

2256-18

Workshop on Aerosol Impact in the Environment: from Air Pollution to Climate Change

8 - 12 August 2011

Modeling of Atmospheric Transport and Deposition of Soluble Iron to the Oceans

N. Meskhidze North Caroline State Univ., Raleigh USA

Modeling of Atmospheric Transport and Deposition of Soluble Iron to the Oceans

nmeskhidze@ncsu.edu

Nicholas Meskhidze

Assistant Professor

http://amirani.meas.ncsu.edu/~web_site/Homepage.html Workshop on Aerosol Impact in the Environment: from Air Pollution

to Climate Change, Trieste - Italy, 08 - 12 August 2011

- 1) Introduction & motivation
- 2) Acid dissolution of iron in mineral dust aerosols
- 3) Lagrangian equilibrium model
- 4) Other mechanisms for iron dissolution
- 5) Case studies using GEOS-Chem/DFeS

Background: High Nitrate Low Chlorophyll (HNLC) Waters

Background (continued)

High-nitrate low-chlorophyll (HNLC) regions Largest inventories of unused nutrients

From Philip Boyd, New Zealand National Institute for Water and Atmospheric Research

April, 1998

Motivation #1 (CO₂-Climate Link)

Plankton collage - Credit Collage by Mary Wilcox Silver, University of California, Santa Cruz

[Source: Chisholm, 2000, Nature.

The "biological pump" is a collective property of a complex phytoplanktonbased food web. Together with the "solubility pump", it maintains a sharp gradient of CO_2 between the atmosphere and the deep oceans.

1) Introduction & motivation

2) Acid dissolution of iron in mineral dust aerosols

3) Lagrangian equilibrium model

5) Other mechanisms for iron dissolution

4) Case studies using GEOS-Chem/DFeS

Nomenclature

Mineral Iron

Iron in dust – mainly in the form of Fe(III) oxides and clays

Anthropogenic Iron

Iron from industrial emissions and biomass burning

Dissolved Iron (Fe_{dis}) Fe(II) and Fe(III)

Also Fe-sulfate and Fe-oxalate complexes

Bioavailable iron

Dissolved-Fe + Leachable-Fe + some colloidal forms

Thermodynamics vs. Kinetics

- ✓ Thermodynamics can tell you only that a reaction should go because the products are more stable (have a lower free energy) than the reactants.
- Says nothing about what rate (how fast) the reaction will be

In a spontaneous reaction, ΔG (change in Gibbs free energy) is negative.

 ΔG is largely dependent on two concepts: $\Delta G = \Delta H - T\Delta S$.

Enthalpy : ΔH . Negative values of this (i.e. exothermic) decrease ΔG , making the reaction more favorable.

Entropy : - $T\Delta S$. The T represents temperature. The S represents entropy, or a measurement of disorder. This term in the equation is negative and temperature is always positive. Therefore, increasing the change in entropy (positive ΔS) makes the reaction more favorable. $a[A] + b[B] \Leftrightarrow c[C] + d[D]$

$$K = \frac{[C]^{c}[D]^{d}}{[A]^{a}[B]^{b}}$$

 ✓ The equilibrium constant, K, is a thermodynamic quantity. As such, it depends *only* on the overall reaction.

Notice, I have never mentioned time!!

Slow reaction

 The rate of the reaction has no dependence on the overall reaction equation but instead depends on the reaction mechanism, the elementary steps.

Fast reaction

Mineral Dissolution Kinetics

$$\mathbf{R}_{i}^{net} = \mathbf{K}_{r}(\mathbf{T})\mathbf{a}(\mathbf{H}^{+})^{m}f(\Delta \mathbf{G}_{r}) \mathbf{A}_{i} \mathbf{W}_{i}$$

- $\begin{array}{l} R_i^{net} & \mbox{-The rate of dissolution of mineral i [mole dissolved/gram of dust/s]} \\ R_i^{net} & \mbox{-0 dissolution, <0 precipitation} \end{array}$
- K_r Dissolution constant [mole dissolved/m² of mineral/s]
- T Temperature [K]

