

2256-15

Workshop on Aerosol Impact in the Environment: from Air Pollution to Climate Change

8 - 12 August 2011

The Effect of Ocean Biogeochemistry on Aerosols, Clouds and Climate

N. Meskhidze North Carolina State Univ. Raleigh USA

- 1) Introduction
- 2) Biogenic gas emissions from the ocean and their impact on aerosol/cloud interaction and radiative properties of the overlying atmosphere
- 3) Sources, chemical composition and size distribution of ocean-derived primary organic aerosols
- 4) Model results
- 5) The future

The Indirect Radiative Effects of Aerosols

Cloud albedo and lifetime effect (negative radiative effect for warm clouds at TOA; less precipitation and less solar radiation at the surface)

Semi-direct effect (positive radiative effect at TOA for soot inside clouds, negative for soot above clouds)

Glaciation effect (positive radiative effect at TOA and more precipitation), thermodynamic effect (sign of radiative effect and change in precipitation not yet known)

Source: Figure 7.20, Solomon et al., IPCC AR4 WG I, Climate Change 2007: The Physical Science Basis, 2007

Ship tracks

Credit :MODIS Atmosphere Science Team http://visibleearth.nasa.gov/view_rec.php?id=224

Why Do We Need Improved Quantification of Marine Aerosol?

> Anthropogenic activities seem to influence marine ecology

Why Do We Need Improved Quantification of Marine Aerosol?

Modeling studies do not always consider proper quantification of natural/background aerosols

- > Pristine conditions small changes can be important
- > Large fraction of the Earth is covered by the oceans

Prescribing lower bounds of CDNC in GCMs could introduce up to 80% uncertainty in AIE (Lohmann et al., 2001; Ghan et al., 2001; Wang and Penner, 2008; Hoose et al., 2009)

Model predicted extent of human-induced climate change

Cloud Susceptibility

POM emissions

Model Results

Future

Gas emissions

Introduction

Improved Quantification of Sea Spray

Difference in Short-wave Cloud Forcing (SWCF)

Difference in Short-wave Cloud Forcing (SWCF)

Improving Ocean-Aerosol Interaction will go a long way toward narrowing this large uncertainty

Will also help reconcile the differences between the model predictions and satellite estimates/inverse calculations

Terminology

Chlorophyll – a: an index of phytoplankton biomass

- The main photosynthetic pigment
- Present in all phytoplankton
- Present only in phytoplankton

```
Units : mg m<sup>-3</sup> (\equiv \mu g L^{-1})
```

Measurement methods:

 $\checkmark\,$ Remote sensing (Chlorophyll a absorbs well at a wavelength of about 400-450 nm and at 650-700 nm

- Colorimetric
- High Performance Liquid Chromatography
- Fluorometric

Factors Controlling Primary Production

External

- Nutrients
- Light
- Grazing pressure

Introduction

• Temperature

Internal

- Pigments
- Cell size
- Enzyme concentration
- Nutrient pool

Model Results

Future

$$CO_2 + H_2O + Nutrients + Light \longrightarrow Organic matter + O_2$$

Ocean Net Primary Production (NPP) contributing roughly half of the biosphere's NPP!

Gas emissions

POM emissions

Phytoplankton Functional Groups

Aqua MODIS [Chl a] (year 2008)

Aqua MODIS Calcite (year 2008)

Fig. 1. The 8-day averaged (**A**) SeaWiFS-observed chlorophyll *a* and (**B**) MODIS-retrieved cloud effective radius. Data for [Chl a] is gridded at a resolution of 9 by 9 km and zonally averaged between 49°S and 54°S; data for R_{eff} is gridded at a resolution of 1° by 1° and averaged in the area of 49° to 54°S and 35° to 41°W. White areas in (A) indicate missing data.

1) Introduction

- 2) Biogenic gas emissions from the ocean impact on aerosol/cloud interaction and radiative properties of the overlying atmosphere
- 3) Sources, chemical composition and size distribution of oceanderived primary organic aerosols
- 4) Model results
- 5) The future

Biogenic Gas Emissions From the Ocean
Basic Concepts
$$F = K \Delta C$$

Gas flux (**F**) across the interface is driven by a concentration difference (ΔC) between air and surface water.

K is a proportionality constant known as gas transfer velocity or transfer coefficient or a piston transfer velocity (cm h^{-1})

$$\Delta C = \frac{C_a}{H} - C_w$$

Where C_a and C_w are the gas concentrations in air and water, respectively and H is Henry's Law constant

 $H = \frac{p_g}{C_w}$

Gas emissions

Introduction

Tables: http://www.mpchmainz.mpg.de/~sander/res/henry.html

Model Results

Future

Ratio of the gas in air to its concentration in unionized form dissolved in water

POM emissions

Basic Concepts (continued)

It is often convenient to think in terms of reciprocal of the transfer velocity – a measure of the resistance to interfacial gas exchange

$$\frac{1}{K} = \frac{1}{\alpha k_w} + \frac{1}{H \cdot k_a}$$

 α – is a factor accounting for the chemical enhancement of gas exchange due to gas-aqueous rxs

For trace gases which are chemically "unreactive" in the aqueous-phase (DMS, CH₄, N₂O, CO₂, inert gases) α =1

POM emissions

Model Results

Future

For highly aqueous-phase gases (SO₂, NH₃, HCl) $\alpha \approx 10^3$

Gas emissions

Introduction

$$R = r_w + r_a$$

Basic Concepts (continued)

$$k_a = \frac{F}{(C_a - C_{as})} \qquad \qquad k_w = \frac{F}{(C_w - C_{ws})}$$

For aqueous-phase reactive gases $r_a >> r_w \Rightarrow$ bulk of the resistance to the gas transfer is in the air-phase (i.e., $k_w << k_a$ and $K^{\sim}k_{a.}$

For "chemically unreactive" gases $r_w >> r_a \Rightarrow$ all of the resistance to the gas transfer is in water phase (i.e., $k_w >> k_a$ and $K^{\sim}k_w$)

POM emissions

Model Results

Future

$$C_w - C_{ws} = C_w - \beta C_a$$

Introduction

 β – Bunsen solubility coefficient, v/v atm⁻¹

$$F = K(C_w - \beta C_a)$$

Gas emissions

Measurement Techniques

- 1. Measurement of *F* in the air above the sea surface and ΔC in the water to determine *K*. These methods are referred to as direct flux measurements or micrometeorological approaches and include covariance (or eddy correlation), eddy accumulation, atmospheric concentration profile, and inertial dissipation techniques.
- 2. Measurement of C_a (in air) and the change in C_w (in water) as a function of time. Assuming the water volume and surface area are known, F is then equal to the change in C_w multiplied by the ratio of the volume to the surface area. Then, K can be calculated with C_a and C_w . These bulk concentration techniques include mass-balance and perturbation studies where the concentration of gases in air and water are out of equilibrium through biological consumption/production, water heating/cooling (N₂, O₂, CO₂, noble gases), radioactive decay (²²²Rn), or by purposeful addition (³He, SF₆).
- 3. Proxy techniques where a nongaseous tracer whose air-sea flux is more easily measured is used as a surrogate for a gas using the principle that all air-water transfer is controlled by the near surface hydrodynamics. In field applications, proxy methods are limited to thermographic methods that use heat.

