Ensuring Water in a Changing World

Singer Contractines in an

Lecture I Hydrological modeling requirements for Water Resources Applications - Model Issues Soroosh Sorooshian Center for Hydrometeorology and Remote Sensing University of California Irvine

The Abdus Salam ICTP Summer School on:Climate Impact Modeling for Developing Countries:Water, Agriculture & HealthTrieste, Italy: Sept. 5th - 16th 2011

Enirs sit Affi Galifernia Iry ingel Galiband Perizona (UA)

and many more Google

CHRS

Two Primary Water Resources/Hydrology Challenges:

• Hydrologic Hazards (Floods and Droughts)

• Water Supply Requirements (Quantity and Quality)

Hydrologic Forecasting Needs: Flash Floods

Droughts: The Other hydrologic Extreme

Two Primary Water Resources/Hydrology Challenges:

• Hydrologic Hazards (Floods and Droughts)

• Water Supply Requirements (Quantity and Quality)

Projected Regions of Water Stress

(I6) Mean Annual Water Reuse Index

Increasing Population: Number of Mega Cities

Projected Global Population: 8.3 Billion by 2025

Global Urban population 1970: ~37% 2010: ~53%

Distribution of Fresh Water Use

Primary Solution To Meet Hydrologic Extremes and Water Resources Needs

Engineering Approach: Control, Store, Pump and Transfer

A Century of Water Resources Development: Engineering success

Center for Hydrometeorology and Remote Sensing, University of California, Irvine

SAH

RA

Impact on Design and Operation of Global Infrastructure

Required Hydrometeorologic Predictions

hours ----> days ----> weeks ---> months --> seasons --> years ----> decades

Required Hydrometeorologic Predictions

hours ----> days ----> weeks ---> months --> seasons --> years ----> decades

y of California, Iovine

A Key Consideration: The Link Between Climate and Hydrology

Global Warming And Hydrologic Cycle Connection

Created by: Gi-Hyeon Park

From the Global- to Watershed-Scale

Hydroclimate Science and Hydrologic/Water Resources Engineering

Hydroclimate Science

Hydrologic/Hydraulic and Water Resources Engineering

River Basins and Watersheds

Continental Scale:

Different Scales Different Issues

Watershed Scale: Where hydrology happens Where stakeholders exist

Climate-Scale approaches to addressing hydrologic extremes

hours ----> days _---> weeks ---> months --> seasons --> years _---> decades

•Use of climate models: down-scaling and ensemble schemes •Traditional statistical hydrology methods:

Climate Model Downscaling to Regional/Watershed Scales

Generation of Future Precipitation Scenarios

Ensemble Approach

Generation of Future Precipitation Scenarios

Downscaled Precipitation to Runoff Generation

Center for Hydrometeorology and Remote Sensing, University of California, Irvine

Alternative Approach to Climate Model Downscaling

Statistical Hydrology: "synthetic" stream flow Generation

Brief Review of Rainfall Runoff modeling:

Progress in Hydrologic Modeling

Fundamental Law

Area km2	12.78
Perimeter km	19.344
Min Elevation m	478.00
Max Elevation m	1756.00
Mean Elevation	930.34
Max Flow Length	8.878

Trace The Water Drop

(HR3)

Evolution of Hydrologic R-R Models

Center for Hydrometeorology and Remote

Physically-based

Hydrologic Modeling: 3 Elements!

Flow in Channels: How far can we go simplifying?

n – Manning Coefficient R – Hydraulic Radius S – Energy Slope

Center for Hydrometeorology and Remote Sensing, University of California, Irvine

Hydrologic Modeling

Hydrologic Modeling: "Lumped"

A look into the "heart" of R-R Models

NWS Soil Moisture Accounting Model: SMA-NWSRFS

"Semi-distributed" Hydrologic Models

Center for Hydrometeorology and Remote Sensing, University of California, Irvine

"Semi-distributed" Hydrologic Models

Example of Distributed Model Appl. in large Basins

Example of Distributed Model

Continued need for Some Form of Calibration

Model Complexity

Source: Gershenfeld, 1999

Reviewing some recent model evaluation studies

DMIP-1 Findings: In a Nutshell

No Major Difference between the performance of Lumped and distributed models

Recent Assessment of Seasonal Climate Forecasts

Quoting from Science, Vol. 321, 15th August 2008

Livezey & Timofeyeva - BAMS, June 2008.

• "About the only time forecasts had any success predicting precipitation was for winters with an El Nino or a La Nina"

Drought Predictability

Provided by Siegfried Schubert 2011

Recent Assessment of Climate Models

Regional trends in extreme events are not always captured by current models

➢ It is difficult to assess the significance of these discrepancies and to distinguish between model deficiencies and natural variability

End of Lecture I

08/14/2009

Somewhere in New Mexico, USA - Photo: J. Sorooshian