Ai

- $a(H^+)$ H⁺ activity; pH=-log{H⁺}
 - m An empirical parameter
 - A function of Gibbs Free energy, ΔG_r $f(\Delta G_r) = [1 - \exp(n\Delta G_r/RT)] \quad \Delta G_r = RT \ln(Q/K_{eq})$
 - Specific surface area of mineral [m²/g of mineral]
- W_i Weight fraction of the mineral in dust [g of mineral/g of dust]

Mineral Dissolution Kinetics

		Rate Constant Kr		A _i ,	Wi g(Mineral)	
No.	Mineral	(mol _{mineral dissolved} /m ² /s)	m	$m^2 g^{-1}$	g(Dust) X	100% Source
RS1	calcite	$7.0 \times 10^{-2} \exp[1200(1/298-1/T)]$	1	0.1	11	Morse and Arvidson [2002]; Alkattan et al. [1998]; Chou et al. [1988]; Sjöberg [1976]
RS2	albite	$2.4 \times 10^{-10} \exp[7200(1/298-1/T)]$	0.5	1.0	17	Blum and Stilling [1995]; Hodson [1999]
RS3	microcline	$2.0 \times 10^{-10} \exp[6600(1/298-1/T)]$	0.5	1.0	8	Blum and Stilling [1995]; Hodson [1999]
RS4	illite	$1.3 \times 10^{-11} \exp[6700(1/298-1/T)]^{(1)}$	0.39	90	20	Nagy [1995]; Tessier [1990]; Skopp [2000]
RS5	smectite	$8.1 \times 10^{-12} \exp[6700(1/298-1/T)]^{a}$	0.3	300	8	Nagy [1995]; Tessier [1990]; Skopp [2000]
RS6	kaolinite	$4 \times 10^{-11} \exp[6700(1/298-1/T)]$	0.1	20	5	Carroll and Walter [1990]; Nagy [1995]; Skopp [2000]
RS7	hematite	stage I (0 to 0.8% of total oxide dissolved) $4.4 \times 10^{-12} \exp[9.2 \times 10^{3}(1/298-1/T)]$ stage II (0.8 to 40% of total oxide dissolved) $1.8 \times 10^{-11} \exp[9.2 \times 10^{3}(1/298-1/T)]$ stage III (40 to 100% of total oxide dissolved) $3.5 \times 10^{-12} \exp[9.2 \times 10^{3}(1/298-1/T)]$	0.5	100	5	Azuma and Kametani [1964]; Blesa et al. [1994]; Cornell and Schwertmann [1996]; Zinder et al. [1986]; Skopp [2000]

Table 8. Constants Used to Calculate Mineral Dissolution/Precipitation Rates Using Equation (22)

^aAverage activation energy for kaolinite [Carroll and Walter, 1990] is used.

Fe in mineral dust is mobilized during transport in the atmosphere in a two-step process consisting of:

(1) acidification of the mineral dust by the incorporation of acids arising from air pollutants (and in particular SO₂) that are mixed into the plumes containing dust as these plumes advect over the urban and industrial centers;

(2) dissolution of the Fe in the resultant acidic solutions.

Evidence for the "Acidic Dust?"

Orbview-2 SeaWiFS TrueColor UCAR/JOSS 2001/03/21 04:14 UTC

Nitrate Volatilization $[NO_3^-]_{vol} = 1 - \frac{[NO_3^-]}{[NO_3^-] + [HNO_3(g)]}$ 100 From Equation 6 80 $[NO_3^-]_{vol} = \frac{[H^+]}{[H^+] + K}$ From ISORROPIA [NO₃]_{vol}(%) 60 -40 Range observed for [NO3] vol 20 Range of pH needed to produce observed values of [NO3]vol 0 -1.0 0.0 1.0 2.0 3.0 4.0 5.0 6.0 pH [Source: Meskhidze et al., GRL, 2003]

Lagrangian Equilibrium Model

$$\mathsf{R}_{\mathsf{net}} = \mathsf{k}_{\mathsf{0}} \exp\left(\frac{-\mathsf{E}_{\mathsf{app}}}{\mathsf{RT}}\right) \mathsf{a}_{\mathsf{H}^{+}}^{\mathsf{m}\mathsf{H}^{+}} \prod_{i} \mathsf{a}_{i}^{\mathsf{m}_{i}} g_{i}(\mathsf{I}) f(\Delta \mathsf{G}_{\mathsf{r}})$$

