(viscous) dissipation in confined liquid films

Sissi de Beer, Dirk van den Ende, Frieder Mugele

Physics of Complex Fluids
University of Twente

Wouter den Otter, Wim Briels
Computational Biophysics
nanolubrication

sliding friction (Couette flow)

\[F_C = \mu A \frac{v}{D} \]

squeeze-out damping (Reynolds damping)

\[F_R = \frac{6\pi \mu R^2}{D} \delta \]
β confined simple liquids – macroscopic contacts (SFA)

β dynamic AFM measurements on confined liquids:
non-monotonic evolution of dissipation

β Molecular Dynamics simulations of simple confined Lennard-Jones fluids
• non-monotonic evolution of dissipation
• anisotropy of force fluctuations & dissipation
• breakdown of Stokes-Einstein relation
force measurements on confined liquid films

Surface Forces Apparatus

normal force

log viscosity

film thickness

film thickness

SFA:
Klein 1995
Granick 1996
Mugele 2003,
Bureau 2008
layer-by-layer squeeze-out in macroscopic contacts (SFA)

OctaMethylCyclo-TetraSiloxane ∅ : ≈ 9 Å

2D potential flow: \(\Delta \Phi = 0 \)

\[
\Phi = - \frac{\rho_{2D}}{\left(\rho_{2D} \eta_{\text{eff}} \right)}
\]

Persson, Tosatti PR B 1994
combined squeeze-out and shear measurements

L. Bureau, PRE 2008; PRL 2010

- no stick slip motion
- squeeze-out: $\eta \approx \eta_{\text{bulk}}$
- shear: $\eta \approx 100 \times \eta_{\text{bulk}}$
force measurements on confined liquid films

Surface Forces Apparatus

- SFA: Klein 1995
 - Bureau 2008
 - Mugele 2003
 - Bureau 2008
 - Horn 1985

UNIVERSITY OF TWENTE.
nano-asperity contacts

squeeze-out damping
(Reynolds damping)

\[F_R = \frac{6\pi \mu R^2}{D} \delta_x \]

Au:Si
OMCTS
HOPG

dynamic AFM

R = 17…35nm
Artifc-free dynamic atomic force microscopy reveals monotonic dissipation for a simple confined liquid

G. B. Kaggwa, J. L. Kilpatrick, J. E. Sader, and S. P. Jarvis

Solid or Liquid? Solidification of a Nanoconfined Liquid under Nonequilibrium Conditions

Shivprasad Patil, George Matei, Ahmet Oral, and Peter M. Hoffmann
tip-sample interaction in OMCTS

deBeer et al. Nanotechnology 2010
a growing consensus

![Graphs and data plots]

C12OH (Hofbauer et al. PRB 2009)

H2O (Khan et al. PRL 2010)

H2O (Ulcinas et al. Langmuir 2011)

OMCTS (deBeer et al. JPCM 2011)
open issues

- relative position of maxima in stiffness & damping
- dependence on tip shape
- dependence on approach rate
- interpretation in term of solidification, glass transition, viscoelastic behavior, …
- epitaxy
how to interpret the excess dissipation?

hydrodynamic damping (Reynolds):

$$\gamma_{\text{hydro}} = \frac{F_R}{\mathcal{D}} = \frac{6\pi \mu R^2}{D}$$

$$\mu = 500 \times \mu_{\text{bulk}}$$
molecular dynamics simulations

in collaboration with Wouter den Otter & Wim Briels

prior art: Thompson, Robbins, Landmann, Lynden-Bell, Schön

Lennard-Jones particles ($\approx 10^5$)

$$V_{ij}(r) = 4\varepsilon_{ij} \left(\left(\frac{\sigma_{ij}}{r} \right)^{12} - \left(\frac{\sigma_{ij}}{r} \right)^6 \right)$$

$T=300K$

$\sigma_{OMCTS} = 0.77\text{nm}$

60ns PT equilibration

10ns NVE simulation

3dim

$R=15\text{nm}$

HOPG

Au

HOPG

$d=5\sigma$
density profiles vs. film thickness
diffusion vs. layer thickness

$D_{\text{bulk}} = 0.11$ (r.u.)

D / D_{bulk}

$z [\sigma]$
but AFM does not measure diffusion
the force on the tip is noisy

fluctuation-dissipation theorem: noise \& damping

(without excessive shear rates!)
mean force and number of particles

\[\langle F_{\text{cyl}} \rangle [10^5 \varepsilon/\sigma] \]

\[\langle N_{\text{gap}} \rangle [10^3] \]

\[\text{distance [nm]} \]
noise correlations

time autocorrelation:

\[I(\tau) = \langle \delta F(0) \delta F(\tau) \rangle \]

\[\delta F(t) = F(t) - \langle F \rangle \]
damping coefficient

fluctuation-dissipation theorem: \[
\gamma = \lim_{T \to \infty} \gamma(T) = \lim_{T \to \infty} \frac{1}{k_B T} \int_{0}^{T} I(\tau) \, d\tau
\]
damping coefficient

![Graph showing norm. excess damping vs. tip surface distance in nm]

- MD simulations
- exp. data

UNIVERSITY OF TWENTE.
anisotropy matters

lateral damping shows little structure
structure matters

disordered films display stronger diffusivity & damping

very heterogeneous dynamics
Stokes-Einstein relation does not hold

\[D \not\propto \frac{1}{\text{mobility}} \propto \frac{1}{\gamma} \]

\[\gamma = \frac{6\pi \eta R^2}{h} \]

‡ continuum hydrodynamic description of fluid is no longer applicable
tips size matters

more complex behavior for more complex tip shapes?

Luan, Robbins 2005
outlook: nano-rheology

\[C' = \int \zeta(\tau) \cos \omega \tau \, d\tau \]

\[C'' = \int \zeta(\tau) \sin \omega \tau \, d\tau \]

elastic response
dissipative response

on peak
off peak
conclusions

³ nano-confined liquids display non-monotonous dissipation

³ disordered layer structure entails excess damping & diffusivity (violation of the Stokes-Einstein relation)

³ well-ordered layers display solid-like structure and little dissipation (linear response hardly sensitive to solidification)

³ strong anisotropy between z- and xy-directions
come to Leiden next April

Lorentz Center workshop
Fundamental Aspects of Friction and Lubrication
April 16 – 20

co-organized by the PI’s FOM program FaF (Fundamentals of Friction)