Introduction to climate-health issues
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Not all diseases are climate driven

Impojitant
diise’a’se’s)

Allfinfectiolisidiseases
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.but many are:

Climate change and health

Health More mortality & More mortality &

effect morbidity morbidity

Infectious More diarrhoeal diseases
disease after floods — cholera,
effect

typhoid, cryptosporidiosis

Example Europe 2003 - heat wave Mozambique 2001 — 447
killed ~50,000 (older) additional deaths from
people in Western Europe  diarrhoeal disease

More mortality &
morbidity

Infectious diseases,
exacerbated by effects of
malnutrition

Meningococcal meningitis
in Africa - distribution &
intensity linked to drought.

Drought termination can
trigger outbreaks of vector-
borne disease.
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Example: Meningitis research

slide from Michelle Stanton

Cheesbrough, Morse and Green (1995)
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An area of sub-Saharan Africa
referred to as the meningitis belt
experiences large-scale meningitis
epidemics every 7-12 years.

Meningitis incidence within this
area is seasonal, with peaks
occurring during the dry season
and few cases occurring once the
rains begin.

This relationship between
meningitis and the climate, is
poorly understood.

Further, the scales at which the
climate influences meningitis is
not well-defined.
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Climate change and health

Health More mortality & More mortality & More mortality &

effect morbidity morbidity morbidity

Infectious Food poisoning — Distributional & altitudinal
disease salmonella, shell fish shifts of vectors;

effect

Rainfall/temperature affect
transmission rates

More exposure to rodents

Example Alaska 2004 - shell fish Indonesia 1997 — forest China: 20.7 million more
poisoning linked to fires increased mortality people at risk of
atypically high from cardiovascular and schistosomiasis because of
temperatures respiratory diseases higher snail survival

e |PCC Fourth Assessment Report (2007)
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(@wIeCI Example: RVF & climate

slide from C. Caminade and, J.A. Ndione
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Ndione et al, 2008 RVF risk (%)
) C. Caminade, J.A. Ndione, C.M.F. Kebe, A. E. Jones, S. Danuor, S.
Dry speII fO”OWGd by d ramfa” peak Tay, Y.M. Tourre, J.P. Lacaux, J.B. Duchemin, I. Jeanne, A.P. Morse
during the late rainy season (Sep-Oct) (2011) Mapping Rift Valley Fever and Malaria risk over West Africa
using climatic indicators. Atm. Sc. Lett., 12: 96-

over Northern Senegal 103, DOI: 10.1002/asl.296

[0 Rehydrating ponds
0 mosquitoes hatching + hosts
[0 high RVF risk
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How can climate information improve
health outcomes?

improve understanding of the mechanisms of
climates impact on transmission and disease

estimate populations at risk (risk mapping)

estimate seasonality of disease and timing of
Interventions

monitor and predict year-to-year variations in
incidence (including early warning systems)

monitor and predict longer term trends (climate
change assessments)

improve assessment of the impact of interventions
(by removing climate as a confounder)
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After more than a decade research

* Improving (and improved access to) monthly to
seasonal+ forecast products from leading global
centres such as NCEP and ECMWF

* Use of large ensembles of decadal-climate
projections from IPCC

* Statistical and dynamical downscaling/bias
correction research such as CORDEX to provide
information on the local scale

* New EUFP projects examining the integration with
sectorial impacts models for agriculture, health,

energy, water. o



Example: ENSO

ENSO seasonal forecast - : .
April 2010 ENSO Climate Relationships

NINO3 SST anomaly plume
ECMWF forecast from 1 Apr 2010

l¥onthly mean anomalies relative o HCEP adjusted Olv2 1971 -2000 climatology
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Today and joint CLIVAR session:
lessons on data and model products
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How can this climate information be used in health planning?
Important example: vector borne disease

Vector borne diseases have clear climate drivers

Malaria and Rift Valley Fever:
* Rainfall (vector breeding)
» Temperatures (parasite and vector cycles)
* Relative Humidity (vector mortality)

Quantifying Weather & Climate Impacts
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on health in developing countries

Aim of QWeCl: To examine the potential to produce
malaria forecasts and risk projections from monthly to
seasonal/decadal timescales

EUFP7 funded project 2010-2014, 13 partners (6 EU, 7
Africa) in three target regions in Africa: Senegal,
Ghana and Malawi

