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Four Different Problems: Interplay Between Geometry and Physics

1. Sphere Packing Problem

Applications: low-temperature states of matter (liquids, crystals and
glasses), granular media, biological media, communications, string
theory, etc.

2. Number Variance Problem

Applications: equilibrium and nonequilibrium systems; critical-point
phenomena, number theory, hyperuniformity, etc.

3. Covering Problem

Applications: wireless communication network layouts, search of
high-dimensional data parameter spaces, stereotactic radiation therapy,
etc.

4. Quantizer Problem

Applications: computer science (e.g., data compression), digital
communications, coding and cryptography, optimal meshing of space for
numerical applications, etc.
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Interaction Energies of Many-Particle Systems

Total potential energy ΦN (rN ) of N identical particles with positions
r

N ≡ r1, r2, . . . , rN in some large volume in d-dimensional Euclidean space
R

d can be resolved into one-body, two-body, . . . , N -body contributions:

ΦN (rN ) =

N∑
i=1

u1(ri)+

N∑
i<j

u2(ri, rj)+

N∑
i<j<k

u3(ri, rj , rk)+· · ·+uN (rN ),

To make the statistical-mechanical problem more tractable, this exact
many-body potential is often replaced by a mathematically simpler form, e.g.,
pairwise interactions:

ΦN (rN ) =

N∑
i<j

u2(ri, rj).

An outstanding problem in classical statistical mechanics is the determination
of the ground states of ΦN (rN ), which are those configurations that globally
minimize ΦN (rN )/N .

More generally, the collection of the energy minima (local and global), i.e.,
“inherent structures,” are of great interest.
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Reformulations of the Covering and Quantizer Problems
S. Torquato, Physical Review E, 82, 056109 (2010).

Covering and quantizer problems are reformulated as the determination of the
ground states of interacting particles in R

d that generally involve single-body,
two-body, three-body, and higher-body interactions.

These reformulations allow one now to employ optimization and
statistical-mechanical techniques to analyze and solve these ground-state
problems.

This sheds new light on the relationships between the packing, number
variance, covering and quantizer problems.

Results could have applications to the detection of gravitational waves.

Outline
Diversity of jammed sphere packings in low dimensions

Review of the packing, number variance, covering and quantizer problems

Reformulations of the covering and quantizer problems

Disordered packings yield good coverings and quantizers. . – p. 4/35



Order Maps for Jammed Sphere Packings

Torquato & Stillinger, Rev. Mod. Phys. (2010)

Optimal 3D Strictly Jammed Packings

A: Z = 7 MRJ: Z = 6 (isostatic) B: Z = 12
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Generating a Diverse Class of Jammed Sphere Packings via Linear Programm
S. Torquato and Y. Jiao, PRE 82, 061302 (2010).

Solve the adaptive-shrinking cell (ASC) optimization problem, in which the
negative of the density is the objective function, using sequential LP methods.

Produce jammed sphere packings for d = 2 − 6 with a diversity of disorder
and densities up to the maximal densities.

A novel feature of this deterministic algorithm is that it can produce a broad
range of inherent structures (locally maximally dense and mechanically stable
packings), besides the usual disordered ones (MRJ state) and ordered states,
with very small computational cost compared to best known algorithms.

For d = 3, can produce with high probability a variety of strictly jammed
packings with a packing density anywhere in the wide range [0.6, 0.7408 . . .].
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Definitions
A point process in d-dimensional Euclidean space R

d is a distribution of an an
infinite number of points in R

d at number density ρ (number of points per unit
volume) with configuration r1, r2, . . .. This is statistically characterized by the
n-particle correlation function gn(r1, . . . , rn).

A lattice Λ in d-dimensional Euclidean space R
d is the set of points that are

integer linear combinations of d basis (linearly independent) vectors ai, i.e.,

{n1a1 + n2a2 + · · · + ndad | n1, . . . , nd ∈ Z}
The space R

d can be geometrically divided into identical regions F called
fundamental cells, each of which contains just one point. For example, in R

2:

Every lattice has a dual (or reciprocal) lattice Λ∗.

A periodic point distribution in R
d is a fixed but arbitrary configuration of N

points (N ≥ 1) in each fundamental cell of a lattice.
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Voronoi cells in R
d

Associated with each point ri ∈ P is its Voronoi cell, V(ri), which is defined
to be the region of space nearer to the point at ri than to any other point rj .

