

2256-7

Workshop on Aerosol Impact in the Environment: from Air Pollution to Climate Change

8 - 12 August 2011

Development of aerosol retrieval: Applications in ground-based remote sensing

O. Dubovik Lab. d'Optique Atmospherique, Lille, France

Remote sensing of atmospheric aerosols:

Oleg Dubovik University of Lille 1, CNRS, France

NASA/GSFC, Greenbelt, USA

Part 1:

aerosol remote sensing and climate - overview
 remote sensing from ground: AERONET

- concept of retrieval;
- aerosol model;
- AERONET primary and secondary retrieval products
- error estimations, sensitivity studies

Part 1:

- ♦ potential of remote sensing from space:
 - aerosol monitoring using satellite imagers: PARASOL
 - synergy of remote sensing and modeling: inverse modeling

Microphysical properties: Concentration, sizes, composition, shapes, mixing, orientation, etc.

Theory of electromagnetic interactions of light with small particles, etc.

Workshop on Aerosol Impact in the Environment: from Air Pollution to Climate Change, August 8 - 12, 2011, Trieste, Italy

- Characterization of aerosol optical properties
- Validation of satellite aerosol retrieval
- Near real-time acquisition; long term measurements
- Homepage access: http://aeronet.gsfc.nasa.gov

0.02

v 0.00

0.01

0.1

Particle Radius (um)

1

ē 0.01

<- Hour in GMT

<- Day in GMT

<u>25</u>

0.3

0.2 loso

0.1

JUN

2003

Bei 0.0 HOOM AND

10 11 12 13 14 15 16 17 18 19 20 21 22 23 00

100

AERONET Project, NASA GSFC

10

Download Data for Capo_Verde

Select the start and end time of the data download period:

START:	1	*	JAN	~	1994	*	END:	1	~	JAN	*	2003	*
Data Descr	iptio	ns	Di	ata	Units		<u>Development Status</u>	U	pda	ite Log	3		

Note:Data are not available if the data type is italicized

Select the data type(s) with checkbox:

31 X 2					
Aerosol Optical Thickness*:	Raw Data (Calibration Applied):				
1. 🗌 Level 1.0 (Raw)	4. 🗌 Almucantars				
2. Level 1.5 (Cloud Screened)	5. 🗌 Polar Principal Planes				
3. 🗌 Level 2.0 (Quality Assured)	6. BRDF				
*also WV and Angstrom Parameters	7. Principal Planes				
Select All AOT	Select All Raw Data				
Nakajima Almucantar Retrievals					
8. SKYRAD.PAK					
Almucanta	ar Retrievals				
Total Only	Total/Fine/Coarse Modes				
9. 🗌 Size Distribution	12. Volume				
10. 🗌 Refractive Index	13. 🗌 AOT Absorption				
11. 🗌 AOT Coincident	14. AOT Extinction				
	15. SSA				
	16. 🗌 Asymmetry Factor				
	17. Phase Functions18. Combined Retrievals (9-16)				
Select All Retrievals					

AERONET Data Flows

http://aeronet.gsfc.nasa.gov

Flux measurements Direct - λ=340, 380, 440, 500, 670, 870, 940, 1020 nm Diffuse - λ=440, 670, 870, 1020 nm (alm, pp, pol)

Calibration and processing information

Aerosol optical depth and precipitable water computations

Smirnov et al. *RSE*, 2000

Holben et al.

RSE, 1998 Holben et al.

JGR, 2001

Eck et al.

JGR, 1999

Cloud screening and quality control

Dubovik and King *JGR*, 2000 Dubovik et al. *JGR*, 2000 *GRL*, 2002, 2006

Inversion products

Volume size distribution (0.05<R<15 μ m), refractive index, single scattering albedo (λ =440, 670, 870, 1020 nm), fraction of spherical particles

AERONET Inversion

Forward Model:

t: ensemble of polydisperse randomly oriented spheroids (mixture of spherical and non-spherical aerosol components)

Multiple Scat:

(scalar) Nakajima and Tanaka, 1988, or (polarized) Lenouble et al., JQSRT, 2007

Optimized Numerical inversion: - Accounting for uncertainty $(F_{11}; -F_{12}/F_{11} !!!)$ - Setting a priori constraints

aerosol particle sizes, complex refractive index (SSA), <u>Non-spherical fraction</u>