Wanninkhof, R. et al., Advances in Quantifying Air-Sea Gas Exchange and Environmental Forcing, Annu. Rev. Mar. Sci. 2009. 1:213–44, 10.1146/annurev.marine.010908.163742

Gas Exchange - Wind Speed Relationships

Relationship	Equation	
Liss and Merlivat, 1986	K=0.17· U_{10} · (600/Sc) ^{0.67} (U_{10} < 3.6 m s ⁻¹)K=(2.85· U_{10} -9.65)·(600/Sc) ^{0.5} (3.6 ms ⁻¹ < U_{10} < 13 ms ⁻¹)K=(5.9·U10 - 49.3)·(600/Sc) ^{0.5} (U_{10} > 13 ms ⁻¹)	
Wanninkhof, 1992	$K=0.39 (U_{10ave})^2 (660/Sc)^{0.5}$ (long term average winds) $K=0.31 (U_{10})^2 (660/Sc)^{0.5}$ (instantaneous wind speeds)	
Nightingale et al., 2000	$K=0.333(U_{10})^2 + (600/Sc)^{0.5}$	
Intro	duction Gas emissions POM emissions Model Results Future	

We Need a "Couple" of Other Parameters...

 $Sc = 3875.21 - 180.80T_{c} + 2.69T_{c}^{2}$

Where T_C is sea-surface temperature in (°C) [Moore and Groszko, 1999]

Assume $C_a \approx 0$

$$P = C_w \left(K - \sum_i K_{Chem,i} C_{xt} - K_{Biol} \right)$$

MODIS sea-surface temperature

Sea Surface Temperature (°C) -2 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44

Mean lifetime against rx with OH and O_2 in seawater = 19 and 115 days Mean lifetime against bacterial consumption 17 days

Palmer, P. I. and Shaw, S. L.: Quantifying global marine isoprene fluxes using MODIS chlorophyll observations, J. Geophys. Res., 32, L09805, doi:10.1029/2005GL022592, 2005.

Light And Species Dependent Production Rates Of Marine Isoprene And Monoterpenes

Laboratory grown phytoplankton monocultures: diatoms *Thalassiosira weissflogii* (*T. weiss.*) (CCMP 1336) and *Thalassiosira pseudonana* (*T. pseud.*) (CCMP 1335), prymnesiophyte strains- *Pleurochrysis carterae* (*P. carter.*) (CCMP 645); dinoflagellate strains- *Karenia brevis* (*K. brevis*) (CCMP 718, CCMP 2229) and *Prorocentrum minimum* (*P. minim.*) (CCMP 1329); cryptophyte strains- *Rhodomonas salina* (*R. salina*) (UTEX 2423)

Light And Species Dependent Production Rates Of Marine Isoprene And Monoterpenes

Instrumentation Setup

Sample chromatographs for 38 BVOC

	Compound
Α	Bromomethane
В	Iodomethane
С	1-Bromoethane
D	1-Bromopropane
Е	Iodoethane
F	Dibromomethane
G	Bromodichloromethane
н	Chloroiodomethane
I	2-Iodopropane
J	Dibromochloromethane
к	1-Bromopentane
L	1-Iodobutane
М	Bromoform
Ν	Diiodomethane

 We measured 38 different VOCs emitted from phytoplankton including a- and βpinene, d-limonene, camphene, halocarbons...
Results Of Light Experiments

Stress induced isoprene production as a function of time

Stress induced a-pinene production as a function of time

Light Dependent Production Rates

Source: Gantt, B., N. Meskhidze, and D. Kamykowski, Atmos. Chem. Phys., 9, 4915–4927, 2009

SeaWiFS [Chl a]

Chlorophyll a concentration (mg / m³) 0.01 0.03 0.1 0.3 1 3 10

SeaWiFS K₄₉₀

Observed Marine Boundary Layer Hydrocarbon Concentrations

Global Annual Total Marine Isoprene Emissions

Global Marine Isoprene Emissions (Tg C yr ⁻¹)	Source
1.1	Bonsang et al. (1992)
0.1	Palmer and Shaw (2005)
1.2	Sinha et al. (2007)
0.27	Arnold et al. (2008)
1.68	Arnold et al. (2008)
0.92	Gantt et al. (2009)
2.5	Luo and Yu (2009)

> Global terrestrial emissions ~ 440 to 660 Tg C yr⁻¹ (500 to 750 Tg isoprene)

1) Introduction

2) Biogenic gas emissions from the ocean and their impact on aerosol/cloud interaction and radiative properties of the overlying atmosphere

3) Sources, chemical composition and size distribution of ocean-derived primary organic aerosols

- 4) Model results
- 5) The future

Annual average source strength in four major aerosol types [kg km⁻² hr⁻¹]

- Predicted sea salt emissions 3,340 Tg in 2000 could increase to 5,880 Tg in 2100
- The present day direct radiative impact of sea salt is -0.60 and -1.52 Wm⁻² (Ma et al., 2008)
- Total indirect forcing of sea salt is -2.9 Wm⁻² (Ma et al., 2008)
- Potentially important negative climate feedback

Introduction

Gas emissions

POM emissions

Future

Source: Figure 5.2, Penner et al., Climate Change 2001:Working Group I: The Scientific Basis, IPCC 2001

Model Results

Global Emission Estimates for Major Aerosol Types

Table 5.3: Primary particle emissions for the year 2000 $(Tg/yr)^a$.

