Modeling of the response of rivers to global change

Erika Coppola ICTP, Trieste, Italy coppolae@ictp.it

The background IPCC Fourth Assessment Report: Climate Change 2007

The Abdus Salam International Centre for Theoretical Physics Earth System Physics,

Freshwater resources are among the systems and sectors that are vulnerable and have the potential to be strongly impacted by climate change

Warming observed over the past several decades is consistently linked to changes in the hydrological cycle such as

increasing atmospheric water vapour
changing precipitation patterns, intensity and extremes
widespread melting of snow and ice
changes in soil moisture and runoff

Climate models are consistent in projecting precipitation increases in the future in high latitudes and parts of the tropics, while in some subtropical and lower mid-latitude regions they are consistent in projecting precipitation decreases

By the middle of the 21st century, annual average river runoff and water availability $-\rightarrow$ increase by 10-40% at high latitudes and in some wet tropical areas $-\rightarrow$ decrease by 10-30% over some dry regions at mid-latitudes and in the dry tropics.

Many semi-arid and arid areas (e.g., the Mediterranean basin, western USA, southern Africa and north-eastern Brazil) are particularly exposed to the impacts of climate change and are projected to suffer a decrease of water resources due to climate change.

water supplies stored in glaciers and snow cover are projected to decline

reducing water availability (through seasonal shift in stream flow, an increase in the ratio of winter to annual flows, and reductions in low flows) in **regions** supplied by melt-water from major mountain ranges, where more than **one-sixth of the world population** currently **live**.

Sea-level rise is projected to extend areas of salinisation of groundwater and estuaries, resulting in a decrease of freshwater availability for humans and ecosystems in coastal areas.

Higher water temperatures, increased precipitation intensity and longer periods of low flows are expected

exacerbate many forms of **water pollution** (from sediments, nutrients, dissolved organic carbon, pathogens, pesticides and salt, as well as thermal pollution), with **negative** impacts on **ecosystems**, **human health** and **water system** reliability.

Climate change affects the **function** and **operation** of **existing water infrastructure** (including hydropower, structural flood defences, and irrigation systems) as well as **water management practices**.

Globally, water demand will grow in the coming decades primarily due to population growth and increasing affluence.

Regionally, **large changes** in **irrigation** water use as a result of climate changes are **expected**.

Current water management practices are inadequate to cope with the negative impacts of climate change on water supply reliability, flood risk, health, energy and aquatic ecosystems.

Economic emphasis --->

al Integration>	A1 storyline: <u>World</u> : market-oriented <u>Economy</u> : fastest per capita growth <u>Population</u> : 2050 peak, then decline <u>Governance</u> : strong regional inter- actions; income convergence <u>Technology</u> : three scenario groups: • A1FI: fossil intensive • A1T:non-fossil energy sources • A1B: balanced across all sources	A2 storyline <u>World</u> : differentiated <u>Economy</u> : regionally oriented; low- est per capita growth <u>Population</u> : continuously increasing <u>Governance</u> : Self-reliance with preservation of local identities <u>Technology</u> : slowest and most fragmented development	
Global Inte	B1 storyline <u>World</u> : convergent <u>Economy</u> : service and information based; lower growth than A1 <u>Population</u> : same as A1 <u>Governance</u> : global solutions to economic, social and environmental sustainability <u>Technology</u> : clean and resource- efficient	B2 storyline <u>World</u> : local solutions <u>Economy</u> : intermediate growth <u>Population</u> : continuously increasing at lower rate than A2 <u>Governance</u> : local and regional solutions to environmental protec- tion and social equity <u>Technology</u> : More rapid than A2; less rapid, more diverse than A1/B1	nphasis>

<--- Environmental emphasis

Characteristics of the four SRES storylines (based on Nakićenović and Swart., 25 2000).

IPCC Fourth Assessment Report: Climate Change 2007

Average annual precpitation anomaly (%) over land relative to 1961-1990

Annual global precipitation anomalies respect to 1981-2000

Trend of annual precipitation amounts, 1901-2005 (upper, % per century) and 1979-2005 (lower, % per decade), as a percentage of the 1961-1990 average, from GHCN station data. Grey areas have insufficient data to produce reliable trends.

