Workshop on Sphere Packing and Amorphous Materials

$$
\text { 25-29 July } 2011
$$

Sphere Packing in the Hamming Space: Cavity Approach

Abolfazl RAMEZANPOUR
Politecnico di Torino, Dipt.di Fisica, Corso Duca degli Abruzzi 24, Torino, I-10129 ITALY

Sphere packing in the Hamming space: Cavity approach

A. Ramezanpour
Politecnico di Torino
with: Riccardo Zecchina

July 26, 2011

Outline

Introduction
Motivations
Cavity method

Replica symmetric solution and beyond
Belief Propagation (BP) equations
Survey Propagation (SP) equations

A packing algorithm based on the BP equations

Summary

Introduction

Motivations

- Represent N symbols in binary strings of length n : after transmitting through a noisy channel, flipping at most $\frac{d-1}{2}$ bits, recover the original massage.
- A packing problem in the binary Hamming space $\Lambda \equiv\{0,1\}^{n}$ with hard spheres of diameter d and rate of packing $R \equiv \lim _{n, d \rightarrow \infty, \delta=d / n} \frac{1}{n} \log _{2}\left(N_{\max }\right)$.
- Hamming upper bound: $N_{\max } \leq \frac{|\Lambda|}{V_{\frac{(d-1)}{2}}}, R \leq R^{H} \equiv 1-H\left(\frac{\delta}{2}\right)$.
- Gilbert-Varshamov lower bound: $N_{\max } \geq \frac{|\Lambda|}{V_{d-1}}, R \geq R^{G V} \equiv 1-H(\delta)$.

Introduction

Motivations

- What can statistical physics say about this problem?
- A lower bound for the average number of spheres in a grand canonical ensemble results to the GV lower bound.
- The point that liquid entropy in the Hyper-Netted-Chain approximation vanishes results to the GV lower bound.
- Consider the packing problem as a constraint satisfaction problem: N variables in Λ and $M \equiv \frac{N(N-1)}{2}$ constraints.

A. Procacci and B. Scoppola (1999), G. Parisi and F. Zamponi (2006), M.

Mezard, G. Parisi and R. Zecchina (2002), F. Krzakala et al. (2007)

Introduction

cavity method

- Bethe approximation: asymptotically exact on locally tree-like graphs.
- In some problems it provides a lower bound for the free energy.
- A message passing algorithm; replica symmetry (RS) and replica symmetry breaking (RSB).

$$
\begin{aligned}
& \mu(\underline{s})=\frac{1}{Z} \prod_{(i j)} I_{i j}\left(s_{i}, s_{j}\right) \simeq \prod_{i} \mu_{i}\left(s_{i}\right) \prod_{(i j)} \frac{\mu_{i j}\left(s_{i}, s_{j}\right)}{\mu_{i}\left(s_{i}\right) \mu_{j}\left(s_{j}\right)}, \\
& \mu_{i \rightarrow j}\left(s_{i}\right) \propto \prod_{k \in \partial i \backslash j}\left(\sum_{s_{k}} I_{k i}\left(s_{k}, s_{i}\right) \mu_{i \rightarrow j}\left(s_{i}\right)\right), \\
& \mu_{i \rightarrow j}\left(s_{i}\right) \rightarrow \mu_{i \rightarrow j}^{\alpha}\left(s_{i}\right)
\end{aligned}
$$


```
F. Guerra (2003), S. Franz and M. Leone (2003), P. Contucci et al. (2011), M.
Mezard and A. Montanary (2009)
```


Replica symmetric solutions

$B P$ equations

- Liquid solution: $\mu_{i \rightarrow j}\left(s_{i}\right)=\frac{1}{|\Lambda|}, \quad N_{\max }^{B P L}\left(\frac{V_{d-1}}{2^{n}}\right) \simeq(2 \ln 2) n+o(1)$.
- Crystalline solution: $\mu_{i \rightarrow j}\left(s_{i}\right)=p_{e} \delta_{s_{i} \in \Lambda_{+}}+\left(1-p_{e}\right) \delta_{s_{i} \in \Lambda_{-}}$.

Replica symmetric solutions

An interpolation

- Label the edges of the interaction graph by $t=1, \cdots, M$.

$$
\log Z=\log Z^{B P L}+\sum_{t=1}^{M} \log \left(1+\Delta_{t}\right), \quad \Delta_{t+1}=\frac{\left\langle I_{t+1}\right\rangle_{t}-\left\langle I_{t+1}\right\rangle_{0}}{\left\langle I_{t+1}\right\rangle_{0}},
$$

- $\left\langle I_{t+1}\right\rangle_{t}$: the probability of satisfying constraint I_{t+1} when the interaction set is given by the first t interactions.