]	Northern Hemisphere	Southern Hemisphere	Global	Low	High	Source
Carbonaceous aerosols Organic Matter (0–2 µm))					
Biomass burning	28	26	54	45	80	Liousse <i>et al.</i> (1996), Scholes and Andreae (2000)
Fossil fuel	28	0.4	28	10	30	Cook <i>et al.</i> (1999), Penner <i>et al.</i> (1993)
Biogenic (>1 μ m) Black Carbon (0–2 μ m)	—	—	56	0	90	Penner (1995)
Biomass burning	2.9	2.7	5.7	5	9	Liousse <i>et al.</i> (1996); Scholes and Andreae (2000)
Fossil fuel	6.5	0.1	6.6	6	8	Cooke <i>et al.</i> (1999); Penner <i>et al.</i> (1993)
Aircraft	0.005	0.0004	0.006			
Industrial Dust, etc. (> 1 μ m	n)		100	40	130	Wolf and Hidy (1997); Andreae (1995)
Sea Salt			\frown			Gong <i>et al</i> . (1998)
d< 1 μm	23	31	54	18	100	
d=1-16µm	1,420	1,870	3,290	1,000	6,000	
Total	1,440	1,900	3,340	1,000	6,000	
Mineral (Soil) Dust ^b						
d< 1 μm	90	17	110		—	
$d=1-2\mu m$	240	50	290		—	
d=2-20µm	1,470	282	1,750			
Total	1,800	349	2,150	1,000	3,000	

^a Range reflects estimates reported in the literature. The actual range of uncertainty may encompass values larger and smaller than those reported here.
 ^b Source inventory prepared by P. Ginoux for the IPCC Model Intercomparison Workshop.
 Table 5.3, Penner et al., Climate Change 2001: Working Group I: The Scientific Basis, IPCC 2001

Sea Spray Aerosol Production

Sea-salt production through bubble bursting:

Film drops (many and small); contain material from the surface microlayer \checkmark

Jet drops (fewer and larger); Mostly sea-salt \checkmark

Sea Spray Aerosol Production

http://www.filetransit.com/screenshot.php?id=37223

[Deane & Stokes, Nature, 2002]

Gas emissions

POM emissions

Model Results

Future

Quantifying Sea Spray

- Bubble bursting experiments
- Aerosols observations combined with meteorology
 - Direct particle measurements with condensation particle counter (CPC) or differential mobility analyzer (DMA)
 - Indirect aerosol measurements of aerosol optical depth (AOD) with a sun photometer

Filter Needle valves Sampling Q_{air} Excess air OPC OPC DMA CPC CPC DMA CPC CPC DMACPC

Figure 1. Martensson, E. M., E. D. Nilsson, G. de Leeuw, L. H. Cohen, and H.-C. Hansson, Laboratory simulations and parameterization of the primary marine aerosol production, J. Geophys. Res., 108(D9), 4297, doi:10.1029/2002JD002263, 2003.

Sea Spray Number Emissions

- Based on two relationships
 - Wind speed and white cap formation
 - White cap formation and sea spray
- <u>Number emissions are predominantly in the sub-micron range</u>, although there are significant numbers in the coarse mode

