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What is numerical cubature?

Given X C RY and a (normalized) measure 1z on X, we want to
estimate:

/ F(R)dp ~ F(F) S wif ().
X k

We want to choose F so that the formula is exact for polynomials
of degree < t.

Example

Simpson’s rule.

1 1 2 1. 1
/Of(x)dxm6f(0)—|—§f(§)—|—6f(1).

Simpson'’s rule is exact if f € R[x|<3. One says quadrature in one
dimension and cubature in higher dimensions.
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The cubature problem

Given X, pand t € N, find F so that

/ P(%)dy = P(F)
X

for P € R[X]<¢. F is a t-cubature formula. We want positive and
interior (PIl) formulas: wy > 0 and F C X. These are also called
weighted t-designs (Delsarte).

The basic t-cubature or t-design problem is to minimize the
number of points.

Cubature in 1D (quadrature) was solved by Gauss and Christoffel.
But in >2D, cubature is an open-ended problem, just like the
sphere packing problem.
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An exact duality

e Delsarte found that t-designs are dual to sphere packings.
First, an exact duality.

e Suppose that the domain X is a compact abelian group. Then
an embedding X C R" can be viewed as a “polynomial
structure” on X. In math-speak, X is an affine algebraic
variety (or a subset of one).

e |If the affine algebraic structure is compatible with the group
action, the structure is equivalent to an integer-valued metric
on its Pontryagin dual X. (l.e., X is the Fourier space of X.)

o If F C X is a subgroup (or “lattice”), then it has a dual
F* C X. Fact: F is a t-design if and only if F* has minimum
distance t + 1.

e Packings at radius r <> sets with min distance t +1 = 2r + 1.
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An exact duality

Example
X = (R/27Z)? = the d-torus with trigonometric polynomials

—

P(0) = P(cosf1,sinfy,...,cosby,sinfy),

using the usual degree. Then X = 79 with the ¢ or taxicab
metric.

Example

Let X = (Z/2)9 be bit strings of length d, and define t-designs to
be orthogonal arrays of strength t. Then X = (Z/2)9 with the
Hamming metric.
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An exact duality

Example (Noskov)

Let X = (R/27Z)? and let F be the five points drawn below.
Then F is a trigonometric 2-design. It is dual to a discrete sphere
packing (in fact a tiling) of radius 1.

27

0 27

—

The discrete ¢! spheres are “Aztec diamonds”, or “plus signs”
when r = 1.
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Delsarte’s duality

Delsarte found another duality. Suppose that X is a 2-point
symmetric metric space. This means that X has a symmetry group
which is transitive on pairs of points x and y at fixed distance
dist(x, y). Then symmetry induces a polynomial structure on X
using harmonic functions.

Examples
The sphere X = S9=1. Hamming space X = (Z/2)¢.

Delsarte’s method: Given F C X with minimum distance r, write
down linear relations that the radial pair correlation function o
must satisfy. Namely, o(s) >0, [ o(s)ds =1, o(s) = 0 for

0 < s < r, and the transform 6(k) > 0. By linear programming,
these relations yield an upper bound on |F| = 1/5(0).
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Delsarte’s duality

Delsarte, McEliece, Rodemich, Rumsey, Welch, Odlyzko, Sloane,
Kabatiansky, Levenshtein, etc., found that the Delsarte method
yields excellent bounds, sometimes optimal. Cohn and Elkies
generalized the method to X = RY; it is thought to be optimal
when d € {2,8,24}.

The duality is that similar equations yield a lower bound on |F|,
where F is a Pl t-design; sometimes F is optimal for both.

packings designs
o(s) >0 o(s) >0
[o(s)ds =1 [o(s)ds =1
(k) >0 (k) >0
o(s)=0,0<s<r | ak)=00< k<t
min o (0) max o(0)
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Trigonometric cubature and discrete sphere packings

Problem
Trigonometric t-cubature F on (R/27Z)9 for fixed t and d — co.

Or, packings F* in Z¢ at radius r with t = 2r.

For r =1, let F* be the set of X with
xX1+2x +3x3+---+dxg=0 (mod 2d + 1).

Then this is a tiling of d-dimensional plus signs.
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Trigonometric cubature and discrete sphere packings

What about for higher r? Suppose that p > 2d + 1 is prime.
Define a group homomorphism ¢ : Z¢ — (Z/p)" by

B(X) = xu(k, k> k>, k) € (Z/p)".
k=1

Then

F* =AY ker o

is a sphere packing with density — 1/r! as d — o0, i.e., within a
constant factor of the volume bound.