Consider **pH**, **temperature**, **ionic strength** of the solution and **specific surface area** of minerals

1: Initial mineral composition for the dust

	<u>In Soil,</u>	<mark>% wt</mark> ^a
Minerals	In Silt	In Clay
Anhydrite	6+	0
CaSO ₄		
Calcite	4	0+
CaCO ₃		
Plagioclase	28	8
Albite – NaAlSi ₃ O ₈		
Microcline – KalSi ₃ O ₈		
Illite	18 ⁺	13
$K_{0.6}Mg_{0.25}Al_{2.3}Si_{3.5}O_{10}(OH)_2$		
Smectite/Montmorillonite	7 ⁺	62
$Na_{0.6}Al_{1.4}Mg_{0.6}Si_4O_{10}(OH)_2 \cdot 4H_2O$		
Hematite	5	3
Fe_2O_3		
Quartz	27	7
SiO_2		
Kaolinite	5 ⁺	7
$Al_2Si_2O_5(OH)_4$		
Total	100	100

^a Mineralogical composition were largely based on Gaiero et al. (2003), Smith et al. (2003), and Ramsperger et al. (1998).

⁺Assumed generic dust composition due to insufficient data.

[Source: Meskhidze et al., JGR, 2005]

		Equilibrium Constants ^a	
No.	Equilibrium Reaction	K_{eq} , mol ² /kg ²	Source
REQ1	calcite \rightleftharpoons Ca ²⁺ + CO ₃ ²⁻	4.959×10^{-9}	Meng et al. [1995]
REQ2	albite + $4H^+$ + $4H_2O \rightleftharpoons Na^+$ + Al^{3+} + $3H_4SiO_4^0$	1.6×10^{3}	Lindsay [1979]
REQ3	microcline + $4H^+$ + $4H_2O \Longrightarrow K^+$ + Al^{3+} + $3H_4SiO_4^0$	1×10^{1}	Lindsay [1979]
REQ4	illite + $6H^+$ + $4H_2O \rightleftharpoons 0.4K^+$ + $0.25Mg^{2+}$ + $1.7Al^{3+}$ + $4H_4SiO_4^0$	2.24×10^{10}	Lindsay [1979]
REQ5	smectite + $4H^+ \rightleftharpoons 0.8Na^+ + 0.4Mg^{2+} + 0.8Al^{3+} + 4H_4SiO_4^0$	4.79×10^{2}	Lindsay [1979]
REQ6	kaolinite + $6H^+ \rightleftharpoons 2Al^{3+} + 2H_4SiO_4^0 + H_2O$	2.8×10^{5}	Lindsay [1979]
REQ7	hematite + $6H^+ \rightleftharpoons 2Fe^{3+} + 3H_2O$	4.4×10^{-1}	Blesa et al. [1994]

Table 7. Equilibria Describing the Dissolution/Precipitation of Minerals Contained in Dust

^aAll K_{eq} values are for 298 K.

		Rate Constant K_r		$A_{i}, -1$	W _i g(Mineral)/	
No.	Mineral	(mol _{mineral dissolved} /m ² /s)	m	m²gʻ	g(Dust)	Source
RS1	calcite	$7.0 \times 10^{-2} \exp[1200(1/298-1/T)]$	1	0.1	11	Morse and Arvidson [2002]; Alkattan et al. [1998]; Chou et al. [1988]; Sjöberg [1976]
RS2	albite	$2.4 \times 10^{-10} \exp[7200(1/298-1/T)]$	0.5	1.0	17	Blum and Stilling [1995]; Hodson [1999]
RS3	microcline	$2.0 \times 10^{-10} \exp[6600(1/298-1/T)]$	0.5	1.0	8	Blum and Stilling [1995]; Hodson [1999]
RS4	illite	$1.3 \times 10^{-11} \exp[6700(1/298-1/T)]^{(1)}$	0.39	90	20	Nagy [1995]; Tessier [1990]; Skopp [2000]
RS5	smectite	$8.1 \times 10^{-12} \exp[6700(1/298-1/T)]^{a}$	0.3	300	8	Nagy [1995]; Tessier [1990]; Skopp [2000]
RS6	kaolinite	$4 \times 10^{-11} \exp[6700(1/298-1/T)]$	0.1	20	5	Carroll and Walter [1990]; Nagy [1995]; Skopp [2000]
RS7	hematite	stage I (0 to 0.8% of total oxide dissolved) $4.4 \times 10^{-12} \exp[9.2 \times 10^{3}(1/298-1/T)]$ stage II (0.8 to 40% of total oxide dissolved) $1.8 \times 10^{-11} \exp[9.2 \times 10^{3}(1/298-1/T)]$	0.5	100	5	Azuma and Kametani [1964]; Blesa et al. [1994]; Cornell and Schwertmann [1996]; Zinder et al. [1986]; Skopp [2000]
		stage III (40 to 100% of total oxide dissolved) $3.5 \times 10^{-12} \exp[9.2 \times 10^3 (1/298-1/T)]$				[Source: Meskhidze et al., JGR, 2005]