reference method Formulation (m ² µm ⁴ s ⁻¹) Size (µm) WS (m s ⁻¹) SST (°C) Monahan et al. (1986) whitecap/lab $dF_{Meg}/dr = 1.373G_{10}^{1.0}r^{-2}(1+0.057r^{1.05})$ $\times 10^{1.10}r^{-2}$ 0.3 <rstool (m="" s<sup="">-1) 0.3<rstool (m="" s<sup="">-1) iab temp (~ 20) de Leeuw et al. (2000) whitecap/surf $dF_N/dD = W \times 1.1 \times e^{0.23 \times U} \times D^{-1.65}$ 1.6<do<20< td=""> 0-9 ~16 de Leeuw et al. (2003) model/field $dF_N/dD = W \times 1.1 \times e^{0.23 \times U} \times D^{-1.65}$ 0.063<rstool (-9,="" -9)<="" td=""> ~16 Vignati et al. (2003) model/field $dF_N/dD = W \times 1.1 \times e^{0.23 \times U} \times D^{-1.65}$ 0.063<rstool (-9,="" -9)<="" td=""> ~16 Vignati et al. (2003) model/field $dF_N/dD = W \times 1.1 \times e^{0.23 \times U} \times D^{-1.65}$ 0.063<rstool (-9,="" -9)<="" td=""> ~16 Vignati et al. (2001) model/field $dF_{N0}/dD = r_{0} \times T_{0}/(V2\pi) \log \sigma_{0}$ $exp(-(\log r_{90} - \log R_{0})/2\log^{2} \sigma_{0})$ $d\log r_{90} - 10$ $i=1: N = 10^{0.000U + 0.283}; R_{i} = 0.2; \sigma_{i} = 1.9$ $i=1: N = 10^{0.000U + 0.283}; R_{i} = 12; \sigma_{i} = 3$ 0.04<rstool (-16)<="" td=""> 6-17 ~13 Märtensson et al. (2003) whitecap/lab $dF_{A0}/dD = D_{a} + UA_{A}/T_{a} + D_{a}/T_{a} + D_{a}/T_{a}$ $h_{=1} size range g^{-1} = 1.370(10^{16} M^{-1} + 0.27)^{-1} + D_{a}/T_{a}/T_{a}/T_{a}/T_{a}/T_{a}/T_{a}/T_{a}/T_{a}/T_{a}/T_{a}/T_{a}/T_{a}/T_$</rstool></rstool></rstool></rstool></do<20<></rstool></rstool>	Sea Spray	Source Fu	nctions and Range of Applic	ability [O'C	owd and de L	eeuw, 2007].
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	reference	method	Formulation (m ⁻² µm ⁻¹ s ⁻¹)	Size (µm)	WS (m s⁻¹)	SST (°C)
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Monahan et al. (1986)	whitecap/lab	$dF_{M86}/dr = 1.373 U_{10}^{3.41} r^{-3} (1 + 0.057 r^{1.05})$ $\times 10^{1.19 \text{ e}^{-B^2}}$ $B = (0.380 - \log r)/0.650$	0.3 <r<sub>80<20</r<sub>	n.a.	lab temp (~ 20)
de Leeuw et al. (2003)model/field $\frac{dF_N/dr = c\left(\sum_{i=1}^{2}A_ie^{-\alpha_i \operatorname{slu}(r/r_i)^2}\right)}{\operatorname{wins: }\mun^{-1}m^{-2}s^{-1}}$ $A_1 = 1.1 a + 0.05$ $A_2 = 0.51 a - 1.82$ $C_1 = -0.1 u + 1.69$ $C_2 = 1.09$ $e^{-(0.24 u + 0.4) \times 10^4}$ $0.063 < \operatorname{Re} < 7.996$ $0-9$ ~ 16 Vignati et al. (2001)model/field $dF_{s00}(\log r_{s0})/d\log r = \sum_{i=1}^{3}N_i/(\sqrt{2\pi}\log \sigma_i)$ $\exp(-(\log r_{s0}-\log R_i)/2\log^2 \sigma_i)$ $d\log r = 0.1$ $i = 1; N_i = 10^{(0.095U+0.283)}; R_i = 0.2; \sigma_i = 1.9$ $i = 1; N_i = 10^{(0.095U+0.283)}; R_i = 2; \sigma_i = 2$ $i = 1; N_i = 10^{(0.095U+0.283)}; R_i = 2; \sigma_i = 2$ $0.04 < r_{s0} < 13$ $6-17$ ~ 13 Märtensson et al. (2003)whitecap/lab $\frac{dF_0/d \log D_p = W(A_i T_w + B_0)}{A_i = 0.2^{j} + c_2 D_p^{j} + c_3 D_p^{j} + c_4 D_p + c_5}{B_i = d_i D_p^{j} + c_2 D_p^{j} + c_3 D_p^{j} + c_4 D_p + c_5}{B_i = d_i D_p^{j} + c_2 D_p^{j} + c_3 D_p^{j} + c_4 D_p + c_5}{B_i = d_i D_p^{j} + c_2 D_p^{j} + c_3 D_p^{j} + c_4 D_p + c_5}{B_i = d_i D_p^{j} + c_2 D_p^{j} + c_3 D_p^{j} + c_4 D_p^{j} + c_4 D_p + c_5}{B_i = d_i D_p^{j} + c_2 D_p^{j} + c_3 D_p^{j} + c_4 D_p + c_5}{B_i = d_i D_p^{j} + c_2 D_p^{j} + c_3 D_p^{j} + c_4 D_p + c_5}{B_i = d_i D_p^{j} + c_2 D_p^{j} + c_3 D_p^{j} + c_4 D_p^{j} + c_4 D_p + c_5}{B_i = d_i D_p^{j} + c_2 D_p^{j} + c_3 D_p^{j} + c_4 D_p^{j} + c_4 D_p + c_5}{B_i = d_i D_p^{j} + c_2 D_p^{j} + c_3 D_p^{j} + c_4 D_p^{j} + c_4 D_p^{j} + c_4 D_p + c_5}{B_i = d_i D_i^{j} + c_2 D_p^{j} + c_3 D_p^{j} + c_4 D_p^$	de Leeuw et al. (2000)	whitecap/surf	$\mathrm{d}F_N/\mathrm{d}D = W \times 1.1 \times \mathrm{e}^{0.23 \times U} \times D^{-1.65}$	1.6 <d<sub>0<20</d<sub>	0–9	~ 16
Vignati et al. (2001)model/field $dF_{r00}(\log r_80)/d \log r = \sum_{i=1}^{3} N_i/(\sqrt{2\pi} \log \sigma_i)$ $\exp(-(\log r_{80} - \log R_i)/2 \log^2 \sigma_i)$ $d \log r = 0.1$ $i = 1; N_i = 10^{(0.095U+0.283)}; R_i = 0.2; \sigma_i = 1.9$ $i = 1; N_i = 10^{(0.095U+0.283)}; R_i = 2; \sigma_i = 2$ $i = 1; N_i = 10^{(0.096U-3.5)}; R_i = 12; \sigma_i = 3$ $0.04 < r_{80} < 13$ $6-17$ ~ 13Märtensson et al. (2003)whitecap/lab $\frac{dF_0/d \log p_p = W(A_k T_w + B_k), T_w \text{ is water}}{N_k = c_1 D_p^k + c_2 D_p^2 + c_3 D_p^2 + c_4 D_p + d_5}$ $k = 1, size ranges j = 1-3, 0.018 < 0.018 < D_d < 20$ n.a. $2-25$ Gong (2003)modified Monahan/ lab $\frac{dF_{M86}/dr = 1.373U_{10}^{3.41}r^{-A}(1+0.057r^{3.45})}{N-11^{19e^{-p^2}}}$ $0.07 < r_{80} < 20$ n.a.see Monahan of al. (1986)	de Leeuw et al. (2003)	model/field	$dF_N/dr = c \left(\sum_{i=1}^2 A_i e^{-c_1 * \ln(r/r_1)^2} \right)$ units: $\mu m^{-1} m^{-2} s^{-1}$ $A_1 = 1.41 u + 0.98$ $A_2 = 0.51 u - 1.82$ $C_1 = -0.1 u + 1.69$ $C_2 = 1.09$ $c = (0.24 u + 0.4) \times 10^4$	0.063 <r<7.996< td=""><td>0–9</td><td>~16</td></r<7.996<>	0–9	~16
Märtensson et al. (2003)whitecap/lab $\frac{dF_0/d \log D_p = W(A_k T_w + B_k), T_w \text{ is water}}{Lemperature in K} A_k = c_1 D_p^4 + c_2 D_p^3 + c_3 D_p^2 + c_4 D_p + c_5}{B_k = d_1 D_p^4 + d_2 D_p^3 + d_3 D_p^2 + d_4 D_p + d_5}{R_k = 1, \text{ size ranges } j = 1-3, 0.018 - 0.168 \mu\text{m}}{R = 2, \text{ size ranges } j = 1-3, 0.018 - 0.168 \mu\text{m}}{R = 2, \text{ size ranges } j = 26-38, 0.949 - 5.700 \mu\text{m}^5}$ $0.018 < D_d < 20$ n.a. $2-25$ Gong (2003)modified Monahan/ lab $dF_{M86}/dr = 1.373 U_{10}^{3.41} r^{-4} (1 + 0.057 r^{3.45}) \times 10^{1.19e^{-\beta^2}} A = 4.7(1 + \theta r)^{-0.017r^{-1.44}} B = (0.433 - \log r)/0.433$ $0.07 < r_{80} < 20$ n.a.see Monahan al. (1986)	Vignati et al. (2001)	model/field	$\begin{aligned} \mathrm{d}F_{v00}(\log r_{80})/\mathrm{d}\log r &= \sum_{i=1}^{3} N_{i}/(\sqrt{2\pi}\log\sigma_{i})\\ &\exp(-(\log r_{80} - \log R_{i})/2\log^{2}\sigma_{i})\\ \mathrm{d}\log r &= 0.1\\ &i = 1; \ N_{i} &= 10^{(0.095U + 0.283)}; \ R_{i} &= 0.2; \ \sigma_{\mathrm{i}} &= 1.9\\ &i = 1; \ N_{i} &= 10^{(0.0422U - 0.288)}; \ R_{i} &= 2; \ \sigma_{\mathrm{i}} &= 2\\ &i = 1; \ N_{i} &= 10^{(0.069U - 3.5)}; \ R_{i} &= 12; \ \sigma_{\mathrm{i}} &= 3 \end{aligned}$	0.04 <r<sub>80<13</r<sub>	6-17	~ 13
Gong (2003)modified Monahan/ lab $dF_{M86}/dr = 1.373 U_{10}^{3.41} r^{-A} (1 + 0.057 r^{3.45})$ $\times 10^{1.19e^{-B^2}}$ $A = 4.7 (1 + \theta r)^{-0.017 r^{-1.44}}$ $B = (0.433 - \log r)/0.433$ $0.07 < r_{80} < 20$ $0.04 < r_d$ n.a.see Monahan al. (1986)	Märtensson et al. (2003)	whitecap/lab	$\begin{split} \mathrm{d} F_0 / \mathrm{d} \log D_p &= W(A_k T_w + B_k), \ T_\mathrm{w} \text{ is water} \\ \mathrm{temperature in } \mathrm{K} \\ A_k &= c_1 D_p^4 + c_2 D_p^3 + c_3 D_p^2 + c_4 D_p + c_5 \\ B_k &= \mathrm{d}_1 D_p^4 + \mathrm{d}_2 D_p^3 + \mathrm{d}_3 D_p^2 + \mathrm{d}_4 D_p + \mathrm{d}_5 \\ k &= 1, \text{ size ranges } j = 1 - 13, \ 0.018 - 0.168 \ \mathrm{\mu m} \\ k &= 2, \text{ size ranges } j = 13 - 26, \ 0.168 - 0.949 \ \mathrm{\mu m} \\ k &= 3, \text{ size ranges } j = 26 - 38, \ 0.949 - 5.700 \ \mathrm{\mu m}^\mathrm{b} \end{split}$	0.018 <d<sub>d<20</d<sub>	n.a.	2–25
	Gong (2003)	modified Monahan/ lab	$\begin{split} \mathrm{d} F_{M86} / \mathrm{d} r &= 1.373 U_{10}^{3.41} r^{-A} (1 + 0.057 r^{3.45}) \\ &\times 10^{1.19 \mathrm{e}^{-B^2}} \\ A &= 4.7 (1 + \theta r)^{-0.017 r^{-1.44}} \\ B &= (0.433 - \log r) / 0.433 \end{split}$	0.07 <r<sub>80<20 0.04<r<sub>d</r<sub></r<sub>	n.a.	see Monahan et al. (1986)
Clarke et al. (2006) whitecap/surf $ \begin{pmatrix} (dF_N/d \log D_p) = w \sum_{i=1}^3 A_i \\ A_i = \beta_0 + \beta_1 D_p + \beta_2 D_p + \beta_3 D_p + \beta_4 D_p + \beta_5 D_p^{\ c} \end{pmatrix} $ 0.01 <d<sub>p<8 n.a. ~25</d<sub>	Clarke et al. (2006)	whitecap/surf	$\begin{array}{l} (\mathrm{d}F_N/\mathrm{d}\log D_p) = w \sum_{i=1}^3 A_i \\ A_i = \beta_0 + \beta_1 D_p + \beta_2 D_p + \beta_3 D_p + \beta_4 D_p + \beta_5 D_p^{\ \mathrm{c}} \end{array}$	0.01 <d<sub>p<8</d<sub>	n.a.	~25

