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•  What for BDEs?!
! - life is sometimes too complex for ODEs and PDEs!

•  What are BDEs?!
! - formal models of complex feedback webs!
! - classification and major results!

•  Applications to climate modeling!
!  - ENSO – interannual variability in the Tropics!

•  “Partial” BDEs – spatio-temporal models!
!  - theoretical results + connections to Boolean networks & CAs!

•  Seismic applications!
! - modeling, theory and predictions!

•  Socio-economic applications!
!  - economic damage propagation on a network!

•  Concluding remarks!
!  - bibliography & future work!
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1. Components  
    - solid earth (crust, mantle) 

       - fluid envelopes (atmosphere, ocean, snow & ice)  
    - living beings on and in them (fauna, flora, people) 

2. Complex feedbacks  
     - positive and negative 
     - nonlinear - small pushes, big effects? 

3. Approaches  
      - reductionist 

         - holistic 

4. What to do? - Let’s see! 



Earth System Science Overview, NASA Advisory Council, 1986 



“Ambitious” diagram 

B. Saltzman, Climatic system analysis, Adv. Geophys., 25, 1983 

Flow diagram showing  
feedback loops contained 
in the dynamical system 
for ice-mass m and ocean  
temperature variations T. 

Constants for ODE & PDE 
models are poorly known. 
Mechanisms and effective  
delays are easier to 
ascertain.	



m 
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Binary systems Examples: Yes/No, True/False (ancient Greeks) 

Classical logic (Tertium not datur) 
 Boolean algebra (19th  cent.) 
 Propositional calculus (20th cent.) 
  (syllogisms as trivial examples) 

Genes: on/off  
 Descriptive – Jacob and Monod (1961) 
 Mathematical genetics – L. Glass, S. Kauffman, M. Sugita (1960s) 

Symbolic dynamics of differentiable dynamical systems (DDS): S. Smale (1967) 

Switches: on/off, 1/0 
 Modern computation (EE & CS) 
 - cellular automata (CAs) J. von Neumann (1940s, 1966), S. Ulam, 

                        Conway (the game of life), S. Wolfram (1970s, ‘80s) 
 - spatial increase of complexity – 
     infinite number of channels 
 - conservative logic Fredkin & Toffoli (1982) 
 - kinetic logic: importance of distinct delays 
     to achieve temporal increase in  complexity (synchronization, 
     operating systems & parallel computation), R. Thomas (1973, 1979,…)  



M.G.’s immediate motivation: 

Climate dynamics – complex interactions  
 (reduce to binary), C. Nicolis (1982) 

Joint work on developing and applying BDEs to climate dynamics 
 with D. Dee, A. Mullhaupt & P. Pestiaux (1980s) 
 & with A. Saunders (late 1990s) 

 Work of L. Mysak and associates (early 1990s)  

Recent applications to solid-earth geophysics 
 (earthquake modeling and prediction) 
 with V. Keilis-Borok and I. Zaliapin 

Recent applications to the biosciences 
 (genetics and micro-arrays) 

          Oktem, Pearson & Egiazarian (2003) Chaos 
          Gagneur & Casari (2005) FEBS Letters 
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Short answer:  
 Maximum simplification of nonlinear dynamics 
 (non-differentiable time-continuous dynamical system)  

Longer answer:  
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Increase in complexity! 
Evolution: biological, cosmogonic, historical 
But how much? Dee & Ghil, SIAM J. Appl. Math. (1984), 44, 111-126 



Aperiodic solutions with increasing complexity 
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Conservative BDEs with irrational delays have aperiodic 
solutions with a power-law increase in complexity.   

N.B. Log-periodic behavior! 



http://www.yorku.ca/esse/veo/earth/image/1-2-2.JPG 
Density of events log( )t≅

Earliest  life
 



after A. Mullhaupt (1984) 



Definition: A BDE is conservative if its solutions are immediately periodic, 
i.e. no transients; otherwise it is dissipative. 

Remark: Rational vs. irrational delays. 

Example: 

1) Conservative  ( ) ( 1)x t x t= −

( ) ( 1) ( )x t x t x t θ= − ∧ −2) Dissipative  

Analogy with ODEs 

Conservative – Hamiltonian Dissipative – limit cycle 

no transients attractor 

M. Ghil & A. Mullhaupt, J. Stat. Phys., 41, 125-173, 1985 



Examples. Convenient shorthand for scalar 2nd order BDEs 

( ) ( 1) ( )x y z x t x t x t θ= ⇔ = − −o o

1. Conservative 
(mod2)x y z y z y z= ∇ = ⊕ = +

1x y z y z= Δ = ⊕ ⊕

Remarks: i) Conservative      linear (mod 2) 
                ii)     few conservative connectives (~ ODEs) 

≅
∃

2. Dissipative 
0x y z x= ∧ ⇒ →%

1x y z x= ∨ ⇒ →%

A. Mullhaupt, Ph.D. Thesis, May 1984, CIMS/NYU 
M. Ghil & A. Mullhaupt, J. Stat. Phys., 41, 125-173, 1985 

⇔
⇔

Conservative        reversible 
                             invertible 



Structural stability & bifurcations 

BDEs with periodic solutions only are structurally stable,and conversely 

Remark. They are dissipative.  