Multiple Scattering

Single Scattering by Single Particle

Scattering and Absorption is modeled assuming aerosol particle as homogeneous sphere with spectrally dependent complex refractive index ($m(\lambda) = n(\lambda) - i k(\lambda)$) - "Mie particles"

 $P_{ii}(Θ)$ - Phase Matrix; τ(λ) - extinction optical thickness; $\omega_0(\lambda)$ -single scattering albedo $\tau(\lambda)\omega_0(\lambda)$ absorption optical thickness

Modeling Polydispersions

Aerosol single particle scattering:

ASSUMPTIONS in the retrievals:

EACH AEROSOL PARTICLE

- sphere or spheroid (!!!);
- homogeneous;
- 1.33 ≤ n ≤ 1.7
- $0.0 \le k \le 0.5$

-n and k spectrally dependent (but smooth)

ASSUMPTIONS:

- dV/dlnr volume size distribution is the same for both components;
- non-spherical mixture of randomly oriented polydisperse spheroids;
- aspect ratio distribution $N(\epsilon)$ is fixed to the retrieved by Dubovik et al. 2006

Aerosol is driven by 31 variables in AERONET retrieval :

dV/Inr - size distribution (~22 values); n(λ) and k(λ) - ref. index (4 +4 values) C_{spher} (%) - spherical fraction (1 value)

Similar to AERONET model:

Principles of statistical optimization:

- all data (measured and a priori) are considered as multi-source data with known accuracy;
- the inversion is a search for the best fit of all data by forward model that accounts for the accuracy levels of the fitted data;

Multi-source data include:

- 1. Measurements:
 - spectral optical thickness;
 - angular distribution of sky-radiance;
- 2. A priori smoothness constraints on
 - particle size distribution;
 - spectral dependence of the real part of the index of refraction;
 - spectral dependence of the imaginary part of the index of refraction;

Multi-sensor data

Multi-Term LSM

(e.g. see Dubovik and King 2000, Dubovik 2004)

$$\widehat{\boldsymbol{a}} = \left(\mathbf{F}_1^T \mathbf{C}_1^{-1} \mathbf{F}_1 + \mathbf{F}_2^T \mathbf{C}_2^{-1} \mathbf{F}_2 + \dots \right)^{-1} \left(\mathbf{F}_1^T \mathbf{C}_1^{-1} \mathbf{f}_1^* + \mathbf{F}_2^T \mathbf{C}_2^{-1} \mathbf{f}_2^* + \dots \right)$$

Single-sensor data

$$\begin{array}{c} \underline{sensor} \\ \underline{a \ priori} \\ \mathbf{a}^{*} = \mathbf{a} + \Delta_{f} \\ \mathbf{a}^{*} = \mathbf{a} + \Delta_{a} \end{array}$$

$$\widehat{\boldsymbol{a}} = \left(\boldsymbol{\mathsf{F}}^T \boldsymbol{\mathsf{C}}_f^{-1} \boldsymbol{\mathsf{F}} + \boldsymbol{\mathsf{C}}_a^{-1} \right)^{-1} \left(\boldsymbol{\mathsf{F}}^T \boldsymbol{\mathsf{C}}_f^{-1} \boldsymbol{f}^* + \boldsymbol{\mathsf{C}}_a^{-1} \boldsymbol{a}^* \right)$$

"Optimum Estimations" by Rodgers Levenberg-Marquardt Maximum Entropy Method Kalman Filter ..., 4D Variational Assimilation (4DVR) Phillips – Tikhonov - Twomey

A priori restrictions on smoothness A priori equation system Normally distributed errors with variance ε_i^2 $0^* = (\Delta a)^* = Sa + \Delta(\Delta a)$ $\frac{\partial V(a)}{\partial a} = 0$

Coefficients of differences/derivatives	<u>.</u>
e.g. for second dif. (k=2),	(1 - 2 1 0
$\Delta^2 = (\hat{a}_{i+2} - \hat{a}_{i+1}) - (\hat{a}_{i+1} - \hat{a}_i) = \hat{a}_{i+2} - 2 \hat{a}_{i+1} + \hat{a}_i:$	$\mathbf{S}_{2} = \begin{vmatrix} 0 & 1 - 2 & 1 & 0 & \dots \\ 0 & 0 & 1 - 2 & 1 & 0 & \dots \\ \dots & \dots & \dots & \dots \\ \dots & \dots & \dots & \dots & \dots$