Upper panel shows observed trends (% per decade, relative to 1961-1990) for 1951-2003 in the contribution to total annual precipitation from very wet days (95th percentile and above). Middle panel shows, for global annual precipitation, the percentage change of very wet daycontribution to the total, compared to the 1961-1990 average (after Alexander et al., 2006). Lower panel shows regions where disproportionate changes in heavy and very heavy precipitation were documented as either an increase (+) or decrease (-) compared to the change in annual and/or seasonal precipitation (updated from Groisman et al., 2005).

Anomaly time series (departure from the longterm mean) of polar surface air temperature (A and E), Northern Hemisphere (NH) frozen ground extent (B), NH snow cover extent for March-April (C), global glacier mass balance (D). The solid red line in D denotes the cumulative global glacier mass balance; otherwise it represents the smoothed time series.

The most important spatial pattern (top) of the monthly **Palmer Drought Severity Index** (PDSI) for 1900 to 2002. The PDSI is a prominent index of drought and **measures** the cumulative **deficit** (relative to local mean conditions) in surface land moisture by incorporating previous precipitation and estimates of moisture drawn into the atmosphere (based on atmospheric temperatures) into a hydrological accounting system. The lower panel shows how the sign and strength of this pattern has changed since 1900. Red and orange areas are drier (wetter) than average and blue and green areas are wetter (drier) than average when the values shown in the lower plot are positive (negative). The smooth black curve shows decadal variations. The time series approximately corresponds to a trend, and this pattern and its variations account for 67% of the linear trend of PDSI from 1900 to 2002 over the global land area. It therefore features widespread increasing African drought, especially in the Sahel, for instance. Note also the wetter areas, especially in eastern North and South America and northern Eurasia

Historical and recent measurements from Lake Tanganyika, East Africa: (a) upper mixed layer (surface water) temperatures; (b) deep-water (600 m) temperatures; (c) depth of the upper mixed layer. (O'Reilly et al., 2003).

Drought and climatic changes in the Colorado River Basin

The areal percentage under severe drought conditions in seventeen states of the Western U.S. (Figure courtesy Jon Eischeid, NOAA/CIRES) Note: PDSI refers to the Palmer Drought Severity Index

Hydroclimatic Intensity index HY-INT

HY-INT = INT × DSL

Increase of HY-INT measures a dominant increase of INT, DSL or both. In fact, larger increases of HY-INT would occur when both INT and DSL increase and this would register a change in the characteristics of the hydrologic cycle.

F. Giorgi, E.-S. Im, E. Coppola, N.S. Diffenbaugh, X.J. Gao , L. Mariotti, Y. Shi. **Higher hydroclimatic intensity** with global warming, *Journal of Climate* 2011 ; e-View doi: 10.1175/2011JCLI3979.1

1978: example of a year with relatively normal conditions; **1989**: example of a year with high HY-INT values over central and eastern Europe mostly due to relatively dry conditions (high DSL, Luterbacher et all, 2004); **1997**; example of year with nign HY-INT due to relatively dry conditions over France and Italy and wet conditions (high INT) over northeastern Europe (Barredo, 2007); 2002: example of year with nign HY-INT due to relatively wet conditions over central *Europe* (Barredo, 2007); 2003: example of year with nigh HY-INT due to relatively dry conditions over central Europe (Beniston, 2004; Schar, 2004).

TIRM

control system ringsies, fine riskup summin international centra e for Theoretical Physics

TIRI

F. Giorgi, E.-S. Im, E. Coppola, N.S. Diffenbaugh, X.J. Gao , L. Mariotti, Y. Shi. **Higher hydroclimatic intensity** with global warming, *Journal of Climate* 2011 ; e-View doi: 10.1175/2011JCLI3979.1

Reanalysis

The model projections

IPCC Fourth Assessment Report: Climate Change 2007

Fifteen model mean changes in a) precipitation (%), b) soil moisture content (%), c) runoff (%), and d) evaporation (%). To indicate consistency of sign of change, regions are stippled where at least 80% of models agree on the sign of the mean change. Changes are annual means for the scenario SRES A1B, for the period 2080-2099 relative to 1980-1999. Soil moisture and runoff changes are shown at land points with valid data from at least 10 models.