Meta-theorems, by example.   

The asymptotic behavior of    
( ) ( ) ( )x t x t x tθ τ= − ∧ −

is given by    
( ) ( )x t x t θ= −

Hence, if 1τ θ< = then solutions are asymptotically periodic; 

if however 1θ τ< = then solutions tend asymptotically to 0. 

Therefore, as θ passes through τ,  one has Hopf bifurcation. 
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Thermohaline circulation and glaciations 

M. Ghil, A. Mullhaupt, & P. Pestiaux,  
Climate Dyn., 2, 1-10, 1987.  

Logical variables 
T - global surface temperature; 
VN - NH ice volume, VN = V; 
VS - SH ice volume, VS = 1; 
C - deep-water circulation index 





Southern Oscillation:  
 The seesaw of sea-level pressures ps between  
 the two branches of the Walker circulation 

Southern Oscillation Index (SOI) = normalized difference between  
 ps at Tahiti (T) and ps at Darwin (Da) 

Neelin (2006) Climate Modeling and Climate Change, after Berlage (1957) 

The large-scale Southern Oscillation (SO) pattern associated 
with El Niño (EN), as originally seen in surface pressures 



Time series of atmospheric pressure  
                and sea surface temperature (SST) indices 

Data courtesy of NCEP’s Climate Prediction Center  
Neelin (2006) Climate Modeling and Climate Change 



A. Saunders & M. Ghil, Physica D, 160, 54–78, 2001 
      (courtesy of Pascal Yiou) 



A. Saunders & M. Ghil, Physica D, 160, 54–78, 2001 



F.-F. Jin, J.D. Neelin & M. Ghil, Physica D, 98, 442-465, 1996 



A. Saunders & M. Ghil, Physica D, 160, 54–78, 2001 
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 Ghil et al. (Physica D, 2008) 
   

Consider on-off sites ui(t) on a line and 

ui(t) = ui–1(t-ϑt) Δ ui(t-ϑt) Δ ui+1(t-ϑt)  , 

where Δ is the XOR operator, and  
ϑt = const. for now is the time delay.  

We use periodic boundary conditions, 

ui(t) = ui+N(t) , 

and thus have n = 2N “ordinary” BDEs. 

The initial state is u0(0) = 1,  
        with all other ui(0) = 0. 

The evolution of the solution is the 
“Pascal’s triangle” in the figure.  
For ϑt = const. it is equivalent to an elementary CA (ECA). 



 Ghil et al. (Physica D, 2008) 
   

The figure now shows the “collision” 
of two waves, each started from an  
“on” site, while all other sites are “off.”  

Thus the solution in the previous slide 
is a “Green’s function” of the  
partial BDE (PBDE) before. 

This behavior is still equivalent to that of  
an ECA, as long as ϑt = const.  

But more interesting things will happen 
when that is no longer the case. 

Empty sites, ui(t) = 0 in white,  
while occupied sites, ui(t) = 0 are in black. 



 Ghil et al. (Physica D, 2008) 
   

The figure now shows the solution  
of the same PBDE, when the initial   
state is a random distribution of  
“on” and “off” sites.  

The qualitative behavior is characterized  
by ‘‘triangles'' of empty (white) or  
occupied (black) sites, 
without any recurrent pattern. 

This behavior does not depend on the  
particular random initial state. 
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1. Hierarchical structure 

2. Loading by external forces 

3. Elements’ ability to fail & heal 

Interaction among elements 

A. Gabrielov, V. Keilis-Borok, W. Newman, & I. Zaliapin (2000a, b, Phys. Rev. E; Geophys. J. Int.) 



I. Zaliapin, V. Keilis-Borok & M. Ghil (2003a, J. Stat. Phys.) 



I. Zaliapin, V. Keilis-Borok & M. Ghil (2003a, J. Stat. Phys.) 



I. Zaliapin, V. Keilis-Borok & M. Ghil  
(2003a, J. Stat. Phys.) 



Forecasting algorithm for natural & social systems: 
can we beat statistics-based approaches? 

   Ghil & Robertson, 2002, PNAS; Keilis-Borok. 2002, Annu. Rev. EPS. 



P – set of parameters for precursor Π  
   (e.g. magnitude threshold, time window, etc.) 

τ(P) – fractional time covered by alarms 

n(P) – fractional number of unpredicted target events 

f(P) – fractional number of false alarms 

[ ]argmin ( )P f P=

[ ]argmin ( )P n P=

Πt(P) – Boolean alarm process 

collective 1 2 ... nA = Π ∧Π ∧ ∧Π

collective 1 2 ... nA = Π ∨Π ∨ ∨Π



After Zaliapin, Keilis-Borok, & Ghil (2003b, J. Stat. Phys.) 

