Lecture II Hydrological modeling requirements for Water Resources Applications - Data Issues Soroosh Sorooshian Center for Hydrometeorology and Remote Sensing University of California Irvine

The Abdus Salam ICTP Summer School on: Climate Impact Modeling for Developing Countries: Water, Agriculture & Health Trieste, Italy: Sept. 5th – 16th 2011

Data

Data Requirements for Hydrologic Modeling

Data Limitation is an Important Factor in Success of Hydrologic Modeling

Big Challenge For "us":

Adequacy of Hydrologic Observations

Observation of Primary Hydrologic Variables

Precipitation

Measurement and estimation has and continues to be one of the

hydrometeorologic Challenges

Precipitation Observations: Which to trust??

Center for Hydrometeorology and Remote Sensing, University of California, Irvine

Satellite

Number of range gauges per grid box. These boxes are 2x2 degrees (Source: Global Precipitation Climatology Project)

Coverage of the WSR-88D and gauge networks

Maddox, et al., 2002

Daily precipitation gages (1 station per 600 km² for Colorado River basin) hourly coverage even more sparse

Radar-Gauge Comparison (Walnut Gulch, AZ)

Even A Bigger Challenge!

Having adequate high resolution (time and Space) observations of precipitation to capture extremes?

2 Precipitation Scenarios with different Temporal properties

Monthly Total

100 mm

Frequency 6.7% Intensity 50.0 mm

Idea from: K. Trenberth, NCAR

B

Temporal Scale Importance: Daily Precip. at 2 stations

Importance of Temporal Scale : Daily Precip. at 2 stations

Frequency 6.7% Intensity 50.0 mm

Localized FloodingStream bed Recharge

Frequency 67% Intensity 5.0 mm

soil moisture replenished
Little (if any) runoff

R

Center for Hydrometeorology and Remote Sensing, University of California, Irvine

Idea from: K. Trenberth, NCAR

Space-Based Observations

Satellite-Based Rainfall Estimation: Promising !

Geostationary and Polar Satellites Courtesy: NASA's ESE

Satellite precipitation retrieval instruments

1) Using GEO satellites (Infrared/Visible channels)

<u>Advantage</u>:

- Good temporal and spatial resolution (30 min or less, 4 km)
- very good coverage

<u>Disadvantage</u>: -Receives mostly cloud –top information

-Indirect estimation of precipitation.

Problems with IR only algorithm

Assumption: higher cloud \rightarrow colder \rightarrow more precipitation

Satellite precipitation retrieval instruments

2) Microwave

<u>Advantage</u>:

- Responds directly to hydrometeors and penetrates into clouds

- More accurate estimates

<u>Disadvantage</u>:

-low temporal and spatial resolution (~5-50km)

-Heterogeneous emissivity over land: (e.g., problem with warm rainfall over land)

Satellite precipitation retrieval instruments

3) Active Radar <u>Advantage</u>: -More accurate - good spatial resolution

- Poor temporal resolution

Typical Microwave Coverage in 3 Hr

Interpolation of 3-hour Precipitation

<u>Precipitation Estimation from Remotely Sensed Information</u> <u>using Artificial Neural Networks (PERSIANN)</u>

PERSIANN System

Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks

<u>Precipitation Estimation from Remotely Sensed Information using</u> <u>Artificial Neural Networks (PERSIANN)</u>

High Resolution Precipitation Estimates PERSIANN-CCS

Cloud Segmentation Algorithm

Real Time Global Data: Cooperation With UNESCO

Real Time Global Data: Cooperation With UNESCO

Real Time Global Data: Cooperation With UNESCO

PERSIANN Satellite Product On Google Earth

Google Earth		
ile <u>E</u> dit <u>V</u> iew <u>T</u> ools <u>A</u> dd <u>H</u> elp		
Search		
Fly To Find Businesses Directions		8
Elvita e a New York NV	Accumulated Precipitation (mm)	(())
• Q		
×		
Places Add Centent		
GWADI Precipitation		
Click for Info:		
Current Accumulation Le		
Click For Info		
Current 6 Hour Accumulatio		
Click For Info		
🗸 🗖 🖎 Current 12 Hour Accumulati 🔻		
Primary Database		
🗄 🗹 👷 Geographic Web	http://ohro II/oh II/of odu	
- 🗹 🚃 Roads		
🖶 🗹 👰 3D Buildings		·/
- 🔲 🛉 Street View		
🖶 🗹 🦞 Borders and Labels		
🗉 📮 Irattic		
🖶 🗆 👷 Weather	(* 2000) Firstbackglas	• •
⊕ □	© 2009 Tele Atlas	Google
🕀 🔲 🌀 Global Awareness	Data SIO, NOAA, U.S. Navy, NGA, GEBCO	oughe
🗄 🔲 🦻 Places of Interest	Image © 2009 TerraMetrics 11º23'16 20" S 45º19'52 71" E elev -3383 m Eve al	t 14693 32 km
	🔄 🛂	🔲 📢 🦷 / 12:42 PM