A deep hole in a lattice Λ is one whose distance to a lattice point is a global
maximum. The distance Rc to the deepest hole of a lattice is the covering
radius and is equal to the circumradius of the associated Voronoi cell (the
radius of the smallest circumscribed sphere).

Figure 1: Voronoi cells in R
3 for simple cubic (Z3 ≡ Z

3∗), body-centered

cubic (A∗
3 ≡ D∗

3), and face-centered cubic (A3 ≡ D3) lattices are the cube

(left), truncated octahedron (middle), and rhombic dodecahedron (right).
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Sphere Packing Problem
The packing density φ is the fraction of space R

d covered by identical
nonverlapping (hard) spheres of unit diameter, i.e.,

φ = ρv1(1/2),

where

v1(R) =
πd/2Rd

Γ(1 + d/2)
,

is the volume of a d-dimensional sphere of radius R.

The sphere packing problem:
Among all packings of congruent spheres in R

d, what is the maximal density
φmax and what are the corresponding arrangements of the spheres?

It is well known that the sphere packing problem can be posed as an energy
minimization problem involving certain pairwise interactions between points
in R

d, e.g.,

lim
M→∞

1

N

N∑
i<j

1

|rij |M (Riesz potential)
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Sphere Packing Problem
For d = 2, triangular lattice: φmax = π/

√
12 ≈ 0.91 (Fejes Tóth, 1940).

For d = 3, Kepler (1606) conjectured that optimal packing is FCC lattice:
φmax = π/

√
18 ≈ 0.74 (Hales 1998, 2005).

Each dimension has its own distinct properties.

In certain sufficiently low dimensions, optimal packings are believed to be
lattice packings. Certain dimensions are amazingly symmetric and dense:
d = 8 (E8 lattice) and d = 24 (Leech lattice) (Cohn & Kumar, 2009).

Finding shortest lattice vector for a lattice grows superexponentially with d.

In R
10, the best known arrangement is a non-lattice packing.

In high d, densest packings could be disordered (Torquato & Stillinger, 2006;
Scardicchio et al., 2008; Zachary & Torquato, 2011). Link to Cohn-Elkies (2003)
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Table 1: Best known solutions to the sphere packing problem in selected dimensions; see Conway
and Sloane (1998) for details.

Dimension, d Packing Packing density, φ

1 A∗
1 = Z 1

2 A∗
2 ≡ A2 π/

√
12 = 0.906899 . . .

3 A3 ≡ D3 π/
√

18 = 0.740480 . . .

4 D4 ≡ D∗
4 π2/16 = 0.616850 . . .

5 D5 2π2/(30
√

2) = 0.465257 . . .

6 E6 3π3/(144
√

3) = 0.372947 . . .

7 E7 π3/105 = 0.295297 . . .

8 E8 = E∗
8 π4/384 = 0.253669 . . .

9 Λ9

√
2π4/945 = 0.145774 . . .

10 P10c π5/3072 = 0.099615 . . .

12 Λmax
12 π6/23040 = 0.041726 . . .

16 Λ16 π8/645120 = 0.014708 . . .

24 Λ24 = Λ∗
24 π24/479001600 = 0.001929 . . .
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Local Density Fluctuations for General Point Patterns

Torquato and Stillinger, PRE (2003)

Points can represent molecules of a material, stars in a galaxy, or trees in a forest. Let Ω

represent a spherical window of radius R in d-dimensional Euclidean space R
d.

Denote by σ2(R) ≡ 〈N2(R)〉 − 〈N(R)〉2 the number variance.

For a Poisson point pattern and many correlated point patterns, σ2(R) ∼ Rd.

We call point patterns whose variance grows more slowly than Rd hyperuniform
(infinite-wavelength fluctuation vanish). This implies that structure factor S(k) → 0 for k → 0.

All crystals and quasicrystals are hyperuniform such that σ2(R) ∼ Rd−1 – number variance
grows like window surface area.

The hyperuniformity concept enables us to classify crystals and quasicrystals with special
disordered point processes.
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Number Variance Problem
We showed

σ2(R) = 2dφ

(
R

D

)d [
1 − 2dφ

(
R

D

)d

+
1

N

N∑
i �=j

α(rij ; R)
]

where α(r; R) is scaled intersection volume of 2 windows separated by r,
which can be viewed as a repulsive pair potential:
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Hyperuniformity and Number Theory
Useful way to categorize crystals, quasicrystals and special disordered point patterns.

