

2254-11

Workshop on Sphere Packing and Amorphous Materials

25 - 29 July 2011

Geometric t-Designs and T-Cubature and their Relations to Sphere Packigns and Coverings

Greg KUPERBERG

University of California at Davis, Dept.of Mathematics I Shields Avenue, Davis, CA 95616 U.S.A.

Cubature	Dualities	Discrete spheres	Coverings	Conclusion
00	00000	000	00000000	0

Geometric t-designs and t-cubature and their relations to sphere packings and coverings

Greg Kuperberg

UC Davis

July 29, 2011

arXiv:math/0402047 arXiv:math/0405366 mathoverflow.net/questions/34599

What is numerical cubature?

Given $X \subseteq \mathbb{R}^d$ and a (normalized) measure μ on X, we want to estimate:

$$\int_X f(\vec{x}) d\mu \approx f(F) \stackrel{\text{def}}{=} \sum_k w_k f(\vec{p}_k).$$

We want to choose F so that the formula is exact for polynomials of degree $\leq t$.

Example

Simpson's rule.

$$\int_0^1 f(x) dx \approx \frac{1}{6} f(0) + \frac{2}{3} f(\frac{1}{2}) + \frac{1}{6} f(1).$$

Simpson's rule is exact if $f \in \mathbb{R}[x]_{\leq 3}$. One says quadrature in one dimension and cubature in higher dimensions.

The cubature problem

Given X, μ and $t \in \mathbb{N}$, find F so that

$$\int_X P(\vec{x}) d\mu = P(F)$$

for $P \in \mathbb{R}[\vec{x}]_{\leq t}$. *F* is a *t*-cubature formula. We want positive and interior (PI) formulas: $w_k > 0$ and $F \subseteq X$. These are also called weighted *t*-designs (Delsarte).

The basic *t*-cubature or *t*-design problem is to minimize the number of points.

Cubature in 1D (quadrature) was solved by Gauss and Christoffel. But in \geq 2D, cubature is an open-ended problem, just like the sphere packing problem.

An exact duality

- Delsarte found that *t*-designs are dual to sphere packings. First, an exact duality.
- Suppose that the domain X is a compact abelian group. Then an embedding X ⊆ ℝ^N can be viewed as a "polynomial structure" on X. In math-speak, X is an affine algebraic variety (or a subset of one).
- If the affine algebraic structure is compatible with the group action, the structure is equivalent to an integer-valued metric on its Pontryagin dual \hat{X} . (*I.e.*, \hat{X} is the Fourier space of X.)
- If F ⊆ X is a subgroup (or "lattice"), then it has a dual
 F* ⊆ X̂. Fact: F is a t-design if and only if F* has minimum distance t + 1.
- Packings at radius $r \leftrightarrow$ sets with min distance t + 1 = 2r + 1.

Cubature	Dualities	Discrete spheres	Coverings	Conclusion
00	0000	000	00000000	0

An exact duality

Example

 $X = (\mathbb{R}/2\pi\mathbb{Z})^d$ = the *d*-torus with trigonometric polynomials

$$P(\vec{\theta}) = P(\cos \theta_1, \sin \theta_1, \dots, \cos \theta_d, \sin \theta_d),$$

using the usual degree. Then $\hat{X} = \mathbb{Z}^d$ with the ℓ^1 or taxicab metric.

Example

Let $X = (\mathbb{Z}/2)^d$ be bit strings of length d, and define t-designs to be orthogonal arrays of strength t. Then $\hat{X} = (\mathbb{Z}/2)^d$ with the Hamming metric.

Cubature	Dualities	Discrete spheres	Coverings	Conclusion
00	0000	000	00000000	0

An exact duality

Example (Noskov)

Let $X = (\mathbb{R}/2\pi\mathbb{Z})^2$ and let F be the five points drawn below. Then F is a trigonometric 2-design. It is dual to a discrete sphere packing (in fact a tiling) of radius 1.

The discrete ℓ^1 spheres are "Aztec diamonds", or "plus signs" when r = 1.

Delsarte's duality

Delsarte found another duality. Suppose that X is a 2-point symmetric metric space. This means that X has a symmetry group which is transitive on pairs of points x and y at fixed distance dist(x, y). Then symmetry induces a polynomial structure on X using harmonic functions.

