materials

$$
\text { 25-29 July } 2011
$$

Greg KUPERBERG
University of California at Davis, Dept.of Mathematics 1 Shields Avenue, Davis, CA 95616
U.S.A.

Geometric t-designs and t-cubature and their relations to sphere packings and coverings

Greg Kuperberg

UC Davis
July 29, 2011
arXiv:math/0402047 arXiv:math/0405366
mathoverflow.net/questions/34599

What is numerical cubature?

Given $X \subseteq \mathbb{R}^{d}$ and a (normalized) measure μ on X, we want to estimate:

$$
\int_{X} f(\vec{x}) d \mu \approx f(F) \stackrel{\text { def }}{=} \sum_{k} w_{k} f\left(\vec{p}_{k}\right)
$$

We want to choose F so that the formula is exact for polynomials of degree $\leq t$.

Example

Simpson's rule.

$$
\int_{0}^{1} f(x) d x \approx \frac{1}{6} f(0)+\frac{2}{3} f\left(\frac{1}{2}\right)+\frac{1}{6} f(1)
$$

Simpson's rule is exact if $f \in \mathbb{R}[x]_{\leq 3}$. One says quadrature in one dimension and cubature in higher dimensions.

The cubature problem

Given X, μ and $t \in \mathbb{N}$, find F so that

$$
\int_{X} P(\vec{x}) d \mu=P(F)
$$

for $P \in \mathbb{R}[\vec{x}]_{\leq t} . F$ is a t-cubature formula. We want positive and interior (PI) formulas: $w_{k}>0$ and $F \subseteq X$. These are also called weighted t-designs (Delsarte).

The basic t-cubature or t-design problem is to minimize the number of points.

Cubature in 1D (quadrature) was solved by Gauss and Christoffel. But in $\geq 2 \mathrm{D}$, cubature is an open-ended problem, just like the sphere packing problem.

An exact duality

- Delsarte found that t-designs are dual to sphere packings. First, an exact duality.
- Suppose that the domain X is a compact abelian group. Then an embedding $X \subseteq \mathbb{R}^{N}$ can be viewed as a "polynomial structure" on X. In math-speak, X is an affine algebraic variety (or a subset of one).
- If the affine algebraic structure is compatible with the group action, the structure is equivalent to an integer-valued metric on its Pontryagin dual \hat{X}. (I.e., \hat{X} is the Fourier space of X.)
- If $F \subseteq X$ is a subgroup (or "lattice"), then it has a dual $F^{*} \subseteq \hat{X}$. Fact: F is a t-design if and only if F^{*} has minimum distance $t+1$.
- Packings at radius $r \leftrightarrow$ sets with min distance $t+1=2 r+1$.

An exact duality

Example

$X=(\mathbb{R} / 2 \pi \mathbb{Z})^{d}=$ the d-torus with trigonometric polynomials

$$
P(\vec{\theta})=P\left(\cos \theta_{1}, \sin \theta_{1}, \ldots, \cos \theta_{d}, \sin \theta_{d}\right),
$$

using the usual degree. Then $\hat{X}=\mathbb{Z}^{d}$ with the ℓ^{1} or taxicab metric.

Example

Let $X=(\mathbb{Z} / 2)^{d}$ be bit strings of length d, and define t-designs to be orthogonal arrays of strength t. Then $\hat{X}=(\mathbb{Z} / 2)^{d}$ with the Hamming metric.

An exact duality

Example (Noskov)
Let $X=(\mathbb{R} / 2 \pi \mathbb{Z})^{2}$ and let F be the five points drawn below. Then F is a trigonometric 2-design. It is dual to a discrete sphere packing (in fact a tiling) of radius 1 .

The discrete ℓ^{1} spheres are "Aztec diamonds", or "plus signs" when $r=1$.

Delsarte's duality

Delsarte found another duality. Suppose that X is a 2 -point symmetric metric space. This means that X has a symmetry group which is transitive on pairs of points x and y at fixed distance $\operatorname{dist}(x, y)$. Then symmetry induces a polynomial structure on X using harmonic functions.