Statistically Optimized Minimization - Fitting

POLDER/PARASOL

« AERONET like » statistically optimized « no look-up tables » inversion Dubovik et al., AMT, 2011

Observation Sites for Climatology

- Urban/Industrial (GSFC, Paris, Mexico-City, INDOEX)
- Biomass Burning (Savanna, Cerrado, Forest)
- **Desert Dust** (*Cape Verde, Saudi Arabia, Persian Gulf*)
- Oceanic Aerosol (Hawaii)

The averaged optical properties of various aerosol types (Dubovik et al., 2002, JAS)

Urban/Industrial & Mixed:	GSFC/ Greenbelt /USA (1993-2000)	Creteil/ Paris France (1999)	Mexico City (1999 - 2000)	Maldives (INDOEX) (1999-2000)
Number of meas. (total)	2400	300	1500	700
Number of meas. (for ω_0 , <i>n</i> , <i>k</i>)	200 (June ĞSeptember)	40 (June ĞSeptember)	300	150 (January Ğ April)
Range of optical thickness; <t></t>	$0.1 \le \tau(440) \le 1.0; <\tau(440) >= 0.24$	$0.1 \le \tau(440) \le 0.9; <\tau(440) >= 0.26$	$0.1 \le \tau(440) \le 1.8; <\tau(440) >= 0.43$	$0.1 \le \tau(440) \le 0.7; <\tau(440) >= 0.27$
Range of € ngstrom parameter	$1.2 \le \alpha \le 2.5$	$1.2 \le \alpha \le 2.3$	$1.0 \le \alpha \le 2.3$	$0.4 \le \alpha \le 2.0$
<g>(440/ 670/ 870/ 1020)</g>	$0.68 / \ 0.59 / \ 0.54 / \ 0.53 \pm 0.08$			
n; k	$1.41 - 0.03\tau(440) \pm 0.01; 0.003 \pm 0.003$	1.40 ± 0.03 ; 0.009 ± 0.004	1.47 ± 0.03 ; 0.014 ± 0.006	1.44 ± 0.02 ; 0.011 ± 0.007
ω ₀ (440/670/870/1020)	0.98/ 0.97/ 0.96/ 0.95 ±0.02	$0.94/\:0.93\:/\:0.92\:/\:0.91\pm0.03$	$0.90 / 0.88 / 0.85 / 0.83 \pm 0.02$	$0.91/\ 0.89\ /\ 0.86\ /\ 0.84\pm 0.03$
$r_{\rm vf}$ (µm); $\sigma_{\rm f}$	$0.12+0.11 \tau(440) \pm 0.03; 0.38 \pm 0.01$	$0.11\pm 0.13 \tau(440) \pm 0.03; \ 0.43 \pm 0.05$	$0.12 + 0.04 \tau(440) \pm 0.02; \ 0.43 \pm 0.03$	$0.18 \pm 0.03; \ 0.46 \pm 0.04$
r_{vc} (μ m); σ_c	$3.03+0.49 \tau(440) \pm 0.21; 0.75 \pm 0.03$	$2.76 \pm 0.48 \tau(440) \pm 0.30; \ 0.79 \pm 0.05$	$2.72 \pm 0.60 \tau(440) \pm 0.23; \ 0.63 \pm 0.05$	$2.62 \pm 0.61\tau(440) \pm 0.31; 0.76 \pm 0.05$
$C_{vf}(\mu m^3/\mu m^2)$	0.15 τ(440) ± 0.03	$0.01 + 0.12 \tau(440) \pm 0.04$	0.12 τ(440) ±0.03	$0.12 \tau(440) \pm 0.03$
$C_{vc} (\mu m^3 / \mu m^2)$	$0.01 \pm 0.04 \tau (440) \pm 0.01$	$0.01 \pm 0.05 \tau(440) \pm 0.02$	$0.11 \tau(440) \pm 0.03$	$0.15 \tau(440) \pm 0.04$

Table	1.	Summary	of	aerosol	optical	properties	retrieved	from	worldwide	AERONET	network	of	ground-based
radiom	nete	ers.			•								•

