

Summer School on Climate Impacts Modelling for Developing Countries: Water, Agriculture and Health

(9 September 2011)

Session IV: Water

Towards a pan-African flood alert system?

Vera Thiemig Land Management and Natural Hazards Unit Institute for Environment and Sustainability

Towards a pan-African flood alert system

Why a flood forecasting system for Africa?

Floods in Northern Hemisphere Africa 2007

- ~ 650,000 homes destroyed
- 1.5 million people affected
- 200 people drowned
- substantial economic losses

Outline

Introduction

- Why a FFS
 current status
- "hot spots"
- objectives

European Flood

- Alert System
- in Europein Africa
- In Africa

Case study: Volta

- study area
- data
- approach
- results
 calibration /
- validation
- thresholds
 hindcast

- mnucasi

Take home messages

Discussion

Benefits of a flood forecasting system:

Flood risk is likely to increase due to climate change and urban growth!

- gain in response time
- better planning and organizing of prevention, protection and mitigation measures
 - aid for national authorities and international organisations (World Food Programme & European Commission MIC)

Towards a pan-African flood alert system

How and by whom are floods in Africa managed today?

- sources: scientific literature + institutional websites + questionnaire
- questionnaire:
 - http://efas-is.jrc.ec.europa.eu/africa_questionnaire_en.php
 - content: area of activity, forecasting techniques, input data, lead-time, usage, collaboration / links, needs, etc.
 - ~ 500 were distributed to institutions that were suspected to deal with flood management in Africa (2/3 within Africa, 1/3 outside of Africa)
 - 65 questionnaires from 53 institutions returned (49 African institutions)

Outline

Introduction

- Why a FFS
- current status
 "hot spots"
- objectives

European Flood Alert System • in Europe

in Africa

Case study: Volta

- study area
- data
- approach
- results
 calibration /
- validation
- thresholds
 hindcast

Take home

messages

Towards a pan-African flood alert system

Main findings:

- 1. There are many institutional flood forecasting initiatives ongoing in Africa, but information are not easily accessible
- 2. There are needs for:

•

Outline

Introduction

- Why a FFS
- current status "hot spots"
- objectives

• in Africa

- Case study: Volta study area
- data
- approach
- results
- calibration / validation
- thresholds - hindcast

Take home

messages Discussion

- a (complementary) flood forecasting and early warning system for medium-ranged • forecasts
 - technical expertise
- increased funds

Strength of the European Flood Alert System (EFAS)!

3. Dissemination of existing flood forecasts and warnings to end-users and the public could be improved

Towards a pan-African flood alert system

This presentation should give ...

- 1) an overview about the current status of flood forecasting in Africa
- 2) a rough idea about the European Flood Alert System (EFAS)
- 3) an example of an African application

For whom is this PPP of interest?

People that are interested in flood forecasting or hydrological modelling

Outline

- Introduction
- Why a FFS
- current status
- · "hot spots"
- objectives

European Flood Alert System • in Europe

in Europe
 in Africa

Case study: Volta

- study area
- data
- approach results
- calibration / validation
- thresholds
- hindcast

Take home

messages

Towards a pan-African flood alert system

European Flood Alert System (EFAS)

 Land Management and Natural Hazard Unit, Joint Research Centre, EC

Outline

٠

Introduction

- Why a FFS
- current status
- "hot spots" objectives
- Objectives

European Flood Alert System • in Europe

- in Africa
- Case study: Volta
- study area
- data
- approach results
- calibration /
- validation
- thresholds
 hindcast
- _____

Take home messages

Discussion

developed since 2003; pre-operational since 2005

- currently 34 partner institutions (MoU)
 - probabilistic flood alert system, for large-scale river basins, with extended lead time up to 10 days (lead times of most national systems: 2-3 days)
- complementary system to the already existing national ones

Towards a pan-African flood alert system

Towards a pan-African flood alert system

Does EFAS have an potential for African basins?

probabilistic flood warning system (1)for large-scale river basins

(2) can cope with a limited amount of input data

(3) increases the lead times to up to 15 days

(4) clear, concise and unambiguous visualization and decision support products

(5) expert knowledge + commitment of partners / contacts

Are the methodologies of the European Flood Alert System transferable to African basins?