Examples

The sphere $X=S^{d-1}$. Hamming space $X=(\mathbb{Z} / 2)^{d}$.
Delsarte's method: Given $F \subseteq X$ with minimum distance r, write down linear relations that the radial pair correlation function σ must satisfy. Namely, $\sigma(s) \geq 0, \int \sigma(s) d s=1, \sigma(s)=0$ for $0<s<r$, and the transform $\hat{\sigma}(k) \geq 0$. By linear programming, these relations yield an upper bound on $|F|=1 / \sigma(0)$.

Delsarte's duality

Delsarte, McEliece, Rodemich, Rumsey, Welch, Odlyzko, Sloane, Kabatiansky, Levenshtein, etc., found that the Delsarte method yields excellent bounds, sometimes optimal. Cohn and Elkies generalized the method to $X=\mathbb{R}^{d}$; it is thought to be optimal when $d \in\{2,8,24\}$.

The duality is that similar equations yield a lower bound on $|F|$, where F is a $\mathrm{Pl} t$-design; sometimes F is optimal for both.

packings	designs
$\sigma(s) \geq 0$	$\sigma(s) \geq 0$
$\int \sigma(s) d s=1$	$\int \sigma(s) d s=1$
$\hat{\sigma}(k) \geq 0$	$\hat{\sigma}(k) \geq 0$
$\sigma(s)=0,0<s<r$	$\hat{\sigma}(k)=0,0<k \leq t$
$\min \sigma(0)$	$\max \sigma(0)$

Trigonometric cubature and discrete sphere packings
Problem
Trigonometric t-cubature F on $(\mathbb{R} / 2 \pi \mathbb{Z})^{d}$ for fixed t and $d \rightarrow \infty$.
Or, packings F^{*} in \mathbb{Z}^{d} at radius r with $t=2 r$.
For $r=1$, let F^{*} be the set of \vec{x} with

$$
x_{1}+2 x_{2}+3 x_{3}+\cdots+d x_{d} \equiv 0 \quad(\bmod 2 d+1) .
$$

Then this is a tiling of d-dimensional plus signs.

Trigonometric cubature and discrete sphere packings

What about for higher r ? Suppose that $p \geq 2 d+1$ is prime. Define a group homomorphism $\phi: \mathbb{Z}^{d} \rightarrow(\mathbb{Z} / p)^{r}$ by

$$
\phi(\vec{x})=\sum_{k=1}^{r} x_{k}\left(k, k^{3}, k^{5}, \ldots, k^{2 r-1}\right) \in(\mathbb{Z} / p)^{r}
$$

Then

$$
F^{*}=\Lambda \stackrel{\text { def }}{=} \operatorname{ker} \phi
$$

is a sphere packing with density $\rightarrow 1 / r$! as $d \rightarrow \infty$, i.e., within a constant factor of the volume bound.
Theorem (K.)
For each t, trigonometric t-designs exist with $O\left(d^{\lfloor t / 2\rfloor}\right)$ points.
It is easy to boost t to $2 r+1$ by restricting to even points.

Trigonometric cubature and discrete sphere packings

Theorem (Stroud)
A volume bound holds for any t-cubature formula.
We match Stroud's bound of $O\left(d^{\lfloor t / 2\rfloor}\right)$ points, for each fixed t.

- Λ is a modified Craig lattice (Conway and Sloane). These lattices were described for Euclidean spheres, but they are even better for discrete ℓ^{1} spheres. ($\ell^{1} \approx \ell^{2}$ for small r.)
- An analogy:

$\mathbb{Z} / 2$	\mathbb{Z}
Hamming code	plus lattice
BCH code	Craig lattice

- Is there a competitive statistical mechanics approach? Note: These constructions yield deeply overdetermined t-designs.

A statistical mechanics result

Wandzura and Xiao (2001) used simulated annealing to find good t-cubature on the triangle Δ_{2} for large t :

$$
\begin{aligned}
t & =30 \\
|F| & =175
\end{aligned}
$$

It looks like a sphere covering with anisotropy near the boundary.

t-designs are coverings

Theorem (K.)

A t-design on the simplex Δ_{d} has covering radius $O(1 / t)$ when pulled back to an orthant section of S^{d} under the map

$$
\pi:\left(x_{0}, x_{1}, \ldots, x_{d}\right) \mapsto\left(x_{0}^{2}, x_{1}^{2}, \ldots, x_{d}^{2}\right)
$$

in barycentric coordinates.