Table 8. Constants Used to Calculate Mineral Dissolution/Precipitation Rates Using Equation (22)

		Equilibrium Constants ^a				
No.	Equilibrium Reaction	K ⁰ (298.15 K)	а	b	Units	Source
RAQ1	$CO_2(aq) \rightleftharpoons CO_2(g)$	3.404×10^{-2}	8.1858	-28.9307	mol/kg/atm	Meng et al. [1995]
RAQ2	$HCO_3^- + H^+ \rightleftharpoons CO_2(aq)$	4.299×10^{-7}	3.0821	31.8139	mol/kg	Meng et al. [1995]
RAQ3	$\mathrm{CO}_3^{2-} + \mathrm{H}^+ \rightleftharpoons \mathrm{HCO}_3^{-}$	4.678×10^{-11}	5.9908	38.8440	mol/kg	Meng et al. [1995]
		Kaa				
RAQ4	$CaSO_4 \cdot 2H_2O(s) \rightleftharpoons Ca^{2+}(aq) + SO_4^{2-}(aq) + 2H_2O$	4.31	9×10^{-5}		mol ² /kg ²	Meng et al. [1995]
RAQ5	$Fe(OH)_3(s) + 3H^+ \rightleftharpoons Fe^{3+} + 3H_2O$	9.1	9.1×10^{3}			Stumm and Morgan [1981]
RAQ6	$\mathrm{Fe}^{3+} + \mathrm{SO}_4^{2-} \rightleftharpoons \mathrm{Fe}\mathrm{SO}_4^+$	1.9	0×10^{4}		mol/kg	Millero et al. [1995]
RAQ7	$FeCl^{2+} \rightleftharpoons Fe^{3+} + Cl^{-}$	1.9	0×10^{1}		mol/kg	Millero et al. [1995]
RAQ8	$Fe^{3+} + H_2O \Longrightarrow FeOH^{2+} + H^+$	6.46	5×10^{-3}		mol/kg	Stumm and Morgan [1981]
RAQ9	$Fe^{3+}_{} + 2H_2O \rightleftharpoons Fe(OH)^+_2 + 2H^+$	2.14	10^{-6}		mol/kg	Stumm and Morgan [1981]
RAQ10	$Fe^{3+} + 3H_2O \rightleftharpoons Fe(OH)^0_3 + 3H^+$	1.59	1.59×10^{-12}			Millero et al. [1995]
RAQ11	$Fe^{3+} + 4H_2O \rightleftharpoons Fe(OH)_4^- + 4H^+$	2.51	2.51×10^{-22}			Stumm and Morgan [1981]
RAQ12	$Al(OH)_3(s) + 3H^+ \rightleftharpoons Al^{3+} + 3H_2O$	1.7	$\times 10^{10}$		mol/kg	Lindsay [1979]; Bi et al. [2001]
RAQ13	$Al^{3+} + SO_4^{2-} \rightleftharpoons AlSO_4^+$	1.0×10^{3}			mol/kg	Bi et al. [2001]
RAQ14	$Al_{4}^{3+} + H_2O \rightleftharpoons AlOH^{2+} + H^+$	1.0×10^{-5}			mol/kg	Bi et al. [2001]
RAQ15	$Al^{3+} + 2H_2O \rightleftharpoons Al(OH)^+_2 + 2H^+$	1.0×10^{-10}			mol/kg	<i>Bi et al.</i> [2001]
RAQ16	$Al^{3+} + 3H_2O \rightleftharpoons Al(OH)_3^0 + 3H^+$	1.0×10^{-15}			mol/kg	Lindsay [1979]; Stumm
						and Morgan [1981]
RAQ17	$Al^{3+} + 4H_2O \rightleftharpoons Al(OH)_4^- + 4H^+$	1.0	$\times 10^{-23}$		mol/kg	Bi et al. [2001]