Somalia Water and Land Information Managemen

messages Discussion

Take home

- hindcast

Outline

Introduction • Why a FFS

 current status "hot spots"

European Flood

Case study: Volta

Alert System

• in Europe • in Africa

 study area data approach results - calibration / validation - thresholds

objectives

- Ghana, Burkina Faso, Togo
- 394,000 km²
- altitude ranges from 600 m to sea level
- climate:
 - north: dry (Sahelian influenced), 300 – 500 mm, short uni-modal rainfall pattern
 - south: wet (oceanic influenced), 1200-1500 mm; long, slightly bimodal pattern

Towards a pan-African flood alert system

discharge s

Volta River Basin

Which data are used?

Meteorological data

- CMORPH (2003-2010) •
- ERA-interim (1989-2009) .
- GSMaP-MKV (2003-2009) •
- GPROF (1998-2010)
- PERSIANN (2000-2010) ٠
- PERSIANN-CCS (2006-2010) ٠
- RFE 2.0 (2001-2010) ٠

Hydrological data

Saboba (Oti)

.

Bui (Black Volta)

- TRMM-TMP 3B42 (1998-2010) ٠
- EPS (Events: 1999, 2003, 2007, 2008)

Discharge [m³/s] (Bui, Black Volta)

near-real-time SRFE for calibration and validation

meteorological forecasts for hydrological hindcasting

Nawuni (Red & White Volta)

Outline

Introduction

- Why a FFS current status
- "hot spots"
- objectives

European Flood Alert System

• in Europe • in Africa

Case study: Volta

- study area
- data approach
- results
- calibration / validation
- thresholds
- hindcast

Take home

messages

Discussion

Many static data (such as land cover, soil information, ...)

Towards a pan-African flood alert system

How was the study executed?

(1) uncalibrated test run

 \rightarrow first impression on model behaviour for this catchment

(2) simple sensitivity analysis

 \rightarrow identify sensitive parameters for model calibration

Outline

- Introduction
- Why a FFS
- current status

European Flood

- Alert System
- in Europe • in Africa
- Case study: Volta
- study area
- data approach
- résults
- calibration / validation
- thresholds
- hindcast

Take home

messages

Discussion

- (3) automatic calibration (2004 – 2007)
 - \rightarrow adjustment of the model
 - Shuffle Complex Evolution algorithm (SCE-UA)
 - Shape (r) & guantity (NSeff) ٠
 - visual and statistical comparison (correlation, CRPS, spread-skill relationship, rank histogram, ROC)
- validation (2002-2003) (4)
 - \rightarrow verify the performance of the model after calibration

(5) thresholds

 \rightarrow derive warning levels (for low, medium, high and severe flood)

(6) hindcasting

 \rightarrow test how good the system would predict floods

"hot spots"

objectives

Session IV: Water

Towards a pan-African flood alert system

	Bui White	Volta	Goodness of fit		Different meteorological data sources												
		Volla	parameters	ERA-interim	CMORPH	PERSIANN	TRMM- TMP	RFE	PERSIANN CCS	CMORPH 3 km							
	And	man	RMSE [-]	160	223	354	186	86	245	137							
		37	Nash-Sutcliff [-]	0.76	0.77	0.32	0.84	0.92	0.51	0.89							
			correlation [-]	0.90	0.89	0.61	0.93 alibrated	0.96	0.80	0.95							
	a series and a ser		1600 1600 1400 1200 1200 1000							- 10 - 20 E - 30 E - 40 E							
Outline	1. uncalibra	ated \rightarrow	008 gr	An		M		\mathbb{A}		- 50							
Introduction • Why a FFS • current status • "hot spots" • objectives				1/1/05 precipitation (HF	5 E 2.0)	1/1/06	servation	1/1/07	- calibrated	90 100							
European Flood Alert System • in Europe • in Africa	2. calibrate	d →	1800 1600 5 1200 5 1200 5 800 5 800		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			A		0 - 10 - 20 [m - 30 [m - 40 u - 50 [tation - 60							
Case study: Volta • study area • data • approach • results - calibration / validation - thresholds - hindcast			8 600 400 200 0 1/1/04	1/1/05	, A	1/1/06	had	1/1/07	ad	- 70 5 - 70 5 - 80 c - 90 - 100							
	Goodness of fit parameters		RFE			[s/s]	2000	(RFE 2.0) —	observation								
Take home		uncalibrated	calibrated validated	3. Vá	alidated	arge [1500		، ۱								
messages	RMSE [-]	227	86 2	16		disch				- 70							
Discussion	Nash-Sutcliff [-] correlation [-]	0.63 0.76	0.92 0 0.96 0).7).9			500 0 1/1/02	M. M.	MN	- 90 - 90 - 100							

Towards a pan-African flood alert system

How to derive thresholds?

