Lecture III Calibration and parameter Estimation Requirements of Hydrologic Models Soroosh Sorooshian Center for Hydrometeorology and Remote Sensing University of California Irvine

The Abdus Salam ICTP Summer School on: Climate Impact Modeling for Developing Countries: Water, Agriculture & Health Trieste, Italy: Sept. 5th – 16th 2011

Hydrologic Modeling: 3 Elements!

Evolution of Hydrologic R-R Models

Center for Hydrometeorology and Remote

Physically-based

Model Calibration

The Identification Problem

- 1. Select a model structure (Input-State-Output equations)
- 2. Estimate values for the parameters

The Concept of Model Calibration

"Calibration: constraining the model to be consistent with observations"

The Automatic Calibration Approach

Calibration components

Objective Function Search Algorithm Sensitivity Analysis

Problems with identifiability

Calibration Criterion

[General Exponential Power Density]

(Posterior Parameter Probability Distribution Function)

$$p(\theta_i | \mathbf{y}, \gamma) = \left[\frac{\omega(\gamma)}{\sigma}\right]^N \exp\left[-c(\gamma) \sum_{j=1}^N \left|\frac{e(\theta_i)_j}{\sigma}\right|^{2/(1+\gamma)}\right]$$

Parameter Sensitivity

Parmeter Space

Parameter Sensitivity

Parameter Space

The Ideal case: Convex Optimization

Difficulties in Global Optimization

Parameter Estimation (non-convex, multi-optima)

Parameter Estimation (non-convex, multi-optima)

Data information content

"Bucket Model" Simple two parameter Model

Data information content

1.- Regions of Ma Attraction

More than one main convergence region

Duan, Gupta, and Sorooshian, 1992, WRR

Duan, Gupta, and Sorooshian, 1992, WRR

- **1.- Regions of** Attraction More than one main convergence region
- 2.- Local Many small "pits" in each region
- **3.- Roughness** Rough surface with discontinuous derivatives

Duan, Gupta, and Sorooshian, 1992, WRR

Duan, Gupta, and Sorooshian, 1992, WRR

Duan, Gupta, and Sorooshian, 1992, WRR

Optimization Strategy – Local Direct Search

Calibration of the Sacramento Model Downhill Simplex Method, Nelder & Mead, 1965

Duan, Gupta, and Sorooshian, 1992, WRR

The SCE-UA Algorithm ... (1992)

Duan, Gupta, and Sorooshian, 1992, WRR

The Shuffled Complex Evolution Algorithm

The SCE-UA Algorithm ...

Duan, Sorooshian, and Gupta 1992, WRR

SCE Method – How it works ...

Shuffled Complex Evolution (SCE-UA)

Global Optimization – The SCE-UA Algorithm

Duan, Gupta & Sorooshian, 1992, WRR

Simplex Method

Shuffled Complex Evolution (SCE-UA)

SCE-UA only solves for Mode of Distribution

Center for Hydrometeorology and Remote Sensing, University of California, Irvine

Shuffled Complex Evolution Metropolis

SCE Vrugt, Gupta, Bouten & Sorooshian SCEM WRR 2003

Need estimates of the prediction uncertainty

Parameter Uncertainty Methods

(1) First-order approximations near global optimum (Kuczera etal)

Limitations

- Assumes Model is Linear
- Assumes Posterior Dist. Guassian

(2) Generalized Likelihood Uncertainty Estimation (GLUE) θ_1 method (Beven and co-workers)

(3) Markov Chain Monte Carlo (MCMC) methods θ_1 (Vrugt and others)

Flow Ranges instead of point estimates

Center for Hydrometeorology and Remote Sensing, University of California, Irvine

Advances in Parameter Estimation

Land-Surface Model

Multi-Objective Approaches

Multi-Criteria Calibration Concept

Multi-Criteria Calibration Approach

Multi-Objective Optimization Problem

Minimize $F(\theta) = \{ F_1(\theta), \dots, F_n(\theta) \}$ wrt $\theta \subset \Omega$

Simultaneously finds several Pareto Solutions in a Single Optimization

 $F_2(\theta)$

ARM-CART SGP Site

Single- & Multi-Flux Calibrations

AGU Monograph – Now Available

Water Science and Application 6

Calibration of Watershed Models presents a state-of-the-art analysis of mathematical methods used in the identification of models for hydrologic forecasting, design, and water resources management. From reviewing advances in calibration methodologies, to describing automated and interactive strategies for parameter estimation, uncertainty analysis, and probabilistic prediction, this book addresses five questions essential to the discipline:

- What constitutes best estimates for watershed model parameters?
- What computational procedures ensure proper model calibration and meaningful evaluation of performance?
- How are calibration methods developed and applied to watershed models?
- What calibration data are needed for reliable parameter values?
- How can watershed modelers best estimate model parameters and assess related uncertainties?

For scientists, researchers and students of watershed hydrology, practicing hydrologists, civil and environmental engineers, and water resource managers.

www.agu.org

Calibration of Watershed Models

> Qingyun Duan Hoshin V. Gupta Soroosh Sorooshian Alain N. Rousseau **Richard Turcotte** Editors

End of Lecture III Thank You For Listening

The Rio Grande River, NM Photo: J. Sorooshian 2005