2D Pattern Λ/φ1/2

Triangular Lattice 0.508347

Square Lattice 0.516401

Honeycomb Lattice 0.567026

Kagomé Lattice 0.586990

Penrose Tiling 0.597798

Step+Delta-Function g2 0.600211

Step-Function g2 0.848826

One-Component Plasma 1.12838

Every lattice Λ with lattice vector p has a dual (or reciprocal) lattice Λ∗ in which the sites of the
lattice are specified by the dual (reciprocal) lattice vector q such that q · p = 2πm, where
m = ±1,±2,±3 · · ·.
We showed that for a lattice

σ2(R) =
X
q�=0

„
2πR

q

«d

[Jd/2(qR)]2, Λ = 2dπd−1
X
q�=0

1

|q|d+1
.

Epstein zeta function for a lattice is defined by

ZQ(s) =
X
q�=0

1

|q|2s
, Re s > d/2.

Sarnak and Strömbergsson (2006)
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Table 2: Best known solutions to the asymptotic number variance problem in selected dimensions.
Values reported for d = 1, 2 and 3 and d =4−8 are taken from Torquato & Stillinger (2003) and Zachary &
Torquato (2009), respectively. Values reported for d =12, 16 and 24 have been determined in the present
work.

Dimension, d Structure Scaled Λ

1 A∗
1 = Z 0.083333

2 A∗
2 ≡ A2 0.12709

3 A∗
3 ≡ D∗

3 0.15560

4 D∗
4 ≡ D4 0.17488

5 Λ2∗
5 0.19069

6 E∗
6 0.20221

7 D+
7 0.21037

8 E∗
8 = E8 0.21746

12 K∗
12 ≡ K12 0.24344

16 Λ∗
16 ≡ Λ16 0.25629

24 Λ∗
24 = Λ24 0.26775
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Hyperuniformity and Jammed Packings
Conjecture (Torquato & Stillinger, 2003): All strictly jammed saturated sphere
packings are hyperuniform.

3D MRJ packings of monodisperse spheres have been shown to be
hyperuniform with quasi-long-range (QLR) pair correlations with decay 1/r4

(Donev, Stillinger & Torquato, PRL, 2005):
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What about other MRJ particle packings, including spheres with a size
distribution and nonspherical particles in R

d?

Apparently, hyperuniform QLR correlations with decay 1/rd+1 are a
universal feature of general MRJ packings in R

d.

Zachary, Jiao and Torquato, PRL (2011): ellipsoids, superballs, sphere mixtures
Berthier et al, PRL (2011): sphere mixtures

Jiao and Torquato (2011); polyhedra
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Covering Problem
Surround each of the points of a point process P in R

d by congruent overlapping spheres of
radius R such that the spheres cover the space. The covering density θ is defined as follows:

θ = ρv1(R),
where v1(R) is the volume of a d-dimensional sphere of radius R.

The covering problem asks for the arrangement of points with the least density θ. We define the
covering radius Rc for any configuration of points in R

d to be the minimal radius of the
overlapping spheres to cover R

d.

Figure 2: Coverings of the plane with overlapping circles centered on the triangular lattice
(θ = 2π/(3

√
3) = 1.2092 . . .) and the square lattice (θ = π/2 = 1.5708 . . .).

Figure 3: Voronoi cells illustrated in two dimensions for the triangular lattice and an irregular point
pattern. Left: Rc equals circumradius of associated Voronoi cell. Right: This is not true; noncongruent
Voronoi cells and centroids do not coincide with the points of the point process.
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Covering Problem

The covering density associated with A∗
d at unit number density ρ = 1 is known exactly for any

dimension d:

θ = v1(1)
√

d + 1

»
d(d + 2)

12(d + 1)

–d/2

.

For the hypercubic lattice Z
d at ρ = 1,

θ = v1(1)
dd/2

2d
.

Thus the ratio of the covering density for A∗
d to that of Z

d is given by

θ(A∗
d)

θ(Zd)
=

√
d + 1

3d/2

»
d + 2

d + 1

–d/2

.

For large d, this ratio becomes
θ(A∗

d)

θ(Zd)
∼

√
de

3d/2
.

Until recently, A∗
d was the best known lattice covering in all dimensions d ≤ 23. However, for

6 ≤ θ ≤ 17, Schürmann and Vallentin (2006) have discovered other lattice coverings that are
slightly thinner than those for A∗

d.
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Table 3: Best known solutions to the covering problem in selected dimensions.