Towards a pan-African flood alert system

Why are we calculating hindcasts?

- hindcasting = retrospective analysis of the hydrological situation
- to determine the potentials of the hydrological model to produce flood forecasts
- procedure:

Towards a pan-African flood alert system

Hindcast: Bui

		August																													
		12	13	14	15	16	17	18	19	20	21	22	23	3 24	25	26	27	28	29	30	31	01	02	03	04	05	06	07	08	09	10
	8/11/08	0	0	0	0	1	1	4	3	4	9				\mathbf{k}																
	8/12/08		0	0	0	0	0	1	3	6	11	25							Po	<u>sy</u>											
	8/13/08			0	0	0	0	0	0	0	1	5	23	3																	
	8/14/08				0	0	0	0	0	5	14	22	40) 48					e. 01												
	8/15/08					0	0	0	0	0	2	11	42	2 50	51																
Outling	8/16/08						0	0	1	2	12	45	51	1 51	51	51															
Outline	8/17/08							0	0	1	6	51	51	1 51	51	51	51														
Introduction	8/18/08								0	0	0	37	51	1 51	51	51	51	51													
Why a FFS	8/19/08									0	0	51	51	1 51	51	51	51	51	51												
 "hot spots" 	8/20/08										0	51	51	1 51	51	51	51	51	51	51											
 objectives 	8/21/08					Ca	e (S					51	51	1 51	51	51	51	51	51	51	51										
European Flood	8/22/08				XC									Eur	ope	an F	looc		ert S	yste	em (EFA	S)					- ingre	nan e	100	52
Alert System	8/23/08					51							T										_					10	. 6	R	
• in Europe	8/24/08												t										revio	us Flo	bod			1		N.S	2
• In Airica	8/25/08												t									Щ fo	oreca	sts			1	-	N.		
Case study: Volta	8/26/08												1 c	Real-time Weather Forecasts: COSMO- LM & GM & LEPS ECMWF DET & EPS (2x69 runs per day.)																	
 study area data 	8/27/08												t i												M	1					
approach	8/28/08												t																	W.	5
results calibration /	8/29/08												R	eal-time	Obser	ved Me	teo Dat	ta:		nitial c	onditic	ons							4	\wedge	
validation	8/30/08													(1300 sta	ations a	cross E	iurope)		1.	LISFL	OOD						Pe	arsistent	yes 4		
- hindcast	0/24/00												St	topogra	ropean	Datase	ets:			1-6-2	<mark>4 h</mark>		3 0>1	Threshol	ves	-					1
	→ EFAS-methodology has												-land-use																		
Take home		notontial to process flood											-river channel dimensions																		
messages	potential to process flood												Hi	Historic observed Meteo data:									Real-time processing, 2x a day Real-time processing, after decision								
Discussion	on forecasts for African basins											JRC MARS (station data from 1990 onwards)											processi al alerts	ising s							

Towards a pan-African flood alert system

- 1. Questionnaire has revealed that there are a significant number of flood forecasting initiatives ongoing in Africa, but information are not easily accessible.
- 2. EFAS-methodologies have shown a potential to process mediumranged flood forecasts for African basins with a high accuracy in terms of timing and magnitude

in Juba-Shabelle:

- \rightarrow flood events have been detected successfully in more than 85 % of all cases
- \rightarrow Average lead-time: 6-8 days (for floods exceeding the high alert threshold)

in Volta:

→ even the quantity is well predicted

- 3. The JRC is working towards a Pan-African Flood Alert System
 - \rightarrow more case studies are planned in different river basins
 - → hydrological model is being adjusted

Outline

- Introduction
- Why a FFS
- current status
- "hot spots"
 objectives
- objectives

European Flood Alert System

• in Europe

• in Africa

- Case study: Volta
- study area
- data
- approach results
- calibration /
- validation - thresholds
- hindcast

Take home messages

Towards a pan-African flood alert system

Thank you for your attention!

- Introduction
- Why a FFScurrent status
- "hot spots"
 objectives

European Flood Alert System

- in Europein Africa
- Case study: Volta
- study area
- data
- approach
- results
- calibration / validation
- thresholds - hindcast

Take home

messages