Table 6. Additional Aqueous-Phase Reactions Added to Modified Version of ISORROPIA and Their Equilibrium Constants

^aFor RAQ1, RAQ2, and RAQ3, $K_{eq} = K^{\circ} \exp\left\{a\left(\frac{T_{o}}{T} - 1\right) + b\left(1 + \ln\left(\frac{T_{0}}{T}\right) - \frac{T_{0}}{T}\right)\right\}$, where $T_{0} = 298.15$ K. All other K_{eq} values are assumed to be temperature-independent and are based on experimental data at 298 K.

Two Very Different Dust Episodes

[Source: SeaWiFS Project, NASA/Goddard Space Flight Center, and ORBIMAGE]

Trajectories Predicted by HYSPLIT for the A6 & M12

the oceans

Atmospheric Fe Dissolution Scheme

Factors Controlling Mineral Iron Dissolution During Atmospheric Transport

Soil mineralogy at the source region

• Forms of Fe-III oxides (hematite- α -Fe₂O₃, goethite- α -FeO(OH), lepidocrocite- γ -FeO(OH), magnetite- Fe₃O₄, akaganeite- β -FeO(OH), maghemite- γ - Fe₂O₃)

- Initial soluble Fe fraction (readily released Fe) 0.001 1.6 %
- Temperature
- Relative humidity
- Cloud cycling
- Abundance/deposition of acidic trace gases
- Photo-reductive (Oxalate) dissolution of Fe(III) oxides
- Photochemical/chemical cycling of Fe(II)-Fe(III)
- Pyrogenic (biomass burning and combustion) sources of Fe

Fe(II) and Fe(III) Redox Cycling

Kinetics

$Fe^{2+} + H_2O_2 \rightarrow Fe^{3+} + OH^- + OH$	$K_r = 76 M^{-1} s^{-1}$
$Fe^{2+} + O_2^- \rightarrow Fe^{3+} + H_2O_2 + 2OH^-$	$K_r = 10^7 M^{-1} s^{-1}$
$\mathbf{Fo}^{2+} + \mathbf{HO}_2 \rightarrow \mathbf{Fo}^{3+} + \mathbf{H}_2\mathbf{O}_2 + \mathbf{OH}^-$	$K_r = 1.2e^6 M^{-1} s^{-1}$
$Fe(OH)^{2+} + O_2^- \rightarrow Fe^{2+} + OH^-$	$K_{p}=1.5e^{6}\;M^{-1}\;s^{-1}$
$Fe(OH)^+ + OH \rightarrow Fe(OH)^{2+} + OH^-$	$K_r = 4.3 e^8 \; M^{-1} \; s^{-1}$
$Fe^{2+} + OH \rightarrow Fe^{B+} + OH^-$	$K_r = 4.3 e^8 M^{-1} s^{-1}$
$Fe(OH)^+ + H_2O_2 \rightarrow Fe(OH)^{2+} + OH + OH^-$	$K_r = 5.9 e^{\theta} \ M^{-1} \ s^{-1}$
$HO_2 + O_2^- \rightarrow H_2O_2 + OH^-$	$\rm K_r=9.7e^{7}\;M^{-1}\;s^{-1}$
$2HO_2 \rightarrow H_2O_2$	$K_{\rm p}=8.3e^{8}\;M^{-1}\;s^{-1}$
$C_2O_4^{2-}$ + Fe ⁸⁺ \rightarrow Fe(C_2O_4) ⁺	$K_p = 7.5e^6 M^{-1} s^{-1}$
$C_2O_4^{2-} + Fo(C_2O_4)^+ \rightarrow Fo(C_2O_4)_2^-$	$K_r = 4.8 e^4 \; M^{-1} \; s^{-1}$
$C_2O_4^{2-} + Fe(C_2O_4)_2^- \rightarrow Fe(C_2O_4)_3^{3-}$	$K_r = 1.9e^4 M^{-1} s^{-1}$
Photolysis	
$Fe^{2+} + O_8 + h\nu \rightarrow Fe^{3+} + OH$	$K_r = 6.2e^{-4}s^{-1}$
$Fe(OH)^{2+} + hv \rightarrow Fe^{2+} + OH$	$K_r = 6.3e^{-4}s^{-1}$
$\mathbf{Fe}(\mathbf{C}_2\mathbf{O}_4)^+ + h\nu \rightarrow \mathbf{Fe}^{2+} + \mathbf{O}_2^-$	$K_r = 5.8e^{-2} s^{-1}$
$Fe(C_2O_4)_2^- + h\nu \rightarrow Fe^{2+} + Fe(C_2O_4)^+ + O_2^-$	$K_r = 5.8e^{-2}s^{-1}$
$Fe(C_2O_4)_3^{3-} + h\nu \rightarrow Fe^{2+} + 2Fe(C_2O_4)^+ + O_2^-$	$K_r = 5.8e^{-2} s^{-1}$
$Fe(C_2O_4)^+ + h\nu \rightarrow Fe^{3+} + C_2O_4^2$	$K_r = 3e^{-3} s^{-1}$
$\mathbf{Fe}(\mathbf{C}_2\mathbf{O}_4)_2^- + hv \rightarrow \mathbf{Fe}(\mathbf{C}_2\mathbf{O}_4)^+ + \mathbf{C}_2\mathbf{O}_4^{2-}$	$K_r = 3e^{-3} e^{-1}$
$\operatorname{Fe}(\operatorname{C_2O_4})_3^{3-} + hv \to \operatorname{Fe}(\operatorname{C_2O_4})_2^{-}$	$K_r = 3e^{-3} e^{-1}$