Dimension, d Covering Covering Density, θ

1 A∗
1 ≡ Z 1

2 A∗
2 ≡ A2 1.2092

3 A∗
3 ≡ D∗

3 1.4635

4 A∗
4 1.7655

5 A∗
5 2.1243

6 Lc1
6 2.4648

7 Lc
7 2.9000

8 Lc
8 3.1422

9 A5
9 4.3401

10 A∗
10 5.2517

12 A∗
12 7.5101

16 A∗
16 15.3109

17 A∗
17 18.2878

18 A∗
18 21.8409

24 Λ24 7.9035
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Quantizer Problem
A d-dimensional quantizer is device that takes as an input a point at position x in R

d generated
from a uniform distribution and outputs the nearest point ri of the point process P to x.

Equivalently, if the input x belongs to the Voronoi cell V(ri), the output is ri.

Specifically, the quantizer problem is to choose the N -point configuration so as to minimize the
scaled dimensionless error (sometimes called the distortion)

G =
1

d
〈R2〉,

where

〈R2〉 =

lim
N→∞

1

N

NX
i=1

Z
V(ri)

|x − ri|2dx

〈Vol(V)〉1+ 2

d

,

〈Vol(V)〉 =

"
lim

N→∞

1

N

NX
i=1

Vol(V(ri))

#

Figure 4: Any point x is quantized (“rounded-off”) to the nearest point ri. Left panel: Triangular
lattice. Right panel: Irregular point process.

The lattice quantizer solution in R
d reduces to finding the lattice Voronoi polytope with minimal

second moment of inertia. . – p. 20/35



Quantizer Problem
Best known quantizers in any dimension d are lattices, usually the duals of the
densest known packings, except for d = 9 and 10 (Agrell & Eriksson, 1998).

Table 4: Best known solutions to the quantizer problem in selected dimensions.

Dimension, d Quantizer Scaled Error, G
1 A∗

1 = Z 0.083333

2 A∗
2 ≡ A2 0.080188

3 A∗
3 ≡ D∗

3 0.078543

4 D∗
4 ≡ D4 0.076603

5 D∗
5 0.075625

6 E∗
6 0.074244

7 E∗
7 0.073116

8 E∗
8 = E8 0.071682

9 LAE
9 0.071626

10 D+
10 0.070814

12 K∗
12 ≡ K12 0.070100

16 Λ∗
16 ≡ Λ16 0.068299

24 Λ∗
24 = Λ24 0.065771
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Table 5: Comparison of the Four Problems

Dimension, d Quantizer Covering Variance Packing

1 A∗
1 = Z A∗

1 = Z A∗
1 = Z A∗

1 = Z

2 A∗
2 ≡ A2 A∗

2 ≡ A2 A∗
2 ≡ A2 A∗

2 ≡ A2

3 A∗
3 ≡ D∗

3 A∗
3 ≡ D∗

3 A∗
3 ≡ D∗

3 A3 ≡ D3

4 D∗
4 ≡ D4 A∗

4 D∗
4 ≡ D4 D∗

4 ≡ D4

5 D∗
5 A∗

5 Λ2∗
5 D5

6 E∗
6 Lc1

6 E∗
6 E6

7 E∗
7 Lc

7 Λ3∗
7 E7

8 E8 Lc
8 E8 E8

9 LAE
9 A5

9 Λ∗
9 Λ9

10 D+
10 A∗

10 Λ∗
10 P10c

12 K12 A∗
12 Λmax∗

12 Λmax
12

16 Λ∗
16 A∗

16 Λ∗
16 Λ16

24 Λ24 Λ24 Λ24 Λ24

For d =1, 2 and 3, the best known solutions for each of the 4 problems are
related lattices. However, such relationships may or may not exist for d ≥ 4,
depending on the peculiarities of the dimensions involved.
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Nearest-Neighbor Functions
We recall the definition of the “void” nearest-neighbor probability density function HV (R):

HV (R) dR = Probability that a point of the point process lies at a distance between
R and R + dR from a randomly chosen point in R

d.

The “void” exclusion probability EV (R) is the complementary cumulative distribution function

associated with HV (R):

EV (R) =

Z ∞

R
HV (x)dx,

and hence is a monotonically decreasing function of R. Thus, EV (R) has the following
probabilistic interpretation:

EV (R) = Probability of finding a randomly placed spherical cavity of radius R

empty of any points.

There is another interpretation of EV that involves circumscribing spheres of radius R around
each point in a realization of the point process. Thus, EV (R) is the expected fraction of space
not covered by these circumscribing spheres. Differentiating (1) with respect to R gives

HV (R) = −∂EV

∂R
.