Examples

The sphere $X = S^{d-1}$. Hamming space $X = (\mathbb{Z}/2)^d$.

Delsarte's method: Given $F \subseteq X$ with minimum distance r, write down linear relations that the radial pair correlation function σ must satisfy. Namely, $\sigma(s) \ge 0$, $\int \sigma(s) ds = 1$, $\sigma(s) = 0$ for 0 < s < r, and the transform $\hat{\sigma}(k) \ge 0$. By linear programming, these relations yield an upper bound on $|F| = 1/\sigma(0)$. Cubature 00 Conclusion

Delsarte's duality

Delsarte, McEliece, Rodemich, Rumsey, Welch, Odlyzko, Sloane, Kabatiansky, Levenshtein, etc., found that the Delsarte method yields excellent bounds, sometimes optimal. Cohn and Elkies generalized the method to $X = \mathbb{R}^d$; it is thought to be optimal when $d \in \{2, 8, 24\}$.

The duality is that similar equations yield a lower bound on |F|, where F is a PI *t*-design; sometimes F is optimal for both.

packings	designs
$\sigma(s) \ge 0$	$\sigma(s) \geq 0$
$\int \sigma(s) ds = 1$	$\int \sigma(s) ds = 1$
$\hat{\sigma}(k) \geq 0$	$\hat{\sigma}(k) \geq 0$
$\sigma(s) = 0, 0 < s < r$	$\hat{\sigma}(k) = 0, 0 < k \leq t$
min $\sigma(0)$	$\max \sigma(0)$

Cubature	Dualities	Discrete spheres	Coverings	Conclusion
00	00000	•00	00000000	0

Trigonometric cubature and discrete sphere packings Problem

Trigonometric t-cubature F on $(\mathbb{R}/2\pi\mathbb{Z})^d$ for fixed t and $d \to \infty$. Or, packings F^* in \mathbb{Z}^d at radius r with t = 2r.

For r = 1, let F^* be the set of \vec{x} with

 $x_1 + 2x_2 + 3x_3 + \cdots + dx_d \equiv 0 \pmod{2d+1}$.

Then this is a tiling of d-dimensional plus signs.

Trigonometric cubature and discrete sphere packings

What about for higher r? Suppose that $p \ge 2d + 1$ is prime. Define a group homomorphism $\phi : \mathbb{Z}^d \to (\mathbb{Z}/p)^r$ by

$$\phi(\vec{x}) = \sum_{k=1}^{r} x_k(k, k^3, k^5, \dots, k^{2r-1}) \in (\mathbb{Z}/p)^r.$$

Then

$$F^* = \Lambda \stackrel{\operatorname{def}}{=} \ker \phi$$

is a sphere packing with density $\rightarrow 1/r!$ as $d \rightarrow \infty$, *i.e.*, within a constant factor of the volume bound.

Theorem (K.)

For each t, trigonometric t-designs exist with $O(d^{\lfloor t/2 \rfloor})$ points. It is easy to boost t to 2r + 1 by restricting to even points.

Trigonometric cubature and discrete sphere packings

Theorem (Stroud)

A volume bound holds for any t-cubature formula.

We match Stroud's bound of $O(d^{\lfloor t/2 \rfloor})$ points, for each fixed t.

- A is a modified Craig lattice (Conway and Sloane). These lattices were described for Euclidean spheres, but they are even better for discrete ℓ^1 spheres. ($\ell^1 \approx \ell^2$ for small r.)
- An analogy:

ℤ/2	Z
Hamming code	plus lattice
BCH code	Craig lattice

• Is there a competitive statistical mechanics approach? Note: These constructions yield deeply overdetermined *t*-designs.

Conclusion O

A statistical mechanics result

Wandzura and Xiao (2001) used simulated annealing to find good *t*-cubature on the triangle Δ_2 for large *t*:

It looks like a sphere covering with anisotropy near the boundary.

Cubature	Dualities	Discrete spheres	Coverings	Conclusion
00	00000	000	0000000	0

t-designs are coverings

Theorem (K.)