Biomass burning:	Amazonian Forest: Brazil (1 993-1994); Bolivia (1998-1999);	South American Cerrado: Brazil (1993-1995)	African Savanna: Zambia (1995 - 2000)	Boreal Forest: USA, Canada (1994 - 1998)
Number of meas. (total)	700	550	2000	1000
Number of meas. (for ω_0, n, k)	250 (August Ğ October)	350 (August ĞOctober)	700 (August ĞNovember)	250 (June ĞSeptember)
Range of optical thickness; <t></t>	$0.1 \le \tau(440) \le 3.0; <\tau(440) \ge 0.74$	$0.1 \le \tau(440) \le 2.1; <\tau(440) >= 0.80$	$0.1 \le \tau(440) \le 1.5; <\tau(440) >= 0.38$	$0.1 \le \tau(440) \le 2.0; <\tau(440) >= 0.40$
Range of € ngstrom parameter	$1.2 \le \alpha \le 2.1$	$1.2 \le \alpha \le 2.1$	$1.4 \le \alpha \le 2.2$	$1.0 \le \alpha \le 2.3$
<g>(440/ 670/ 870/ 1020)</g>	$0.69/\ 0.58/\ 0.51/\ 0.48\pm 0.06$	$0.67/0.59/0.55/0.53\pm0.03$	$0.64/0.53/0.48/0.47\pm0.06$	$0.69/\ 0.61/\ 0.55/\ 0.53 \pm 0.06$
n; k	$1.47 \pm 0.03;$ 0.0093 ± 0.003	$1.52 \pm 0.01;$ 0.015 ± 0.004	$1.51 \pm 0.01;$ 0.021 ± 0.004	$1.50 \pm 0.04;$ 0.0094 ± 0.003
ω ₀ (440/ 670/ 870/ 1020)	0.94/ 0.93 /0.91/0.90 ±0.02	0.91/0.89/0.87/0.85 ±0.03	0.88 / 0.84 / 0.80 / 0.78 ±0.015	$0.94/0.935/0.92/0.91\pm0.02$
r_{vf} (µm); σ_{f}	$0.14 \pm 0.013\tau(440) \pm 0.01; 0.40 \pm 0.04$	$0.14 \pm 0.01 \tau(440) \pm 0.01; 0.47 \pm 0.03$	$0.12 \pm 0.025\tau(440) \pm 0.01; 0.40 \pm 0.01$	$0.15 \pm 0.015\tau(440) \pm 0.01; 0.43 \pm 0.01$
r_{vc} (µm); σ_c	$3.27 \pm 0.58\tau$ (440) ± 0.45 ; 0.79 ± 0.06	$3.27\pm0.51\tau(440) \pm 0.39; \ 0.79\pm0.04$	$3.22 \pm 0.71\tau(440) \pm 0.43; 0.73 \pm 0.03$	$3.21 \pm 0.2\tau(440) \pm 0.23; 0.81 \pm 0.2$
$C_{vf}(\mu m^3/\mu m^2)$	$0.12 \tau(440) \pm 0.05$	$0.1 \tau(440) \pm 0.06$	$0.12 \tau(440) \pm 0.04$	$0.01 \pm 0.1 \tau(440) \pm 0.04$
$C_{vc}(\mu m^3/\mu m^2)$	$0.05 \tau(440) \pm 0.02$	$0.04 + 0.03 \tau(440) \pm 0.03$	$0.09 \tau(440) \pm 0.02$	$0.01 + 0.03 \tau(440) \pm 0.03$