Changes in extremes based on multi-model simulations from nine global coupled climate models in 2080-2099 minus 1980-1999 for the A1B scenario

precipitation intensity (defined as the annual total precipitation divided by the number of wet days)

changes in spatial patterns of dry days (defined as the annual maximum number of consecutive dry days)

Physics

Changes in annual runoff from an ensemble of 12 models for the period 2090-2099, relative to 1980-1999

Possible impacts of climate change due to changes in extreme precipitation-related weather and climate events

Phenomenon ³ and direction of trend	Likelihood of future trends based on projections for 21st century using SRES scenarios	Examples of major projected impacts by sector			
		Agriculture, forestry and ecosystems [4.4, 5.4]	Water resources [3.4]	Human health [8 2]	Industry, settlements and society [7.4]
Heavy precipitation events: frequency increases over most areas	Very likely	Damage to crops; soil erosion, inability to cultivate land due to waterlogging of soils	Adverse effects on quality of surface and groundwater; contamination of water supply; water scarcity may be relieved	Increased risk of deaths, injuries ard infectious, respiratory and skin diseases	Disruption of settlements, commerce, transport and societies due to flooding; pressures on urban and rural infrastructures; loss of property
Area affected by drought increases	Likely	Land degradation, lower yields/crop damage and failure; increase(livestock deaths increased risk of wildfire	More widespread water stress	In creased risk of food and water shortage; increased risk of malnutrition; increased risk of water- and food- borne diseases	Water shortages for settlements, industry and societies; reduced hydropower generation potentials; potential for population migration

Observed changes in runoff/streamflow, lake levels and floods/droughts

Environ-mental	Observed changes	Time	Location
factor		period	
	Annual increase of 5%, winter increase of 25 to 90%, increase in winter base flow due to increased melt and thawing permafrost	1935-1999	Arctic Drainage Basin: Ob, Lena, Yenisey, Mackenzie
Runoff/	1 to 2 week earlier peak streamflow due to	1936-2000	Western North America,
Streamflow	earlier warming-driven snow melt		New England, Canada, northern Eurasia
Runoff increase in	23% increase in glacial melt	2001-4 vs.	Yanamarey Glacier
glacial basins in		1998-9	catchment
Cordillera Blanca, Peru	143% increase	1953-1997	Llanganuco catchment
	169% increase		Antesomaja catemient
	10770 Increase	2000-2004	
	Increasing catastrophic floods of	Last years	Russian Arctic rivers
	frequency (0.5 to 1%) due to earlier break-		
Floods	up of river-ice and heavy rain		

	1	1	
Floods	Increasing catastrophic floods of frequency (0.5 to 1%) due to earlier break- up of river-ice and heavy rain	Last years	Russian Arctic rivers
	29% decrease in annual maximum daily streamflow due to temperature rise and increased evaporation with no change in precipitation	1847-1996	Southern Canada
Droughts	Due to dry and unusually warm summers related to warming of western tropical Pacific and Indian Oceans in recent years	1998-2004	Western USA
	0.1 to 1.5°C increase in lakes	40 years	Europe, North America, Asia (100 stations)
Water temperature	0.2 to 0.7°C increase (deep water) in lakes	100 years	East Africa (6 stations)
	Decreased nutrients from increased stratification or longer growing period in lakes and rivers	100 years	North America, Europe, Eastern Europe, East Africa (8 stations)
Water chemistry	Increased catchment weathering or internal processing in lakes and rivers.	10-20 years	North America, Europe (88 stations)

Number of people (millions) with an increase in water stress (Arnell, 2006b). Scenarios are all derived from HadCM3 and the red, green and blue lines relate to different Population projections.