Uncertainty of Estimates Error Analysis

Spatial-Temporal Property of Reference Error

Center for Hydrometeorology and Remote Sensing, University of California, Irvine

Reference Error: $\Delta T = 24$ -hour, $\Delta A = 0.25^{\circ} \times 0.25^{\circ}$

Center for Hydrometeorology and Remote Sensing, University of California, Irvine

Scaling Property of PERSIANN-CCS Reference Error

US Daily Precipitation Validation Page

http://www.cpc.ncep.noaa.gov/products/janowiak/us_web.html

Number of points: # points w/rain: Mean rain rate: Cond. rain rate: Max. rain rate:	(G) gauge 13828. 4249. 5.55 17.82 181.99	PERSIANN 13828. 4665. 4.25 12.47 79.07	(R) radar 13828. 2971. 3,13 14,46 131,45
Correlation: Mean Absolute Error: RMSE (mm/day): RMSE (normalized): Probability of Detection False Alarm Ratio: Bias Ratio (rain:no rain Heidke Skill Score: Hanssen-Kuipers Score: Equitable Threat Score:	G-S 0.827 3.63 9.44 1.70 0.746 0.321 1): 1.098 0.574 e: 0.589 0.402	G-R 0.726 3.42 11.23 2.02 0.654 0.665 0.699 0.699 0.692 0.634 0.528	R-S 0.606 3.35 8.66 2.77 0.855 0.455 1.570 0.546 0.660 0.376

		PERSIANN				radar	
		< 1	≥ 1			< 1	≥ 1
<	1	8082.	1497.	<	1	9386.	193.
guuge <u>></u>	1	1081.	3168.	gauge ≥	1	1471.	2778.

Center for Hydrometeorology and Remote Sensing, University of California, Irvine

13Z 19Sep2003 thru 12Z 19Sep2003 Data on 0.25 deg grid (UNITS are mm/day)

Evaluation of PERSIANN Daily Rainfall

01-09-2011 (0.25-degree resolution)

Source: IPWG Validation over Australia: http://cawcr.gov.au/projects/SatRainVal/sat_val_aus.html

rvine

University of California, Irvine

Evaluation of PERSIANN Daily Rainfall

01-10-2011 (0.25-degree resolution)

Source: IPWG Validation over Australia: http://cawcr.gov.au/projects/SatRainVal/sat_val_aus.html

Irvine

University of California, Irvine

Satellite Rainfall Estimation for Operational Use

Streamflow forecasting of a catchment in US using UCI-PERSIANN rainfall Estimates for use in the US National Weather Service Runoff Forecasting System (NWSRFS).

Satellite Rainfall Estimation: Research at UC Irvine

Basin Scale Precipitation Data Merging

Runoff Forecasting from Gauge, PERSIANN, and Merged Rainfall

Center for Hydrometeorology and Remote Sensing, University of California, Irvine

Required Hydrometeorological Predictions

hours ----> days ----> weeks ---> months --> seasons --> years ----> decades

Flash Flood Warning

Flash Flood Guidance

Headwater Guidance

•Weather Scale:

Flood and River flow forecasting

Water Supply Volume

Short-range

Common practice in Flood and River Flow Forecasting

Estimating Future "Short-Term" Rainfall:

1- Models: (NWP - QPF)

2- Extrapolation-based Nowcasting

Efforts in Extending the Forecast Lead Time

Provided by: J. Hoke HPC QPF verification 1-inch threat score

NID ATMOS

NOAA

SPARTMENT

In Brief: While some of the results shown are based on very short life span of Satellite-Based Precipitation Research They Are Very

http://www.comet.ucar.edu/

Who We Are

The COMET[®] Program supports, enhances, and stimulates learning about atmospheric and related sciences.

> About COMET E-Brochure Awards Contact/Visit Us Opportunities at COMET Director Staff Papers/Presentations Sponsors Governance Legal Notices Associated Projects: SOO/STRC

Distance Education →

Our multimedia training materials including Web, CD-ROM, and teletraining delivery methods serve earth science education and training needs by providing interactive experiences for learners at a distance.

<u>MetEd Website</u> <u>Module List</u> <u>Help/Technical Support</u>

Residence and Virtual Courses--->

Our state-of-the-art classroom hosts courses taught jointly	Classroom Website
leaders in our field. These classes include both lectures	
and hands-on exercises that simulate the forecast environment.	

Outreach Program →

The Outreach Program provides funding for collaborative, applied research projects conducted by universities and operational forecast offices. The National Weather Service is the primary sponsor.	Outreach Website Proposal Info Supported Projects Info for PIs Contact Us
--	---

International Projects ightarrow

In partnership with the National Weather Service and the World Meteorological Organization, we are working to improve access to weather data and training by the global meteorological community.

MetEd en Español Canadian Activities SCHOTI/CO-COM CALMet

COMET Training Material

http://www.comet.ucar.edu/

End of Lecture II

08/14/2009

Somewhere in New Mexico, USA - Photo: J. Sorooshian