Desert Dust & Oceanic:	Bahrain/Persian Gulf (1998 Č2000)	Solar-Vil./ Saudi Arabia(1998-2000)	Cape Verde (1993 (2000)	Lanai/Hawaii (1995-2000)
Number of meas. (total)	1800	1500	1500	800
Number of meas. (for ω_0 , <i>n</i> , <i>k</i>)	100	250	300	150
Range of optical thickness; <t></t>	$0.1 \le \tau(1020) \le 1.2, <\tau(1020) >= 0.22$	$0.1 \le \tau(1020) \le 1.5; <\tau(1020) >= 0.17$	$0.1 \le \tau(1020) \le 2.0; <\tau(1020) >= 0.39$	$0.01 \le \tau(1020) \le 0.2; <\tau(1020) >= 0.04$
Range of € ngstrom parameter	$0 \le \alpha \le 1.6$	$0.1 \le \alpha \le 0.9$	$-0.1 \le \alpha \le 0.7$	$0 \le \alpha \le 1.55$
<g>(440/ 670/ 870/ 1020)</g>	$0.68/\ 0.66/\ 0.66/\ 0.66\pm 0.04$	$0.69/\ 0.66/\ 0.65/\ 0.65\pm 0.04$	$0.73/0.71/0.71/0.71\pm0.04$	$0.75/\ 0.71/\ 0.69/\ 0.68\pm 0.04$
n	1.55 ± 0.03	1.56 ± 0.03	1.48 ± 0.05	1.36 ± 0.01
k(440/ 670/ 870/ 1020)	$0.0025 / \hspace{0.1in} 0.0014 \hspace{0.1in} / \hspace{0.001} 0.001 / \hspace{0.001} 0.001 \hspace{0.1in} \pm \hspace{0.001} 0.001$	$0.0029 \ / 0.0013 \ / 0.001 / \ 0.001 \ \pm 0.001$	$0.0025/\ 0.0007/\ 0.0006/\ 0.0006\ \pm 0.001$	0.0015 ± 0.001
ω ₀ (440/ 670/ 870/ 1020)	$0.92 \: / \: 0.95 / \: 0.96 \: / \: 0.97 \pm 0.03$	$0.92/0.96/0.97/0.97\pm0.02$	$0.93/ \ 0.98 \ / 0.99 \ / 0.99 \pm 0.01$	$0.98/\ 0.97\ /0.97\ /0.97\ \pm\ 0.03$
$r_{\rm vf}$ (µm); $\sigma_{\rm f}$	$0.15 \pm 0.04; 0.42 \pm 0.04$	$0.12 \pm 0.05; 0.40 \pm 0.05$	$0.12 \pm 0.03;$ $0.49 + 0.10 \tau \pm 0.04$	$0.16 \pm 0.02;$ 0.48 ± 0.04
r_{vc} (µm); σ_c	$2.54 \pm 0.04; 0.61 \pm 0.02$	$2.32 \pm 0.03; 0.60 \pm 0.03$	$1.90 \pm 0.03;$ $0.63 - 0.10 \tau \pm 0.03$	$2.70 \pm 0.04; 0.68 \pm 0.04$
$C_{vf} (\mu m^3 / \mu m^2)$	$0.02 \pm 0.1 \tau(1020) \pm 0.05$	0.02 ± 0.02 $\tau(1020) \pm 0.03$	$0.02 + 0.02 \tau(1020) \pm 0.03$	$0.40 \tau(1020) \pm 0.01$
$C_{vc} (\mu m^3 / \mu m^2)$	$-0.02 + 0.92 \tau(1020) \pm 0.04$	$-0.02 \pm 0.98 \ \tau(1020) \pm 0.04$	$0.9 \tau(1020) \pm 0.09$	$0.80 \tau(1020) \pm 0.02$

Retrieved Properties of Saharan DustAngstrom < 0.75</td>Dubovik et al., 2002

Fine / Coarse modes parameters:

Flexible separation: minimum between: 0.194 and 0.576 μm

Integral parameters of dV/dlnR: t - total; f - fine ; c - coarse C(t,f,c) - Volume Concentration $R_v(t,f,c)$ - Mean Radius $\sigma(t,f,c)$ - Standard Deviation $R_{eff}(t,f,c)$ - Effective Radius