Forest ecosystems in boreal Asia would suffer from floods and increased volume of Runoff associated with melting of permafrost regions

Permafrost area projected to be under different stages of degradation

The projected change of permafrost boundary in North Asia due to climate change by 2100 (FNCRF, 2006).

Current suitability for rain-fed crops

Ensemble mean percentage change of annual mean runoff

Global models

Regional models

F. Giorgi, E.-S. Im, E. Coppola, N.S. Diffenbaugh, X.J. Gao , L. Mariotti, Y. Shi. **Higher hydroclimatic intensity with global warming**, *Journal of Climate* 2011 ; e-View doi: 10.1175/2011JCLI3979.1

Asymmetries in the Capacity to Control the Resource Infrastructure gap: Reservoir water storage

Water storage per person (m3)

General Aims and Plans for CORDEX

Provide a set of Regional Climate Scenarios for the period 1950-2100, for the majority of the populated land-regions of the globe.

Make these data sets readily available and useable to the impact and adaptation communities.

Provide a generalized framework for testing and applying Regional Climate Models and Downscaling techniques for both the recent past and future scenarios.

Foster coordination between Regional Downscaling efforts around the world and encourage participation in the downscaling process of local scientists/organizations

IIII

Specific aims and plans for CORDEX

Develop a matrix of RCD simulations that employ:

- 1. Multiple GCMs as boundary conditions (BCs)
- 2. Multiple realizations of a given (single) GCM as BCs
- 3. Multiple RCMs driven by a given GCM over a given domain
- 4. More than 1 representative greenhouse emission scenario
- 5. With common RCM domains and resolution
- 6. With common RCM output variables and frequency
- 7. In a common format

8. Store the results online for subsequent access and use ____

CORDEX Phase I experiment design

Impact modeling - hydrological modelig

Runoff Evapotraspiration Infiltration

E. Coppola, B. Tomassetti, L. Mariotti, M. Verdecchia and G. Visconti, Cellular automata algorithms for draining network extraction and rainfall data assimilation, Hydrological Science Journal, 52(3), 2007

Earth System Physics, The Abdus Salam International Centre for Theoretical Physics

200 400 600 800 1000 1200 1400 1600 km

Po river (Italy) (1 km resolution; 110945.0 km2 drained area) 5 years RegCM-ERA40 simulation 1995-2000 3 years RegCM-ECHAM5 A1B scenario simulation 1980/82 -2080/82

Niger - Volta river (West-Africa)(9.5 km; Niger 2494084 km2, Volta 434235 km2 drained area) 120 years RegCM-ECHAM5 A1B scenario simulation 1980/82 -2080/82

Han-Kum-Nakdong river (Korea)(740 m; Han 19678 km2, Nakdong 15848 km2, Kum 6769 km2 drained area)

3 years RegCM-ECHAM5 A1B scenario simulation 1980/82 -2080/82

Yellow – Yangtze river (China)(5.7 km, Yellow river 360431km2, Yangtze 564594 km2) 1 years RegCM-ECHAM5 A1B scenario simulation 1961- 2071

Mountains as a source of more than half the world's rivers

The Alps water tower of Europe

What is a water tower?

What is a water tower?

Superior water supply

- higher precipitation
- lower evapotranspiration

Seasonal redistribution of precipitation

- snow accumulation in winter
- snow- and icemelt in spring and summer

Highly reliable flows arrive just in time

- highly dependable flows from snow- and icemelt
- attenuation of downstream water deficits in summer

The Alps water tower of Europe the river Po

The Alps water tower of Europe: the 4 major rivers

Components of the hydrological cycle under current climate (mm, Rhone)

Average monthly discharge (mm, Po)

TIRM

Bias correction

All aspects of the field statistics need to be corrected (frequency, mean, variability).

Bias correction needs to be robust:

•Constant in time.

•Few parameters (many degrees of freedom...)