A t-design on the simplex Δ_d has covering radius O(1/t) when pulled back to an orthant section of S^d under the map

$$\pi: (x_0, x_1, \ldots, x_d) \mapsto (x_0^2, x_1^2, \ldots, x_d^2)$$

in barycentric coordinates.

This is for weighted *t*-designs. For unweighted *t*-designs, the result is even stronger, because crowding at the edges forces more points in the middle just to make the weights equal.

С	u	b	а	t	u	r	е	
\cap	C)						

Conclusion

Positive islands

The proof uses a polynomial $P(\vec{x})$ of degree t with

 $\int_{\Delta_d} P(\vec{x}) d\vec{x} > 0,$

but which is only positive on a small positive island:

Any PI formula has a point in the island, so it is an sphere covering in a metric in which the islands are approximately round.

Archimedes' theorem and *t*-designs

Theorem (Archimedes)

An axis projection of S^2 preserves normalized volume.

This explains Simpson's rule: It is the projection of a set in S^2 which is a 3-design by symmetry. But that is another story.

Archimedes' theorem and *t*-designs

• Archimedes' map generalizes to the moment map

$$\pi: \mathbb{C}P^d \to \Delta_d \qquad \mathbb{C}P^1 = S^2.$$

 Here CP^d is an affine real algebraic variety in coordinates Re z_j z_k and Im z_j z_k, and

$$\pi(\vec{z}) = (|z_0|^2, |z_1|^2, \dots, |z_d|^2)$$

in barycentric coordinates on Δ_d . Because $\mathbb{C}P^d$ is a projective toric variety, its moment map π preserves volume and is linear.

 In physics-speak, CP^d is the space of quantum states in the Hilbert space C^{d+1}. It is also a classical phase space, and π is a vector of conservation laws from d commuting symmetries.

Archimedes' theorem and *t*-designs

Example

The 240 kissing points of $E_8 \subseteq S^7$ (the sphere kissing problem solution in 8 dimensions) project to 60 or 40 points on $\mathbb{C}P^3$. Those project to 3-designs on Δ_3 with 8 and 11 points.

They are described in Abramowitz and Stegun (1964)! Again, another story.

The positive island

We actually define P on $\mathbb{C}P^d$, rotate it to the desired position, and project to Δ_d by averaging over fibers. Before rotation, $P(\vec{z}) = P(|z_0|)$. It is made using numerical quadrature on [0, 1] with $\mu(x) = x^{d-1}$. *I.e.*, $P(|z_0|)$ comes from a Jacobi polynomial.

Cubature	Dualities	Discrete spheres	Coverings	Conclusion	
00	00000		000000000	O	
		Tao's question			

Terry Tao posed this "congestion" (conjecture or question) in MathOverflow.

Question (Tao)

Suppose that K is a symmetric convex body in \mathbb{R}^d which and Λ is a lattice packing of K. Then is the reciprocal lattice a covering of rK^* , where K^* is the reciprocal convex body, with r = d/2 or at least r = O(d)?

The constant d/2 is from the putative worst case of a d-cube.

Tao's question

I can prove $r = O(d^{3/2})$ using the positive island method.

- First, replace K with an ellipsoid E. By John's theorem, this sacrifices a factor of O(d^{1/2}). Apply a linear map to make E a standard sphere.
- Let $f : \mathbb{R}^d \to \mathbb{R}$ be a band-limited function, *i.e.*, $\hat{f}(\vec{k}) = 0$ when $||\vec{k}|| > t$. We can view f as a "polynomial" of degree t. Then we can define Fourier t-designs on \mathbb{R}^d with $t \in \mathbb{R}_{\geq 0}$ (*cf.*, Cohn and Elkies).
- Λ* is a t-design with t = 2 by duality. Does that force it to have a good covering radius? We can let f be a band-limited positive island function using a Bessel function, with radius O(d). QED.

Open problems

- In the discrete ℓ^1 -ball or ℓ^2 -ball packing problem, what if $d, r \to \infty$ together at some rate?
- A *t*-design on a simplex Δ_d has covering radius O(1/t) on the orthant. Is this an optimal local density estimate?
- What is the answer to Tao's question?

Acknowledgments

Special thanks to Noam Elkies and Eric Rains for providing the most help with these results.