Moments of the nearest-neighbor function HV (R) arise in rigorous bounds for transport
properties of random media. The nth moment of HV (R) is defined as

〈Rn〉 =

Z ∞

0
RnHV (R) dR = n

Z ∞

0
Rn−1EV (R) dR.
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Series Representations
For example, for an ensemble,

EV (R) = 1 +

∞X
k=1

(−1)k ρk

k!

Z
Rd

gk(r1, . . . , rk)

kY
j=1

Θ(R − |x − rj |)drj ,

where Θ(x) is the Heaviside step function.

This series can be rewritten in terms of intersection volumes of spheres:

EV (R) = 1 +

∞X
k=1

(−1)k ρk

k!

Z
Rd

gk(r1, . . . , rk) vint
k (r1, . . . , rk; R) dr1 · · · drk,

where
vint

n (r1, . . . , rn; R) =

Z
dx

nY
j=1

Θ(R − |x − rj |)

is the intersection volume of n equal spheres of radius R centered at positions r1, . . . , rn.
Successive upper and lower bounds:

EV (R) ≤ 1

EV (R) ≥ 1 − ρv1(R)

EV (R) ≤ 1 − ρv1(R) +
ρ2

2
s1(1)

Z 2R

0
xd−1vint

2 (x; R)g2(x)dx,

For a single realization of N points within a large volume V in R
d, we have

EV (R) = 1− 1

V

NX
i=1

v1(R) +
1

V

X
i<j

vint
2 (rij ; R)− 1

V

X
i<j<k

vint
3 (rij , rik, rjk; R)− · · ·

Thus, except for the trivial constant of unity (the first term), EV (R) can be regarded to be a
many-body potential of the general form mentioned earlier. . – p. 24/35



Reformulations of the Covering and Quantizer Problems
The covering problem asks for the point process in R

d at unit density (ρ = 1) that minimizes the
support of the radial function EV (R).

We define Rmin
c the smallest possible value of the covering radius Rc among all point

processes for which EV (R) = 0, which we call the minimal covering radius. This is indeed a
special ground state in which the “energy” is identically zero (i.e., EV (Rmin

c ) = 0). Depending
on the space dimension d, this special ground state will involve up to n-body interactions, i.e., will
truncate at some particular level, provided that EV (R) for the point process has compact
support.

The minimal covering radius Rmin
c increases with the space dimension d and, generally

speaking, the highest-order n-body interaction required to fully characterize the associated
EV (R) increases with d.

Note that for a particular point process, twice the covering radius 2Rc can be viewed as the
“effective interaction range” between any pair of points, since the intersection volume
vint
2 (rij ; R) is exactly zero for any pair separation rij > 2Rc.

Because vint
2 ≥ vint

n for n ≥ 3, the effective interaction range between any n points for n ≥ 3 is
still given by 2Rc.

The quantizer problem asks for the point process in R
d at unit density that minimizes the scaled

average squared error G defined as

G =
1

d
〈R2〉 =

1

d

Z ∞

0
R2HV (R)dR =

2

d

Z ∞

0
REV (R)dR.

We will call the minimal error Gmin. Thus, we seek the ground state of the many-body interactions
that are involved upon substitution of the series for EV (R) into the expression above.
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Covering and Quantizer Calculations Using EV (R)
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Figure 5: The void exclusion probability EV (R) for the Z
2 (square) and A2 ≡ A∗

2 (triangular)
lattice have support up to the covering radii Rc =

√
2/2 = 0.7071 . . . and Rc =

√
2/33/4 =

0.6204 . . ., respectively, at unit number density (ρ = 1).
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Figure 6: The void exclusion probability EV (R) for the Z
3 (simple cubic) lattice and A∗

3 (bcc)
lattice have support up to the covering radii Rc =

√
3/2 = 0.8660 . . . and Rc =

√
5/25/3 =

0.7043 . . ., respectively, at unit number density (ρ = 1).
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Covering Densities for Saturated Packings
Saturated sphere packings in R

d should provide relatively thin coverings.

Why? Surrounding every sphere of diameter D in any saturated packing of congruent spheres in
R

d at packing density φs by spheres of radius D provides a covering of R
d, and thus the

associated covering density θs is given by

θs = ρsv1(D) = 2dφs,(1)

where ρs and φs = ρsv1(D/2) are the number density and packing density, respectively, of the
saturated packing.

Lemma 1: There exist saturated sphere packings in R
d with density φs that is bounded from above

according to

φs ≤ d ln(d)

2d
+

d ln(ln(d))

2d
+

5d

2d
.

