Stabilizing stick-slip friction

Rosario Capozza

School of Chemistry
Tel Aviv University, Israel

In collaboration with:

Michael Urbakh, TAU Jay Fineberg, HUJI
Itay Barel, TAU Shmuel M. Rubinstein, Harvard Un.
- stochasticity in the period between consecutive slip events
- irregularity in the size of the stress drops
What is the origin of this stochasticity?

- A diversity of surface contacts
- Nonlinearity of interactions between the slider and the surface
The model

Parameters:

N – a number of rigid blocks,

N_s – a number of contacts between the block and track,

K_d – an elasticity of the driving spring,

K – a slider elasticity,

k_s – an elasticity of the contact,

f_{si} – rupture forces which takes random values from a Gaussian distribution
A broad distribution of stick times is retained even when all contacts are identical.
Force traces for different numbers of blocks

- $N=8$
- $N=40$
- $N=50$
- $N=70$
\[\Delta x_j = x_j - x_j^0 = \Delta x_1 \exp[-\sqrt{K_s/K_{\text{int}}(j-1)}] \]

Stochasticity: the nonuniformly stressed region involves more than one block, i.e.

\[N \gg \sqrt{K_{\text{int}}/K_s} \]
Is it possible to control the stochasticity?

$$V_d = V_0 - \frac{2\pi}{T} \Delta \sin(2\pi t / T),$$
Control of Friction via Normal Oscillations

Anisoara Socoliuć, Enrico Gnecco, Sabine Maier, Oliver Pfeiffer, Alexis Baratoff, Roland Bennewitz, Ernst Meyer

SCIENCE VOL 313 14 JULY 2006

SFA Experiments
Effect of lateral vibrations

Shear velocity oscillations on stick-slip behavior on macroscale

No control

\[F_L \]

Control

\[F_L \]
Even relatively small perturbations can cause the interval between successive stick-slip events to phase-lock to the perturbation frequency.

\[0.002 < \frac{\Delta F_s}{F_s^m} < 0.05 \]
Phase locking: for frequencies much higher than the typical stick-slip frequency. The stick time adapts itself to the value of T, such that $\tau = nT$

$$\phi = 2\pi \Delta t / T$$

![Graph showing stick-slip behavior and phase locking](image)

![Phase locking and stick time adaptation](image)
Slip time relative to the forcing: temporal shift, Δt, from the closest peak of the force modulation.

\[\phi = \frac{2\pi \Delta t}{T} \]

Experiment vs. *Theory*

\[\eta = 2\pi \Delta / T V_0 \]

Phys. Rev Lett. 107, 024301(2011)
Minimal possible value of the phase: the loading force associated with this phase is higher than the preceding maximum of F_L in the loading curve.

\[F_L = K_d[V_0t + \Delta \cos(2\pi t/T)] \]

\[\phi_{\min} + \eta \cos(\phi_{\min}) = \Phi_{\max} + \eta \cos(\Phi_{\max}) \]

Controlling parameter

\[\eta = \frac{2\pi\Delta}{TV_0} \]

• For values $\eta < 1$ the loading force changes monotonically with time and harmonic oscillations do not influence the stick-slip pattern.

• For $\eta >> 1$ we have the following asymptotic behavior of the phase:

\[\phi_{\min} \approx -2\left(\pi / \eta\right)^{1/2} \]
(i) \(\eta \) is indeed a relevant parameter that controls a frictional response to harmonic perturbations.

(ii) There exists a minimum value of \(\eta \sim 1 \), below which no phase-locking is observed;

(iii) When control is applied a well-defined "backbone" exists, below which the onset of stick-slip motion will (nearly) never occur;

(iv) This backbone is described by the power law form: \(\phi \propto \eta^{1/2} \).

The data for stick-slip events are strongly clustered above this curve.
Conclusions

- Small oscillatory perturbations *synchronize* the periods between consecutive slip events.

- A *model* explains the experimental observations and elucidates the mechanism for phase locking.

- We have identified one of the *relevant dimensionless parameter* and shown how this functionally affects the locking phase.

- The main effect of perturbations on the detachment dynamics is the *elimination of slow fronts* which correspond to a *critical state*.