GEOS-Chem Model

GEOS-Chem (v8-01-01) Model

3-D Global Chemistry Transport Model

- developed at Harvard University and other institutions around the world
- Full chemistry configuration
 - SMVGEAR II chemistry solver package
- GEOS-5 meteorology
 - Goddard Earth Observing System (GEOS) of the NASA Global Modeling Assimilation Office

Detailed emission inventories

- fossil fuel, biomass burning, biofuel burning, biogenic and anthropogenic aerosol emissions
- State-of-the-art transport (TPCORE) and photolysis (FAST–J) routines
- > 2^o x 2.5^o grid resolution
- ➢ 47 vertical grids

Mineral Dust and Sol-Fe Treatment

DEAD emission scheme

- GOCART source function
- > Mineral dust diameter boundaries 0.2 -
- 2.0, <u>2.0 3.6, 3.6 6.0 and 6.0 12.</u>0 µm

Seven major individual dust sources

 North Africa, South Africa, North America, Asia, Australia, the Middle East, and South America

Sol-Fe predictions

- GEOS-Chem/DFeS
- prognostic acid-based dust-Fe dissolution scheme (Meskhidze et al., 2005; Solmon et
- al., 2009; Johnson et al., 2010)
- organic (oxalate) promoted Fe dissolution
- Fe(II)/Fe(III) redox cycling (photochemistry)

Fe(III) and Fe(II) Daily-averaged Column Burden (Aug 27-Sep 24, 2007)

Fe(III) and Fe(II) Time-Series

Conclusions and Future Research

- > Availability of Fe_{sol} in the oceans affects carbon cycle and climate
- GEOS-Chem/DFeS has the most comprehensive mineral-Fe dissolution mechanism currently available
- There are considerable differences between fixed percent of soluble Fe and ones calculated using prognostic dissolution-precipitation mechanisms
- > More in situ sampling dust and sol-Fe is needed
- Improved remotely-sensed retrievals of [Chl-a] and aerosols are needed
- Atmospheric-chemistry transport models should be coupled with ocean biogeochemistry models to study the effect of atmospheric nutrients on carbon balance

Additional Slides

Oxalate Concentration (below 1500 m)

[Source: Myriokefalitakis et al., 2011, ACPD]