Seasonal mean

C. Piani, J.O. Haerter, **E. Coppola** (2009): Testing a statistical bias correction method for daily precipitation in regional models over Europe, Theoretical and Applied Climatology

Discarge after bias correcting (two years only)

The Abdus Salam International Centre for Theoretical Physics Earth System Physics,

Evolution of global and alpine temperatures, 1901-2000

Changes in water availability for the Rhône River

Winter temperatures at Säntis (2,500 m): 1961-1991 and 2071-2100

Global

Regional

CMIP3 model - country-resolution	20C	B 1	A1B	A2	PRUDENCE model-institute	20C	B2	A2
BCCR-Norway(1.9°)	1			1	DMI-HIRHAM(HadAM3H/ECHAM4)	8	2	7
CGCM-Canada(2.8°-1.9°)	6	4	4	2	ETH -CHRM (HadAM3H)	1		1
CNRM-CM3-France(1.9°)	1	1	1	1	GKSS -CLM (HadAM3H)	2		2
CSIRO-MK-Australia(1.9°)	2	1	1	1	HC -HadCM3 (HadAM3H)	3	1	3
GFDL-CM2.0-USA($2^{\circ} \times 2.5^{\circ}$)	3		1	1	ICTP -RegCM (HadAM3H)	1	1	1
GFDL-CM2.1-USA($2^{\circ} \times 2.5^{\circ}$)	3	1	1	1	KNMI -RACMO (HadAM3H)	1		1
GISS-AOM-USA($3^{\circ} \times 4^{\circ}$)	1		2	1	CNRM -Arpège (Arpege/HadCM3H)	3	4	4
GISS-EH-USA($4^{\circ} \times 5^{\circ}$)	5	1	1		MPI -REMO (HadAM3H)	1		1
INMCM-Russia($4^{\circ} \times 5^{\circ}$)	1	1	1	1	SMHI-RCAO (HadAM3H/ECHAM4)	3	2	4
IPSL-CM4-France $(2.5^{\circ} \times 3.75^{\circ})$	1	1	1	1	UCM -PROMES (HadAM3H)	1	1	1
MIROCH-Japan(1.1°)	1		1					
MIROCM-Japan(2.8°)	3	3	3	3				
ECHO-G-Germany/Korea(3.9°)	5	3	3	3				
ECHAM5/MPI-Germany(1.9°)	3	3	2	3				
MRI-CGCM-Japan(2.8°)	5	5	5	5				
NCAR-CCSM3 – USA(1.4°)	8	8	6	4				
NCAR-PCM-USA(2.8°)	4	2	3	4				
UKMO-HadCM3-UK $(2.5^{\circ} \times 3.75^{\circ})$	1	1	1	1				
UKMO-HadGEM-UK $(1.3^{\circ} \times 1.9^{\circ})$	1		1					

19 models

10 models

Ensemble average surface air temperature and precipitation change (A2 scenario, 2071 2100 minus 1961 1990)

Coppola E. and Giorgi F., 2010

Ensemble average precipitation [%] changes over the Alps region. For each mean change value the corresponding inter-model standard deviation of the changes is reported

Coppola E. and Giorgi F., 2010

Coppola E. and Giorgi F., 2010,

Changes in extreme precipitation in the Alps

Components of the hydrological cycle by 2100 (mm, Rhone)

Courtesy of Martin Beniston

Glacier retreat: Italian Alps

Glacier retreat: Tschierva Glacier, Engadine

Courtesy: Max Maisch University of Zurich, Switzerlanc

Components of the hydrological cycle by 2100 (mm, Rhone)

Courtesy of Martin Beniston

Grande Dixence, Switzerland

Components of the hydrological cycle by 2100 (mm, Rhone)

Courtesy of Martin Beniston

Average discharge by 2100 (mm, Rhone)

Beniston, 2004: Climatic Change and Impacts, Springer Publishers

Average discharge change by 2100 (%, Po)

•Shift of the spring peak toward the early part of the season

•Decrease of runoff during the summer months (Jul. and Aug.)

•Increase of the autumn runoff

Coppola 2010, personal comun.