Desert Dust

Desent Dust	Damani, i cisian Gun (1996 (2000)	501a1- V II./ Saudi Alabia (1770-2000)	Cape Verde (1995 (2000)
Number of meas. (total)	1800	1500	1500
Number of meas. (for ω_0 , n , k)	100	250	300
Range of optical thickness;< τ >	$0.1 \le \tau(1020) \le 1.2, <\tau(1020) >= 0.22$	$0.1 \le \tau(1020) \le 1.5; <\tau(1020) >= 0.17$	$0.1 \le \tau(1020) \le 2.0; <\tau(1020) >= 0.39$
Range of € ngstrom parameter	$0 \le \alpha \le 1.6$	$0.1 \le \alpha \le 0.9$	$-0.1 \le \alpha \le 0.7$
<g> (440/ 670/ 870/ 1020)</g>	$0.68/\ 0.66/\ 0.66/\ 0.66\pm 0.04$	$0.69/\ 0.66/\ 0.65/\ 0.65\pm 0.04$	$0.73/\ 0.71/\ 0.71/\ 0.71\pm 0.04$
n	1.55 ± 0.03	1.56 ± 0.03	1.48 ± 0.05
k(440/ 670/ 870/ 1020)	$0.0025 / \hspace{0.1in} 0.0014 \hspace{0.1in} / \hspace{0.001} 0.001 / \hspace{0.001} 0.001 \hspace{0.1in} \pm \hspace{0.001} 0.001$	$0.0029 \ / 0.0013 \ / 0.001/ \ 0.001 \ \pm 0.001$	0.0025/0.0007/0.0006/0.0006 ±0.001
ω ₀ (440/ 670/ 870/ 1020)	$0.92 \ / \ 0.95 \ / \ 0.96 \ / \ 0.97 \pm 0.03$	$0.92/\ 0.96/\ 0.97/\ 0.97\pm 0.02$	$0.93/\ 0.98\ /0.99\ /0.99\pm 0.01$
$r_{\rm vf}$ (µm); $\sigma_{\rm f}$	$0.15 \pm 0.04; 0.42 \pm 0.04$	$0.12 \pm 0.05; 0.40 \pm 0.05$	$0.12 \pm 0.03;$ $0.49 \pm 0.10 \tau \pm 0.04$
r_{vc} (µm); σ_c	$2.54 \pm 0.04; 0.61 \pm 0.02$	$2.32 \pm 0.03; 0.60 \pm 0.03$	$1.90 \pm 0.03;$ 0.63 - 0.10 $\tau \pm 0.03$
$C_{vf} (\mu m^3 / \mu m^2)$	$0.02 + 0.1 \tau(1020) \pm 0.05$	$0.02 + 0.02 \ \tau(1020) \pm 0.03$	$0.02 \pm 0.02 \tau(1020) \pm 0.03$
$C_{vc} \ (\mu m^3 / \mu m^2)$	$-0.02 + 0.92 \tau(1020) \pm 0.04$	$-0.02 + 0.98 \ \tau(1020) \pm 0.04$	$0.9 \tau(1020) \pm 0.09$

ABSORPTION of SMOKE

flaming combustion Rio Branco, Brazil

smoldering combustion Quebec fires, July 2002

Maritime aerosol

Marcello Bartinetti "Sea storm in Camogli"

Duck, North Carolina, March 1999

AERONET estimated broad-band fluxes in solar spectrum

 $\lambda_{\min} = 0.2 \ \mu m, \ \lambda_{\max} = 4.0 \ \mu m;$

✓ more than 200 points of integration between; <u>Aerosol:</u>

✓ dV/dInR - retrieved

- \checkmark n(λ) and k(λ) are interpolated/extrapolated;
- from $n(\lambda_i)$ and $k(\lambda_i)$ retrieved;
- ✓ Radiative transfer code uses 12 moments for $P_{11}(\Theta)$

<u>Surface:</u>

- ✓ Surface reflection is Lambertian;
- ✓ Values of surface refelctance are interpolated/ extrapolated
 - from MODIS data values
- <u>Gases:</u>

 ✓ Gaseous absorption is calculated using correlated kdistributions implemented by P. Dubuisson

Λ_{max}

 $F_{broadband} = \int F(\lambda) d\lambda$

Examples of error estimates

Random ERRORS in AERONET retrievals

Sensitivity to instrumental offsets

Offsets were considered in:

- optical thickness:
- sky-channel calibration:
- azimuth angle pointing:
- assumed ground reflectance:

 $\Delta \tau(\lambda) = \pm 0.01; \pm 0.02;$ $\Delta_I(\lambda; \Theta) / I(\lambda; \Theta) \ 100\% = \pm 5\%;$ $\Delta \phi = 0.5^{\circ}; 1^{\circ};$ $\Delta A(\lambda) / A(\lambda) \ 100\% = \pm 30\%; \pm 50\%;$

<u>Aerosol models considered (bi - modal log-normal):</u>

- Water-soluble aerosol for $0.05 \le \tau(440) \le 1$;
- Desert dust for $0.5 \le \tau(440) \le 1$;
- Biomass burning for $0.5 \le \tau(440) \le 1$;

Results summary:

- τ (440) ≤ 0.2 - dV/dInr (+), $n(\lambda)$ (-), $k(\lambda)$ (-), $ω_0(\lambda)$ (-)

 $-\tau$ (440) > 0.2 - dV/dInr (+), $n(\lambda)$ (+), $k(\lambda)$ (+), $\omega_0(\lambda)$ (+)

- Angular pointing accuracy is critical for *dV/d*Inr of dust

(+) <u>CAN BE</u> retrieved (-) <u>CAN NOT BE</u> retrieved

$\Delta \tau$ bias influence at $\Delta \omega_0$

τ

Optical model of aerosol

Questioned simplifications:

Mixed aerosols (inhomogeneous spherical aerosols):

- Externally mixed (n(l) and k(l) different for fine and coarse modes)
- Internally mixed (n(I) and k(I) different for core and shell) Biomass Burning

Results summary:

- dV/dInr (+), $\omega_0(\lambda)$ (+), $n(\lambda)$ (+, effective), $k(\lambda)$ (+, effective)

Non-spherical aerosols:

- Spheroids (prolate, axis ratio 2) - Desert dust

Results summary:

- dV/dInr coarse mode (+), fine mode (+, zenith angle < 25°)
- $\omega_0(\lambda)$ (+) full solar almucantar (zenith angle \geq 50°)
- **k**(λ) (+)
- n(440) (-), n(670) (-), n(870) (+/-), n(1020) (+)

(+) <u>CAN BE</u> retrieved (-) <u>CAN NOT BE</u> retrieved

Modeling Dust particle non-sphericity

Artifacts in AERONET retrievals caused by non-sphericity of Desert Dust particles

Retrieval accuracy and limitations

AERONET model of aerosol

CONCLUSIONS:

1. Achivements:

- the retrieval is rather elaborated;
- the retrieval provides not only the main set of parameters but also extended set secondary products;
 the results are provided together with error estimates
 the model and accuracy is verified in sensitivity studies
- the model and accuracy is verified in sensitivity
- useful climatologies were developed;

2. Perspectives:

- more efficient use of polarimetric measurements
- updating model of non-spherical fraction
- deriving aerosol composition
- combining photometric data with other co-incident observations

AERONET retrieval products:

- V1 - V2

- V3

Directly retrieved parameters:

- dV/dlnR size distribution; (- dynamic errors)
- C(t,f,c), R_v(t,f,c), σ(t,f,c), R_{eff}(t,f,c) integral parameters of dV/dInR
- n(λ) and k (λ) at 0.44, 0.67, 0.8, 1.02 μm; (- dynamic errors)
- C_{spherical} fraction of spherical particles (- dynamic errors)

Indirectly retrieved/estimated parameters:

- <u>popular:</u>
 - ω_0 at 0.44, 0.67, 0.8, 1.02 µm; (- dynamic errors)
- - $P_{11}(\Theta,\lambda)$ (- dynamic errors) and $\langle \cos(\Theta) \rangle$;
 - $P_{12}(\Theta, \lambda)$ and $P_{22}(\Theta, \lambda)$??? (- dynamic errors)
 - $F^{\downarrow}_{TOA}(\lambda)$ and $F^{\downarrow}_{BOA}(\lambda)$ down ward spectral fluxes
 - $\mathsf{F}^{\uparrow}_{\mathsf{TOA}}(\lambda)$ and $\mathsf{F}^{\uparrow}_{\mathsf{BOA}}(\lambda)$ upward spectral fluxes
- not well-known / under-developed:
 - $S(\lambda)$ lidar backscattering-to-extinction ratio; (- dynamic errors)
 - $\delta(\lambda)$ lidar depolarization ratio ; (- dynamic errors)
 - F^{\downarrow}_{TOA} and F^{\downarrow}_{BOA} down ward broad-band (visible) fluxes;
 - F^{\uparrow}_{TOA} and F^{\uparrow}_{BOA} upward broad-band (visible) fluxes;
 - ΔF_{TOA} and ΔF_{BOA} radiative forcing
 - ΔF^{Eff}_{TOA} and ΔF^{Eff}_{BOA} radiative forcing efficiency

Aerosol single particle scattering:

ASSUMPTIONS in the retrievals:

EACH AEROSOL PARTICLE

- <u>sphere or spheroid (!!!);</u>
- homogeneous;
- 1.33 ≤ n ≤ 1.7
- $0.0 \le k \le 0.5$

-n and k spectrally dependent (but smooth)

Computational challenge of using spheroids model

Strategy: using two complementary methods

Example for prolate spheroids with aspect ratio ~ 2.75

Modeling Spheroid Polydispersions

http://www.astro.uva.nl/scatter

ASSUMPTIONS:

- dV/dlnr volume size distribution is the same for both components;
- non-spherical mixture of randomly oriented polydisperse spheroids;
- aspect ratio distribution $N(\epsilon)$ is fixed to the retrieved by Dubovik et al. 2006