Percentage of population
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infectious stage
Adapted from Jones (2007) in Cui,
Parker and Morse (2009)
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Quantifying Weather and
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Disease models: statistical and/or
dynamical?
e Statistical Model:

— Predictands related to predictors using a model
developed with training data

— Relies on good datasets spanning wide parameter
space, care to avoid overfitting

— Difficult (but not impossible) to include sub-
seasonal variability

— Can take confounding factors into account

B=n=
@

111

vy



Example of a state-of-the-art f o Noth
statistical model: S| s
Dengue in Brazil g

(Lowe et al. 2011) §,8 .
* Sophisticated statistical % [\‘

modelling ideas can | S

. . 2001 20\03- : 2(%?5 -' 26'0% | 2009
contribute to the solution of ear
public health problems

* Used in development of a
dengue early warning system
for Brazil

DIR
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Malaria in Botswana

* Trends in malaria incidence 20
may result from trends in
climate but mostly indicate
changes in vulnerability, e g
drug or insecticide resistance,
declining control services, etc

 Next week: Practical session
to obtain some experience in
using statistics and R to
investigate a real world

Confirmed malaria incidence per 1000

policy intervention

climate and health problem 1985 1990 1995 2000 2005

long-term vulnerability trend
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Dynamical models

Directly integrate equations representing the
system’s physics
Example malaria: equations that model the

growth rates of larvae, vector, malaria parasite as
a function of temperature

Can incorporate highly nonlinear physics and
account for weekly fluctuations in multiple
climate variables

Requires a good knowledge of the system — Often
parametrizations rely on a single lab or field study



Liverpool Malaria Model — LMM
classes next week on Tuesday

(Hoshen and Morse, 2004) Dynamic, process-based model driven by daily
Ideath temperature and rainfall
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Malaria Prevalence

0.45

Malaria Prediction Plume

0.4 -
0.35 A
0.3 -
0.25 A
0.2 -
0.15 A
0.1 +
0.05 A

31 61 91 121 151

Forecast Day

Botswana malaria forecast
for February 1989

LMM (Hoshen and Morse, 2004) driven by DEMETER multi-

model 63 members

(ERA-driven model shown in red)

Earth System Physics, The Abdus Salam International Centre for Theoretical Physics



Mean Annual Malaria Modelled Incidence 1990-2007

GPCP_ERAINT

0 20 40 60 80 100
cases per 100 people

Mean annual simulated malaria incidence (1990-2007) driven by

“Observed datasets” and the ENSEMBLES RCM ensemble
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Endemic areas >80%

“Endemic and seasonal”
yellow = area between
20-80%

Epidemic Areas (<20%)
-> Northen fringe of the
Sahel

-> Strongly connected to
climate variability

Underestimation of the
Northern extension of
the malaria incidence
belt by LMM

ITCZ extends too far




Accounting for population: VECTRI

Robert et al. 2003
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VECTRI: VEctor borne disease Community model of TRleste.
A new community model under development at ICTP in collaboration with University
of Cologne. Similar structure to LMM, but additionally accounting for population
density and surface hydrology (so farin asimple way) g

Earth System Physics, The Abdus Salam International Centre for Theoretical Physics



Integrated Climate Model Impacts Verification Paradigm

Observed meteorological Coupled model End-user recorded
data or re-analyses climate hindcasts time series
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COLOMBIAN INTEGRATED SURVEILLANCE AND CONTROL SYSTEM
Slide from Daniel Ruiz IRI

EARLY WARNING SYSTEMS
FRAMEWORK EPIDEMIOLOGICAL

Climate-independent components SURVEILLANCE

Human macro-factors

Institutional networks
and financial strategies

Primary cases

ENTOMOLOGICAL
SURVEILLANCE

Climate change
and climate
variability

Education, local
expertise, process
maintenance and

continuity

elevant entomological-biological
variables

CLIMATIC SCENARIOS

MONITORING AND
FORECASTING DIAGNOSIS OF PRIMARY

CASES



Overview of health program in school
week 2

e Monday :
— introduction to QWeCl project
— Statistical modelling of malaria
— VECTRI: Dynamical malaria of ICTP
— Lab classes: statistical model for malaria in Botswana
using R
* Tuesday

— Research results from dynamical Liverpool malaria
model LMM

— Health and climate change
— Lab classes: Liverpool malaria model LMM