Po river (Italy) (1 km resolution; 110945.0 km2 drained area) 5 years RegCM-ERA40 simulation 1995-2000 3 years RegCM-ECHAM5 A1B scenario simulation 1980/82 -2080/82

Niger - Volta river (West-Africa)(9.5 km; Niger 2494084 km2, Volta 434235 km2 drained area) 120 years RegCM-ECHAM5 A1B scenario simulation 1980/82 -2080/82

Han-Kum-Nakdong river (Korea)(740 m; Han 19678 km2, Nakdong 15848 km2, Kum 6769 km2 drained area)

3 years RegCM-ECHAM5 A1B scenario simulation 1980/82 -2080/82

Yellow – Yangtze river (China)(5.7 km, Yellow river 360431km2, Yangtze 564594 km2) 1 years RegCM-ECHAM5 A1B scenario simulation 1961- 2071

Regional Climate Simulations

2. > Validation of RegCM3 over Africa driven by ERA-Interim reanalysis

3. > Regional model simulations of projected climate change over Africa

Domain, Topography, Subregions and Data

Data	RegCM3	ERAIM	GPCP	CRU	FEWS
Period	1989-2005	1989-2005	1989-2005	1989-2002	2001-2005

IIIII

Precipitation Climatology

✤ CRU

♦GPCP

✓ Discrepancies between
Observed Climatologies:
Maxima over Ethiopia Highlands
in CRU not found in GPCP

✓ Additional Peaks over Complex Terrains not found in Observation

11811

□ Mean Annual Cycle over Homogeneous Climate Subregions

Regional Climate Simulations

2. > Validation of RegCM3 over Africa driven by ERA-Interim reanalysis

3. > Regional model simulations of projected climate change over Africa

□ Future Scenarios of Concentrations and Emissions of Greenhouse Gases

Temperature Change

D Precipitation Change

Precipitation Regressions into ENSO3.4 SST anomaly :

TIRI

Difference in regional climate response to local forcing

We want to assess the precipitation variability in western Africa connected to SST forcing compared to the effects of soil moisture feedback.

Statistical approach by Notaro et al.2008

$$\lambda = \frac{\operatorname{cov}(s(t-\tau), a(t))}{\operatorname{cov}(s(t-\tau), s(t))}$$

 $\boldsymbol{\lambda}$ is the instantaneous feedback of a variable \boldsymbol{s} on a variable \boldsymbol{a} at time \boldsymbol{t} , where

- **s** is a slow varying variable (Soil Moisture or SST)
- **a** is a fast varying atmospheric variable (Precipitation)
- λ represents the fraction of precipitation change attributed

to variations in mothly Soil Moisture or 🥵

4. Hydrological Simulations

1 > Experiment Design

2 > Calibration Runs

3 > Transient Scenario Simulations

Experiment Description

Regional Climate Model (RegCM3) simulations

Control simulation using ERA-Interim as boundary conditions (1990-2007) [Sylla et al. 2009]
Scenario simulations using ECHAM5-GCM A1B (1980-2100) [Mariotti et al. 2010, submitted]

Cetemps Hydrological Model **CHyM** [*Coppola et al.* 2007] has been coupled with RegCM3

- hydrological model calibration run regional model perfect boudary simulation output as input (1990-2005)
- Transient hydrological scenario simulations regional climate model output from the A1B transiet simulation as input (1980-2100)

4.Hydrological Simulations

1 > Experiment Design

2 > Calibration Runs

3 > Transient Scenario Simulations

Niger River

Volta River

Niger:

•Length 4180 km , it s the thirdlongest river in Africa, after the Nile and the Congo/Zaire Rivers, and the longest and largest river in West Africa.

•The catchment area covers 7.5% of the continent and spread over 10 countries.

•The water is partially regulated through dams mainly used for hydropower and for irrigation.

Volta:

•Length 1600 km

•The catchment area stretches over approximately 400 000 km², making it the ninth most important river basin in Sub-Saharan Africa.

•Situated in a very arid region, this is one of the poorest regions of the world.

•There is extensive use of the water resources for electricity generation and irrigation.

•The Akosombo dam in Ghana generates 80% of the power produced in the country.