Theorem (K.)

For each t, trigonometric t-designs exist with O(d't/2)) points.

It is easy to boost t to 2r + 1 by restricting to even points.
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Trigonometric cubature and discrete sphere packings

Theorem (Stroud)

A volume bound holds for any t-cubature formula.
We match Stroud's bound of O(d!t/2}) points, for each fixed t.

e A is a modified Craig lattice (Conway and Sloane). These
lattices were described for Euclidean spheres, but they are
even better for discrete ¢! spheres. (/1 ~ ¢? for small r.)

e An analogy:

Z./2 7
Hamming code | plus lattice
BCH code Craig lattice

e |s there a competitive statistical mechanics approach? Note:
These constructions yield deeply overdetermined t-designs.
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A statistical mechanics result

Wandzura and Xiao (2001) used simulated annealing to find good
t-cubature on the triangle A, for large t:
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It looks like a sphere covering with anisotropy near the boundary.
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t-designs are coverings

Theorem (K.)

A t-design on the simplex Ay has covering radius O(1/t) when
pulled back to an orthant section of S¢ under the map

T (Xo,xl,...,xd) — (X§,X12,.--,X§)

in barycentric coordinates.
This is for weighted t-designs. For unweighted t-designs, the result

IS even stronger, because crowding at the edges forces more points
in the middle just to make the weights equal.
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Positive islands

The proof uses a polynomial P(X) of degree t with

/ P(X)dx > 0,
Ay

but which is only positive on a small positive island:

Any Pl formula has a point in the island, so it is an sphere

Conclusion
(@)

covering in a metric in which the islands are approximately round.
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Archimedes’ theorem and t-designs

Theorem (Archimedes)

An axis projection of S? preserves normalized volume.

=

N
AN
wWIN

=

This explains Simpson's rule: It is the projection of a set in S?
which is a 3-design by symmetry. But that is another story.
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Archimedes’ theorem and t-designs

e Archimedes’ map generalizes to the moment map
m:CPT— Ay CP'=5°

e Here CP? is an affine real algebraic variety in coordinates
Re zjzx and Im z;Z, and

m(2) = (|20l |21, ... |24]°)

in barycentric coordinates on A,. Because CPY is a projective
toric variety, its moment map 7 preserves volume and is linear.

e In physics-speak, CP? is the space of quantum states in the
Hilbert space C9*1. It is also a classical phase space, and 7 is
a vector of conservation laws from d commuting symmetries.
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Archimedes’ theorem and t-designs

Example

The 240 kissing points of Eg C S’ (the sphere kissing problem
solution in 8 dimensions) project to 60 or 40 points on CP3.
Those project to 3-designs on A3 with 8 and 11 points.

They are described in Abramowitz and Stegun (1964)! Again,
another story.
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The positive island

We actually define P on CPY, rotate it to the desired position, and
project to Ay by averaging over fibers. Before rotation,
P(Z) = P(|zo]). It is made using numerical quadrature on [0, 1]

with p(x) = x97 1. Le., P(|z]|) comes from a Jacobi polynomial.
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Tao's question

Terry Tao posed this “congestion” (conjecture or question) in
MathOverflow.

Question (Tao)

Suppose that K is a symmetric convex body in RY which and N is
a lattice packing of K. Then is the reciprocal lattice a covering of

rK*, where K* is the reciprocal convex body, with r = d /2 or at
least r = O(d)?

The constant d/2 is from the putative worst case of a d-cube.
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Tao's question

| can prove r = O(d3/?) using the positive island method.

e First, replace K with an ellipsoid E. By John's theorem, this
sacrifices a factor of O(dl/z). Apply a linear map to make E
a standard sphere.

e Let f : RY — R be a band-limited function, i.e., f(k) =0
when ||k|| > t. We can view f as a “polynomial” of degree t.

Then we can define Fourier t-designs on RY with t € Rxg
(cf., Cohn and Elkies).

e AN* is a t-design with t = 2 by duality. Does that force it to
have a good covering radius? We can let f be a band-limited
positive island function using a Bessel function, with radius

O(d). QED.
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Open problems

e In the discrete #1-ball or £?-ball packing problem, what if
d,r — oo together at some rate?

e A t-design on a simplex Ay has covering radius O(1/t) on

the orthant. Is this an optimal local density estimate?

e \What is the answer to Tao's question?
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