1-step Replica symmetry breaking

SP equations

- Configurational entropy or complexity: $\mathcal{N}_{c} \sim e^{N \Sigma}$.
- $\eta_{i \rightarrow j}^{s_{1}, \ldots, s_{m}}$: cavity probability that sphere i in absence of j is frozen on points $\left\{s_{1}, \ldots, s_{m}\right\}$.

$$
\begin{aligned}
& N_{c}^{S P}\left(\frac{V_{d-1}}{2^{n}}\right) \simeq(\ln 2) n+\ln n, \\
& N_{\max }^{S P}\left(\frac{V_{d-1}}{2^{n}}\right) \simeq(2 \ln 2) n+o(1) .
\end{aligned}
$$

M. Mezard and R. Zecchina (2002)

A packing algorithm based on the BP equations

- BP equations: $\mu_{i \rightarrow j}\left(s_{i}\right) \propto \prod_{k \in \partial i \backslash j}\left(\sum_{s_{k}} I_{i k}\left(s_{i}, s_{k}\right) \mu_{k \rightarrow i}\left(s_{k}\right)\right)$.
- Use BP marginals to decimate the spheres, or reinforce the messages to converge to a packing.
- rBP equations: $\mu_{i \rightarrow j}\left(s_{i}\right) \propto\left[\mu_{i}\left(s_{i}\right)\right]^{r} e^{\beta w_{i}\left(s_{i}\right)} \prod_{k \in \partial i \backslash j}\left(\sum_{s_{k}} I_{i k}\left(s_{i}, s_{k}\right) \mu_{k \rightarrow i}\left(s_{k}\right)\right)$
- Finding some maximum packings: $(n=10, d=4, N=40)$, $(n=11, d=3, N=144),(n=11, d=5, N=24),(n=15, d=7, N=32)$
- Time complexity $(N|\Lambda|)^{2}$, and memory complexity $N^{2}|\Lambda|$

A packing algorithm based on the BP equations
Restricted search space

- Restrict the domain of each sphere to a small search space $R_{i}=\left\{s_{i}^{1}, \ldots, s_{i}^{R}\right\}$.

$$
\mu_{i \rightarrow j}\left(s_{i}\right) \propto\left[\mu_{i}\left(s_{i}\right)\right]^{r} \prod_{k \in \partial i \backslash j}\left(\sum_{s_{k} \in R_{k}} I_{i k}\left(s_{i}, s_{k}\right) \mu_{k \rightarrow i}\left(s_{k}\right)\right) .
$$

- Update the search spaces; replacing some of the less probable states with some copies of the most probable state.
- Packings ($n=10, d=4, N=40),(n=11, d=3, N=144)$ are obtained with $R=2^{3}, 2^{5}$. Denser packings (larger d) are found for ($n=48, d=32, N=4$), ($n=51, d=30, N=6$).
- It can be used in continuous spaces.

Packing in an ultrametric space

- Liquid solution of the BP equations are asymptotically exact:
$R^{U M}=1-\delta=R^{B P L}$.
- An iterative algorithm: increase d by one and find a packing in larger dimension.
- The algorithm is exact in an ultrametric space, and for even d in the Hamming space gives the crystalline packings.

Packing in q-ary Hamming space

- Liquid solution of the BP equations: $R^{B P L}=1-H_{q}(\delta)=R^{G V}$.
- Algebraic-geometry codes for square $q: R^{T V}=1-\delta-\frac{1}{\sqrt{q}-1}$ can be larger than $R^{G V}$ for $q \geq 49$.
- Perhaps a crystalline solution localized on a quasi ultrametric subspace.
- An upper bound for the size of an ultrametric subspace in the Hamming space is exponentially large only for $q \geq 3$.
M. A. Tsfasman and S. G. Vladut (1991)
- Both the BP and SP equations give asymptomatically the same rate of packing as the GV one.
- A message passing algorithm to find dense packings in discrete and continuous spaces.
- Is the replica symmetric solution asymptotically exact?
- Can we recover the algebraic-geometry packings?

Thanks to: H. Cohn, N. Elkies, S. Franz, S. Torquato, F. Zamponi

Thank You For Your Attention