Individual patterns are tuned to eliminate false alarms  
at the cost of having more failures to predict.  

Collectively, errors of both kinds are drastically reduced.  

 -- N out of 6 individual precursors give alarm 

N=6 

N=5 

N=4 

N=3 

N=2 
N=1 



After Zaliapin, Keilis-Borok, & Ghil (2003b, J. Stat. Phys.) 

Individual patterns are tuned to eliminate failures to predict  
at the cost of having more false alarms.  

Collectively, errors of both kinds are drastically reduced.  
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•  Aggregate modeling of the economy — long-term growth models 
(Solow, 1956) or general equilibrium models (Arrow and Debreu, 1954) —"
"cannot account for firm-to-firm damage propagation"

•  Input-output models (Leontieff, 1986) can account for multiplicity 
of firms and paths, but not for distinct lags"

•  Heterogeneous production-and-exchange networks have been 
shown to strongly affect propagation of damage & shortages"

•  We use here a Boolean delay equation (BDE) model with 
distinct delays  quick look at the effects of network topology"
"– open vs. closed system (free vs. forced) "
"– fixed vs. random geometry"
"– deterministic vs. random delays"

•  Conclusions"
"– in a closed system, damage asymptotes to a fixed fraction "
"– in an open system, “waves” of damage can occur"



Braid structure, input-"
output degree k = 2"

Four types of networks:"
a)  periodic, k = 1;"
b)  fully connected, k = N – 1;"
c)  random,                             ;"
d)  scale-free,"

Strogatz (Nature, 2001) "



We consider a network of N firms on the vertices of a directed graph or digraph.!
The case of a directed random graph (DRG) or random Erdös-Rényi (1961) graph "
will be of particular interest."
The edges of the digraph are described by the connectivity matrix A, with!

We analyze, w.l.o.g., the impact of damage                                 to a single firm on the "
"production                              of all the firms. We let"

We study the effect on damage propagation of "
(i) the network topology, i. e. of the matrix A, and "
(ii) the distribution of delays,"



The availability (of the stock) Sji of a good produced by firm j for firm i obeys:!



Braid structure, k = 1, random delays"

Short times, "

Long times, "

Random digraph (DRG) with "
average connectivity  z > 1  "

Fixed delays vs. random, "
z = 0.525, N = 100"

Free network 



Periodic solutions in a DRG with average connectivity  z = 0.525 < 1, N = 100"
Free network 



Summary!
•  BDEs on networks provide great flexibility in modeling "
"complex systems"

•  The behavior of these systems is rich and varied."
•  Just starting to be explored for economic applications."

Main conclusions (repeated)!
•  In a closed system, damage asymptotes to a fixed density,  "

•   In an open system, (cyclostationary) “waves” of damage "
"may occur, "



Free models!
Mean damage is nonzero and possibly total if:"
•  mean input connectivity is larger than 1;"
•       is larger than the shortest propagation time between nodes."
Damage spreading velocity!
depends on network topology: the number of affected nodes increases "
"– linearly in time for the braid chain, and "
"– exponentially for random digraphs (DRGs)"

Forced models!
External supplies limit damage and damage waves move across the structure"
•  The transient up to asymptotic behavior diverges exponentially with N;"
•  a shorter transient to effectively constant mean damage equals the passage"
"time of the first wave through the systemʼs connected component; and"

•  This behavior is obtained even for shorter initial damage. "



•  What for BDEs?!
! - life is sometimes too complex for ODEs and PDEs!

•  What are BDEs?!
! - formal models of complex feedback webs!
! - classification of major results!

•  Applications to climate modeling!
!  - paleoclimate – Quaternary glaciations; !
!  - interdecadal – climate variability in the Arctic!
!  - ENSO – interannual variability in the Tropics!

•  “Partial” BDEs – spatio-temporal models!
!  - theoretical results!

•  Socio-economic applications!
!  - economic damage propagation on a network!

•  Concluding remarks!
!  - bibliography & future work!



1. BDEs have rich behavior: 
    periodic, quasi-periodic, aperiodic, increasing complexity 

2. BDEs are relatively easy to study 

3. BDEs are natural in a digital world 

4. Two types of applications 

-  strictly discrete (genes, computers) 
-  saturated, threshold behavior (nonlinear 

 oscillations, climate dynamics, 
 population biology, earthquakes) 

5. Can provide insight on a very qualitative level 
 (~ symbolic dynamics) 

6. Generalizations possible 
 (spatial dependence – “partial” BDEs; 
  stochastic delays &/or connectives) 
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Braid structure, input-"
output degree n = 2"

Bow-tie structure, "
e. g. the Web"

Here W is the weakly connected component. 
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