DIAN

Seasonal Runoff for MJJAS

Niger Monthly Discharge (1990-2005)

Volta Monthly Discharge (1990-2005)

Hydrological Simulations

1 > Experiment Design

2 > Calibration Runs

3 > Transient Scenario Simulations

Runoff Seasonal Change

Generalized Extreme Value (GEV)

Niger

Volta – Mean Annual Cycle

Po river (Italy) (1 km resolution; 110945.0 km2 drained area) 5 years RegCM-ERA40 simulation 1995-2000 3 years RegCM-ECHAM5 A1B scenario simulation 1980/82 -2080/82

Niger - Volta river (West-Africa)(9.5 km; Niger 2494084 km2, Volta 434235 km2 drained area) 120 years RegCM-ECHAM5 A1B scenario simulation 1980/82 -2080/82

Han-Kum-Nakdong river (Korea)(740 m; Han 19678 km2, Nakdong 15848 km2, Kum 6769 km2 drained area)

3 years RegCM-ECHAM5 A1B scenario simulation 1980/82 -2080/82

Yellow – Yangtze river (China)(5.7 km, Yellow river 360431km2, Yangtze 564594 km2) 1 years RegCM-ECHAM5 A1B scenario simulation 1961- 2071

RegCM-ECHAM 20km A1B scenario 1950-2100

Annual discharge cycle at the river mouth

No big change is found neither in the annual mean discharge nor in the discharge timing

Po river (Italy) (1 km resolution; 110945.0 km2 drained area) 5 years RegCM-ERA40 simulation 1995-2000 3 years RegCM-ECHAM5 A1B scenario simulation 1980/82 -2080/82

Niger - Volta river (West-Africa)(9.5 km; Niger 2494084 km2, Volta 434235 km2 drained area) 120 years RegCM-ECHAM5 A1B scenario simulation 1980/82 -2080/82

Han-Kum-Nakdong river (Korea)(740 m; Han 19678 km2, Nakdong 15848 km2, Kum 6769 km2 drained area)

3 years RegCM-ECHAM5 A1B scenario simulation 1980/82 -2080/82

Yellow – Yangtze river (China)(5.7 km, Yellow river 360431km2, Yangtze 564594 km2) 1 years RegCM-ECHAM5 A1B scenario simulation 1961- 2071

RegCM-fvGCM 20km A2 scenario 1950-2100

China

Annual discharge at the river mouth

Shift of the OCT-NOV peak toward the early part of the summer for the Yellow river and from summer to spring for the Yangtze river

Take home messages

>Evidence that climate change is going to impact the water resources are certain

>Future projection with their uncertainty are going to impact regions of the world in a different way

> We do need regional action to be ready to mitigate the consequence of climate change therefore we do need more and more the use of impact models to quantify the impact of CC

>Work is still needed to be able to downscale the climate model signal to the typical impact model scale

What is a Watershed

Common Definitions:

The specific land area that drains water into a river system or other body of water.

Many Hydrologic

Texts

It's the area of land that catches rain and snow and drains or seeps into a marsh, stream, river, lake or groundwater.

The rest of them

What is a Watershed " Another Definition"

Watersheds are **nature's** way of dividing up the **landscape**. Rivers, lakes, estuaries, wetlands, streams, even the oceans can serve as catch basins for the land adjacent to them. Ground water aquifers serve the same purpose for the land above them.

The actions of people who live within a watershed affect the health of the waters that drain into it.

EPA. Surf Your Watershed

What is a Watershed? "the one I like"

"that area of land, a bounded hydrologic system, within which all living things are inextricably linked by their common water course and where, as humans settled, simple logic demanded that they become part of the community."

John Wesley Powell -- scientist, geographer, and leader of the first expedition through the Grand Canyon in 1869.

Nature's Way \rightarrow Terrain

Nature's Way → Terrain

A Close-IIP

The Watershed

Area km2	12.78
Perimeter km	19.344
Min Elevation m	478.00
Max Elevation m	1756.00
Mean Elevation	930.34
Max Flow Length	8.878

P

Fundamental Law

The Water Cycle

System representation

HIEC's System representation