Torquato, Uche and Stillinger (2006) found that for RSA saturated packings,

φs =
c1

2d
+

c2d

2d
,

Lemma 1 suggests that the fit function for φs should also include a d ln(d) correction for large d:

φs =
a1

2d
+

a2d

2d
+

a3d ln(d)

2d
,
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Table 6: Covering density θs for RSA packings at the saturation state in selected dimensions.

Dimension, d Covering Density, θs Packing Density, φs

1 1.4952 0.74759

2 2.1880 0.54700

3 3.0622 0.38278

4 4.0726 0.25454

5 5.1526 0.16102

6 6.0121 0.09394

7 7.0512 0.05508

8 8.0526 0.03145

9 10.0706 0.01769

10 11.0860 0.009834

12 12.1052 0.002955

16 16.2141 2.4740 × 10−4

17 17.2482 1.3159 × 10−4

18 18.2848 6.9751−5

24 24.5489 1.4632 × 10−6

Saturated RSA packings presumably represent the first non-lattices that yield thinner coverings
than the best known lattice coverings beginning in dimension 17.
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Bounds on the Quantizer Error
Revisiting Zador’s Bounds (1982):

1

(d + 2)π
Γ(1 + d/2)2/d ≤ Gmin ≤ 1

dπ
Γ(1 + d/2)2/dΓ(1 + 2/d).

In the large-d limit, Zador’s upper and lower bounds become identical:

Gmin → 1

2πe
= 0.058550 . . . as d → ∞.

Consider packings for which the following upper bound on EV (R) for R ≥ D/2 is satisfied:

EV (R) ≤ (1 − φ) exp

(
− 2dφ

1 − φ

"„
R

D

«d

− 1

2d

#)
for all R ≥ D/2.

This leads to an improved upper bound on the quantizer error:

Gmin ≤ 4[φΓ(1 + d/2)]2/d

dπ

"
(d + 2(1 − φ))

4(2 + d)
+

(1 − φ)

2d

„
1 − φ

φ

«2/d

exp

„
φ

1 − φ

«
Γ

„
2

d
,

φ

1 − φ
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Table 7: Comparison of the best known quantizers in selected dimensions to the conjectured lower
bound due to Conway and Sloane and the improved upper bound.

d Quantizer Scaled Error, G Conjectured Improved

Lower bound Upper Bound

1 A∗
1 ≡ Z 0.083333 0.083333 0.083333

2 A∗
2 ≡ A2 0.080188 0.080188 0.080267

3 A∗
3 ≡ D∗

3 0.078543 0.077875 0.079724

4 D∗
4 ≡ D4 0.076603 0.07609 0.078823

5 D∗
5 0.075625 0.07465 0.078731

6 E∗
6 0.074244 0.07347 0.077779

7 E∗
7 0.073116 0.07248 0.076858

8 E∗
8 ≡ E8 0.071682 0.07163 0.075654

9 LAE
9 0.071626 0.070902 0.075552

10 D+
10 0.070814 0.070405 0.074856

12 K∗
12 ≡ K12 0.070100 0.06918 0.073185

16 Λ∗
16 ≡ Λ16 0.068299 0.06759 0.070399

24 Λ∗
24 ≡ Λ24 0.065771 0.06561 0.067209

. – p. 30/35



RSA Quantizers
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Figure 7: The void exclusion probability EV (R) for saturated RSA packings of congruent spheres
of diameter D for the first six space dimensions.

Table 8: The quantizer errors for saturated RSA packings in the first six space dimensions.

Dimension, d Quantizer Error, Gs

1 0.11558

2 0.09900

3 0.09232

4 0.08410

5 0.07960

6 0.07799

RSA saturated sphere packings yield relatively good quantizers as d increases.
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CONCLUSIONS
Covering and quantizer problems have been reformulated as the
determination of the ground states of interacting particles in R

d that generally
involve single-body, two-body, three-body, and higher-body interactions.

These reformulations, which again exemplifies the deep interplay between
geometry and physics, allow one now to employ optimization techniques to
analyze and solve these ground-state problems.

This sheds new light on the relationships between the packing, number
variance, covering and quantizer problems.

Quantizer problem is the simplest of the four problems in high-d limit.

Disordered saturated sphere packings provide relatively thin coverings and
may yield thinner coverings than the best known lattice coverings for
sufficiently large d.

Improved upper bounds on the quantizer error have been derived using
sphere-packing solutions.

Disordered saturated sphere packings yield relatively good quantizers.

Results could have applications to the detection of gravitational waves.
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