a=9.204x10⁻⁵, b=4.1. SST, sea-spray temperature; WS, wind speed; $W(U_{10})$ =3.84x10⁻⁶ $U_{10}^{3.41}$, where U_{10} (m s⁻¹) is the wind speed at 10 m.

Sea-water Composition

Species	Mass	Mass		Mole		Molarity		Ionic
	Fraction Ratio g (kg-sw) ⁻¹	g (kg-H ₂ O) ⁻¹	Fraction	mol (kg-sw) ⁻¹	mol (kg-H ₂ O) ⁻¹	equiv (kg-sw) ⁻¹	mol (kg-sw) ⁻¹	
H ₂ O	0.9648	964.83	1000.00	0.9795	53.558	55.510		<i>::</i>
Cl ⁻	0.0194	19.35	20.06	0.0100	0.546	0.566	0.546	0.273
SO4 ²⁻	0.0027	2.71	2.81	0.0005	0.028	0.029	0.056	0.056
HCO ₃ -	0.0001	0.11	0.11	< 0.0001	0.002	0.002	0.002	0.001
Br-	0.0001	0.07	0.07	< 0.0001	0.001	0.001	0.001	< 0.001
Na ⁺	0.0108	10.78	11.18	0.0086	0.469	0.486	0.469	0.235
Mg ²⁺	0.0013	1.28	1.33	0.0010	0.053	0.055	0.106	0.106
Ca ²⁺	0.0004	0.41	0.43	0.0002	0.010	0.011	0.020	0.020
K+	0.0004	0.40	0.41	0.0002	0.010	0.011	0.010	0.005
minor species	< 0.0001	0.06	0.05	< 0.0001	0.001	0.001	0.001	0.001
Σ salts	0.0352	35.17 ^a	36.45	0.0205	1.120	1.162	1.211	0.698
Total	1.0000	1000.00	1036.45	1.0000	54.678	56.672	54.769	0.698

 Table 6. Composition of Seawater of Salinity 35

Source: Table 6, Ramaswamy et al., Climate Change 2001: Working Group I: The Scientific Basis, IPCC 2001

Why do we even need to even worry about anything other than sea salt?

Marine Organic Aerosols: A Biological Source

Flux of an ultrafine sea-salt or marine organic matter?