This is for weighted t-designs. For unweighted t-designs, the result is even stronger, because crowding at the edges forces more points in the middle just to make the weights equal.

Positive islands

The proof uses a polynomial $P(\vec{x})$ of degree t with

$$
\int_{\Delta_{d}} P(\vec{x}) d \vec{x}>0
$$

but which is only positive on a small positive island:

Any PI formula has a point in the island, so it is an sphere covering in a metric in which the islands are approximately round.

Archimedes' theorem and t-designs

Theorem (Archimedes)
An axis projection of S^{2} preserves normalized volume.

This explains Simpson's rule: It is the projection of a set in S^{2} which is a 3 -design by symmetry. But that is another story.

Archimedes' theorem and t-designs

- Archimedes' map generalizes to the moment map

$$
\pi: \mathbb{C} P^{d} \rightarrow \Delta_{d} \quad \mathbb{C} P^{1}=S^{2}
$$

- Here $\mathbb{C} P^{d}$ is an affine real algebraic variety in coordinates $\operatorname{Re} z_{j} \overline{z_{k}}$ and $\operatorname{Im} z_{j} \overline{z_{k}}$, and

$$
\pi(\vec{z})=\left(\left|z_{0}\right|^{2},\left|z_{1}\right|^{2}, \ldots,\left|z_{d}\right|^{2}\right)
$$

in barycentric coordinates on Δ_{d}. Because $\mathbb{C} P^{d}$ is a projective toric variety, its moment map π preserves volume and is linear.

- In physics-speak, $\mathbb{C} P^{d}$ is the space of quantum states in the Hilbert space \mathbb{C}^{d+1}. It is also a classical phase space, and π is a vector of conservation laws from d commuting symmetries.

Archimedes' theorem and t-designs

Example

The 240 kissing points of $E_{8} \subseteq S^{7}$ (the sphere kissing problem solution in 8 dimensions) project to 60 or 40 points on $\mathbb{C} P^{3}$.
Those project to 3-designs on Δ_{3} with 8 and 11 points.

They are described in Abramowitz and Stegun (1964)! Again, another story.

The positive island

We actually define P on $\mathbb{C} P^{d}$, rotate it to the desired position, and project to Δ_{d} by averaging over fibers. Before rotation, $P(\vec{z})=P\left(\left|z_{0}\right|\right)$. It is made using numerical quadrature on $[0,1]$ with $\mu(x)=x^{d-1}$. I.e., $P\left(\left|z_{0}\right|\right)$ comes from a Jacobi polynomial.

Tao's question

Terry Tao posed this "congestion" (conjecture or question) in MathOverflow.

Question (Tao)
Suppose that K is a symmetric convex body in \mathbb{R}^{d} which and Λ is a lattice packing of K. Then is the reciprocal lattice a covering of $r K^{*}$, where K^{*} is the reciprocal convex body, with $r=d / 2$ or at least $r=O(d)$?
The constant $d / 2$ is from the putative worst case of a d-cube.

Tao's question

I can prove $r=O\left(d^{3 / 2}\right)$ using the positive island method.

- First, replace K with an ellipsoid E. By John's theorem, this sacrifices a factor of $O\left(d^{1 / 2}\right)$. Apply a linear map to make E a standard sphere.
- Let $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$ be a band-limited function, i.e., $\hat{f}(\vec{k})=0$ when $\|\vec{k}\|>t$. We can view f as a "polynomial" of degree t. Then we can define Fourier t-designs on \mathbb{R}^{d} with $t \in \mathbb{R}_{\geq 0}$ (cf., Cohn and Elkies).
- Λ^{*} is a t-design with $t=2$ by duality. Does that force it to have a good covering radius? We can let f be a band-limited positive island function using a Bessel function, with radius $O(d)$ QED.

Open problems

- In the discrete ℓ^{1}-ball or ℓ^{2}-ball packing problem, what if $d, r \rightarrow \infty$ together at some rate?
- A t-design on a simplex Δ_{d} has covering radius $O(1 / t)$ on the orthant. Is this an optimal local density estimate?
- What is the answer to Tao's question?

Acknowledgments
Special thanks to Noam Elkies and Eric Rains for providing the most help with these results.