- \circ "Dry" (RH = 40%) sea salt particle size distributions for 0.01 $\mu m \leq$ Dp \leq 8 μm
- 60% of all sea salt particles were smaller than 0.1 μm diameter
 Clarke et al., 2006
- Airborne micro-organisms of marine origin and their fragments peaking at $D_{\rm p}$ of 0.03 0.04 μm do not appear to have any association with sea salt
- The presence of airborne marine aggregates consisting of amorphous transparent exopolymer (EP) secretions (gels) of algae and bacteria
- Sea salt was not detected in particles < 0.2 μm diameter

Leck and Bigg, 2008

During high biological activity organic fraction can contribute up to 60% of sub-micrometer mass

During low biological activity periods fraction reduces to 10-15%

O'Dowd et al., 2007; Facchini et al., 2008

Surface films can be highly enriched in organics: "marine microcolloids", "mucus-like" or gel-like material, *Exopolymer gels*, airborne marine aggregates (AMA)

Modeling Of Marine Primary Organic Aerosol (POM) Emissions

POM emissions

Organic matter fraction (%), annual mean

Model Results

Future

Marine Primary Organic Aerosols

Figure 2. O'Dowd, C. D., B. Langmann, S. Varghese, C. Scannell, D. Ceburnis, and M. C. Facchini (2008), A combined organic-inorganic sea-spray source function, Geophys. Res. Lett., 35, L01801, doi:10.1029/2007GL030331.

- Strong observed relationship between [Chl a] and organic fraction of sea spray mass
- Two steps to calculate organic emissions
 - Convert sea spray number emissions to mass by integrating by particle size, assuming spherical shape, and using the apparent density
 - Multiply the sea spray mass emission rate by organic fraction determined by [Chl a]

 $F_{sub} = 0.63015 * [Chl-a] + 0.1$ $F_{super} = F_{sub} * 0.03$

POM emissions

Figure 6. Sciare, J., O. Favez, R. Sarda-Este`ve, K. Oikonomou, H. Cachier, and V. Kazan (2009), Long-term observations of carbonaceous aerosols in the Austral Ocean atmosphere: Evidence of a biogenic marine organic source, J. Geophys. Res., 114, D15302, doi:10.1029/2009JD011998.

Model Results

Future

Marine Organic Aerosol Emissions Two classes: primary and secondary nss SO₄ MO₃ wsoc woo - Primary Formed by bubble bursting 70 of organic surface layer 60 50 • Mainly water insoluble 40 30 20 - Secondary ction (%) 10 ٥n) 100 Formed by condensation of lass organic gases (isoprene, 70 monoterpenes, amines, etc) 60 50 • Mainly water soluble Both tied to the productivity of the ocean with particular 0.06 0.125 0.25 0.5 D (μm) focus on [Chl-a] Figure 2. O'Dowd, C. D., M. C. Facchini, F. Cavalli, D. Ceburnis, M. Mircea, S. Decesari, S. Fuzzi, Y. J. Yoon, and J. P. Putaud (2004), Biogenically driven organic contribution to marine aerosol, Nature, 431, 676–680, doi:10.1038/nature02959 **Aerosol deposition** Gas emissions Model Results Introduction POM emissions Future

Organic Enrichment Of The Air-sea Interface And Surface Wind Speed

Organic Enrichment Of The Air-sea Interface And Surface Wind Speed

Organic Enrichment Of The Air-sea Interface And Surface Wind Speed

OC_{ss} as a Function of Ambient Aerosol Aerodynamic Diameter

Bubble bursting samples

Annual Average Submicron Marine Primary OC Emission Rate

2.8 to 5.6 Tg C yr⁻¹

Units: ng C m⁻² s⁻¹

Global Annual Marine Primary Organic Aerosol Emission					
Sub-micron Primary Organic Carbon (Tg C yr ⁻¹)	Source				
5.5	Spracklen et al. (2008)				
2.5	Langmann et al. (2008)				
2.9	Gantt et al. (2009)				
5.8	Vignati et al. (2010)				
2.8 to 5.6	Gantt and Meskhidze (2011)				
Super-micron Primary Organic Carbon (Tg C yr ⁻¹)					
75	Spracklen et al. (2008)				
8	Roelofs (2008)				
19.4	Gantt et al. (2009)				
29	Long et al. (2011)				
17.2	Vignati et al. (2010)				

Model Setup

Model	CMAQ V. 4.7
Time Period	June, July, August 2005
Domain	Western US, Pacific coast
Horizontal Resolution	12 x 12 km ²
Vertical Resolution	14 layers from the surface to 100mb
Emissions	Anthropogenic 2005 NEI Natural: BEIS
Meteorology	MM5
Simulations	 Baseline without marine emissions Isoprene and primary emissions included "Real" simulation using Southern Ocean (SO) data from Columb et al., (2009)

POM emissions

Gas emissions

Introduction

Model Results

Future

Impact on $PM_{2.5}$ Change in PM_{2.5} concentrations due to marine emissions 0.15 192 0.12 0.09 M 0.06 -- <u>-</u> 0.03 0.00 ug/m3 213 PAVE by MCNC Min=-0.01 at (60,28), Max= 0.15 at (5,99) ✓ Greatest impact offshore where winds are the strongest Much of the California coast has an average concentration increase \checkmark of 0.1 μ g m⁻³ (still small)

POM emissions

Model Results

Future

Gas emissions

Introduction

Implementation Of Marine Carbonaceous Aerosols In CAM5

Model Configurations

- Horizontal Resolution: 1.9° x 2.5°; Vertical: 30 layers
- Aerosol: 5 sub- and 2 super-micron modes
- Simulation: 5 years; Spin up period: 3 months
- Mårtensson et al. [2003] for 0.02 < Dp < 2.5 μm
- Gong [2003] for 2.5 < Dp < 20 µm
- SOA from isoprene, monotrpenes & MSA (CH_3SO_3H)

Marine Organic Aerosols in CAM5 ← Super-micron							
Mode	Accumulation	Atiken	Primary Carbon	Sea salt	Fine Soil Dust	Coarse Sea salt	Coarse Soil Dust
Aerosol component	Sulfate, Ammonium, POM, SOA, BC, Sea salt, Marine POM & SOA	Sulfate, Ammonium, SOA, Sea salt, Marine POM & SOA	POM, BC	Sea salt, Sulfate, Ammonium, Marine POM	Dust, Sulfate, Ammonium	Sea salt, Sulfate, Ammonium, Marine POM	Dust, sulfate, Ammonium

- 2) Biogenic gas emissions from the ocean and their impact on aerosol/cloud interaction and radiative properties of the overlying atmosphere
- 3) Sources, chemical composition and size distribution of ocean-derived primary organic aerosols
- 4) Model results

My Take on Near Future Marine Organic Aerosol Research

"It is time to go and sample in pristine environments..." Jos Lelieveld (MPI Mainz)

Extensive lab measurements for phytoplankton emitted biogenic volatile organic compounds (BVOC) under different light/ temperature regimes
 More field campaigns in pristine marine environments (e.g., Southern Ocean)

✤ Improved satellite retrievals of aerosols (low AOD), Ocean ecosystems ([Chl-a], phytoplankton functional groups, CDOM) and trace gases within boundary layer (Sulfur dioxide (SO₂), formaldehyde (HCHO), glyoxal (CHOCHO), nitrous oxide (N₂O), bromine monoxide (BrO), chlorine dioxide (OClO), ozone (O₃))

Improved quantification of marine POM emissions

Arine sources of SOA (e.g., monotrpenes such as α-pinene, β-pinene, myrcene, camphene, limonene and others)

- Finer model spatial resolution (estuary emissions)
- Future air quality studies should consider marine sources of OC aerosol

Introduction

Special Issue on Marine Aerosol-Cloud-Climate Interaction

http://www.hindawi.com/journals/amet/osi.html

() Hindawi P	ublishing Corporation	Go Advanced Search
Hindawi		Home Journals About U
Advances in Meteorology	5717	
 Dournal Menu Abstracting and Indexing Aims and Scope Article Processing Charges Articles in Press Articles in Press Author Guidelines Bibliographic Information Contact Information Editorial Board Editorial Workflow 	 Marine Aerosol-Cloud-Climate Interaction, Meters, Elisabetta Vignati, Olaf Stetzer, Chris Osburn, a Kieber Marine Aerosol-Cloud-Climate Interaction, Nicholas Charles R. McClain, Markus D. Petters, Elisabetta V Stetzer, Chris Osburn, and David J. Kieber Volume 2010 (2010), Article ID 250896, 2 pages Primary and Secondary Organic Marine Aerosol and Biological Activity: Recent Results and New Perspectudies, Matteo Rinaldi, Stefano Decesari, Emanue Carbone, Sandro Fuzzi, Colin D. O'Dowd, Darius Center Studies, Stetzer, Colin D. O'Dowd, Darius Center Studies, Stetzer, Sandro Fuzzi, Colin D. O'Dowd, Darius Center Studies, Stetzer, Stetzer, Studies, Stetzer, Studies, Stetzer, Studies, Stetzer, Studies, Stetzer, Studies, Stetzer, Stetze	raction Markus D. ind David J. & Meskhidze, /ignati, Olaf d Oceanic ectives for Future ela Finessi, Lara Giulianelli, Claudio eburnis, and Maria Cristina Facchini
 Editorial Board Editorial Workflow Free eTOC Alerts Reviewers Acknowledgment Subscription Information 	 Biological Activity: Recent Results and New Perspectives for Future Studies, Matteo Rinaldi, Stefano Decesari, Emanuela Finessi, Lara Giulianelli, Claudio Carbone, Sandro Fuzzi, Colin D. O'Dowd, Darius Ceburnis, and Maria Cristina Facchini Volume 2010 (2010), Article ID 310682, 10 pages Polysaccharides, Proteins, and Phytoplankton Fragments: Four Chemically Distinct Types 	

Hawkins and Lynn M. Russell

References

MODIS - http://ladsweb.nascom.nasa.gov/data/search.html

SeaWiFS - http://oceancolor.gsfc.nasa.gov/

QuikScat - <u>http://www.remss.com/qscat/qscat_browse.html</u>

AMSR-E - http://www.remss.com/amsr/amsr_browse.html

CALIPSO - <u>http://www-calipso.larc.nasa.gov/products/lidar/browse_images/show_calendar.php</u>

GIOVANNI - http://disc.sci.gsfc.nasa.gov/giovanni/

Henry's Law Constants - http://www.mpch-mainz.mpg.de/~sander/res/henry.html

Alvain, S., Moulin, C., Dandonneau, Y., and Breon, F. M.: Remote sensing of phytoplankton groups in case 1 waters from global SeaWiFS imagery, Deep-Sea Res. I, 52, 1989–2004, 2005.

Alvain, S., Moulin, C., Dandonneau, Y., and Loisel, H.: Seasonal distribution and succession of dominant phytoplankton groups in the global ocean: A satellite view, Global Biogeochem. Cycles, 22, GB3001, doi:10.1029/2007GB003154, 2008.

Andreae, M. O., Charlson, R. J., Bruynseels, F., Storms, H., Grieken, R. V., and Maenhaut, W.: Internal Mixture of Seasalt, Silicates, and Excess Sulfate in Marine Aerosols, Science, 27, 232(4758), 1620–1623, doi:10.1126/science.232.4758.1620, 1986.

Boyd, P.W., et al. Mesoscale Iron Enrichment Experiments 1993–2005: Synthesis and Future Directions, Science, Vol. 315, 612-617, 2007.

Charlson, R. J., Lovelock, J. E., Andreae, M. O. & Warren, S. G. 1987 Oceanic phytoplankton, atmospheric sulfur, cloud albedo and climate. Nature 326, 655–661. (doi:10.1038/326655a0)

Chisholm, S.W., Stirring times in the Southern Ocean, NATURE, 407, 2000

Clarke, A. D., Owens, S. R. & Zhou, J. 2006 An ultrafine sea-salt flux from breaking waves: implications for cloud condensation nuclei in the remote marine atmosphere. J. Geophys. Res. 111, D06202. (doi:10.1029/2005JD006565)

Colomb, A., Gros, V., Alvain, S., Sarda-Esteve, R., Bonsang, B., Moulin, C., Kl^{*}upfel, T., Williams, J.: Variation of atmospheric volatile organic compounds over the Southern Indian Ocean (30–49 S), Environ. Chem., 6(1), 70–82, doi:10.1071/EN08072, 2009.

De Leeuw, G., Neele, F. P., Hill, M., Smith, M. H. & Vignati, E. 2000 Sea spray aerosol production by waves breaking in the surf zone. J. Geophys. Res. 105, 29 397–29 409. (doi:10.1029/2000JD900549).

de Leeuw, G., E. L Andreas, M. D. Anguelova, C. W. Fairall, E. R. Lewis, C. O'Dowd, M. Schulz, and S. E. Schwartz

(2011), Production flux of sea spray aerosol, Rev. Geophys., 49, RG2001, doi:10.1029/2010RG000349.

Duce, R.A. et al., Impacts of Atmospheric Nitrogen on the Open Ocean, Science, Vol. 320, 893-897, 2008.

Erickson, D. J. & Duce, R. A. 1988 On the global flux of atmospheric sea salt. J. Geophys. Res. 93, 14 079–14 088.

Gantt, B., N. Meskhidze, and D. Kamykowski, A new physically-based quantification of marine isoprene and primary organic aerosol emissions, Atmos. Chem. Phys., 9, 4915–4927, 2009

Gong, S. L. 2003 A paramterization of sea-salt aerosol source function for sub- and super-micron particles. J. Geophys. Res. 17, 1097. (doi:10.1029/2003GB002079)

Guenther, A. B., Zimmerman, P. R., and Harley, P. C.: Isoprene and monoterpene emission rate variability: model evaluations and sensitivity analysis, J. Geophys. Res., 98, 12609–12617, 1993.

Ho, D. T., C. S. Law, M. J. Smith, P. Schlosser, M. Harvey, and P. Hill (2006), Measurements of airsea gas exchange at high wind speeds in the Southern Ocean: Implications for global parameterizations, Geophys. Res. Lett., 33, L16611, doi:10.1029/2006GL026817.

Lewis, E. R. & Schwartz, S. E. 2004 Sea salt aerosol production. Mechanisms, methods, measurements, and models. Washington, DC: American Geophysical Union.

Ma^ortensson, E. M., E. D. Nilsson, G. de Leeuw, L. H. Cohen, and H.-C. Hansson, Laboratory simulations and parameterization of the primary marine aerosol production, J. Geophys. Res., 108(D9), 4297, doi:10.1029/2002JD002263, 2003.

Mahowald, N., et al. (2008), Global distribution of atmospheric phosphorus sources, concentrations and deposition rates, and anthropogenic impacts, Global Biogeochem. Cycles, 22, GB4026, doi:10.1029/2008GB003240.

Mahowald, N.M., et al., Atmospheric Iron Deposition: Global Distribution, Variability, and Human Perturbations, Annu. Rev. Mar. Sci., 1:245–78, 2009.

Meskhidze, N., A. Nenes (2006), Phytoplankton and Cloudiness in the Southern Ocean, *Science*, DOI: 10.1126/science.1131779.

Meskhidze, N., W. L. Chameides, and A. Nenes Dust and pollution: A recipe for enhanced ocean fertilization?, *J. Geophys. Res.*, *110*, D03301, 2005, doi:10.1029/2004JD005082.

O'Dowd, C. D., B. Langmann, S. Varghese, C. Scannell, D. Ceburnis, and M. C. Facchini (2008), A combined organic-inorganic sea-spray source function, Geophys. Res. Lett., 35, L01801, doi:10.1029/2007GL030331.

O'Dowd, C. D., M. C. Facchini, F. Cavalli, D. Ceburnis, M. Mircea, S. Decesari, S. Fuzzi, Y. J. Yoon, and J. P. Putaud (2004), Biogenically driven organic contribution to marine aerosol, Nature, 431, 676–680, doi:10.1038/nature02959

O'Dowd, C.D., de Leeuw, G, Marine aerosol production: a review of the current knowledge, Phil. Trans. R. Soc. A (2007) 365, 1753–1774, doi:10.1098/rsta.2007.2043

Palmer, P. I. and Shaw, S. L.: Quantifying global marine isoprene fluxes using MODIS chlorophyll observations, J. Geophys. Res., 32, L09805, doi:10.1029/2005GL022592, 2005.

Sciare, J., O. Favez, R. Sarda-Este`ve, K. Oikonomou, H. Cachier, and V. Kazan (2009), Long-term observations of carbonaceous aerosols in the Austral Ocean atmosphere: Evidence of a biogenic marine organic source, J. Geophys. Res., 114, D15302, doi:10.1029/2009JD011998.

Shaw, G. 1983 Bio-controlled thermostasis involving the sulfur cycle. Clim. Change 5, 297–303. (doi:10.1007/BF02423524)

Shaw, G.E., Bio-controlled thermostasis involving the sulfur cycle, Climatic Change, 5, 297-303, 1983.

Sinha, V., Williams, J., Meyerhfer, M., Riebesell, U., Paulino, A. I., and Larsen, A.: Air-sea fluxes of methanol, acetone, acetaldehyde, isoprene and DMS from a Norwegian fjord following a phytoplankton bloom in a mesocosm experiment, Atmos. Chem. Phys., 7, 739–755, 2007.

Solmon, F., P. Y. Chuang, N. Meskhidze, and Y. Chen (2009), Acidic processing of mineral dust iron by anthropogenic compounds over the north Pacific Ocean, J. Geophys. Res., 114, D02305, doi:10.1029/2008JD010417.

Vaattovaara, P., Huttunen, P. E., Yoon, Y. J., Joutsensaari, J., Lehtinen, K. E. J., O'Dowd, C. D. & Laaksonen, A. 2006 The composition of nucleation and Aitken modes particles during coastal nucleation events: evidence for marine secondary organic contribution. Atmos. Chem. Phys. 6, 4601–4616.

Vignati, E., de Leeuw, G. & Berkowicz, R. 2001 Modeling coastal aerosol transport and effects of surfproduced aerosols on processes in the marine atmospheric boundary layer. J. Geophys. Res. Atmos. 106, 20 225–20 238. (doi:10.1029/2000JD000025)

Wanninkhof, R. et al., Advances in Quantifying Air-Sea Gas Exchange and Environmental Forcing, Annu. Rev. Mar. Sci. 2009. 1:213–44, 10.1146/annurev.marine.010908.163742

Yassaa, N., Peeken, I., Zollner, E., Bluhm, K., Arnold, S., Spracklen, D., and Williams, J.: Evidence for marine production of monoterpenes, Environ. Chem., 5, 391–401, doi:10.1071/EN08047, 2008.

Yoon, Y. J. et al. 2007 Seasonal characteristics of the physico-chemical properties of North Atlantic marine atmospheric aerosols. J. Geophys. Res. 112, D04206. (doi:10.1029/2005JD007044)

What Are The Right Parameters For Organic Enrichment Of Sea Spray ?

