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Boolean Delay Equations:
A Simple Way of Looking at Complex Systems
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1. Components
- solid earth (crust, mantle)
- fluid envelopes (atmosphere, ocean, snow & ice)
- living beings on and in them (fauna, flora, people)

2. Complex feedbacks
- and
- - small pushes, big effects?

3. Approaches

4. What to do? - Let's see!




CONCEPTUAL MODEL of Earth System process operating on timescales of decades to centuries
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“Ambitious” diagram

SOLAR ond ORBITAL
VARIABILITY

AEROSOLS

Flow diagram showing
feedback loops contained
in the dynamical system
for ice-mass /7 and ocean
temperature variations

Constants for ODE & PDE
models are poorly known.
Mechanisms and effective
delays are easier to
ascertain.

B. Saltzman, Climatic system analysis, Adv. Geophys., 25, 1983
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Binary systems Examples: (ancient Greeks)

Classical logic (Tertium not datur)
Boolean algebra (19" cent.)
Propositional calculus (20 cent.)
(syllogisms as trivial examples)

Genes: on/
Descriptive — Jacob and Monod (1961)
Mathematical genetics — L. Glass, S. Kauffman, M. Sugita (1960s)

Symbolic dynamics of differentiable dynamical systems (DDS): S. Smale (1967)

Switches: on/ , 1/
Modern computation (EE & CS)

- cellular automata (CAs) J. von Neumann (1940s, 1966), S. Ulam,
Conway (the game of life), S. Wolfram (1970s, ‘80s)

- spatial increase of complexity —
infinite number of channels

- conservative logic Fredkin & Toffoli (1982)

- kinetic logic: importance of distinct delays
to achieve temporal increase in complexity (synchronization,
operating systems & parallel computation), R. Thomas (1973, 1979,...)




M.G.’s immediate motivation:

— complex interactions
(reduce to binary), C. Nicolis (1982)

Joint work on developing and applying BDEs to climate dynamics
with D. Dee, A. Mullhaupt & P. Pestiaux (1980s)
& with A. Saunders (late 1990s)

Work of L. Mysak and associates (early 1990s)

Recent applications to solid-earth geophysics

( )
with V. Keilis-Borok and |. Zaliapin

Recent applications to the biosciences
( )
Oktem, Pearson & Egiazarian (2003) Chaos
Gagneur & Casari (2005) FEBS Letters
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« What are BDEs?
- formal models of complex feedback webs
- classification and major results



Short answer:
Maximum simplification of nonlinear dynamics
(non-differentiable time-continuous dynamical system)

Longer answer:

1) xeB = {0,1} X I
x(2) = x(z—1)
(simplest EBM: x = T) 0

2) x()=x(—1)

3) x,x,EB={0,1};0<60 =1

x, (1) =x,(t—6),0 =1/2
{xz(t) =x, (-1
Eventually periodic with

a period = 2(1+60)
(simplest OCM: x,=m, x,=T)




x, () =x,(t-0)
x,(t)=x,(t-1)Vx,(t-0) 0 is irrational

Increase in complexity!
Evolution: biological, cosmogonic, historical
But how much?

Dee & Ghil, SIAM J. Appl. Math. (1984), 44, 111-126



Aperiodic solutions with increasing complexity

_V5-1
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x(t) =x(t-1)Vx(t-06), 0 = "golden ratio"
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Conservative BDEs with irrational delays have aperiodic
solutions with a

N.B. Log-periodic behavior!




Period Epoch .
Recent or Millions of

2 Years Ago
Quaternary Holocene ‘ . g

Pleistocene

0.01

Pliocene
1.6

Miocene
53

Cenozoic

Oligocene

23.7

Eocene
36.6

Paleogene [Neogene

Paleocene

= 57.8

Cretaceous
66

Jurassic

Mesozoic

Triassic

Permian

Pennsylvanian

2
=
=

2
=
S

=
=
<

(&)

Mississippian

Paleozoic

Devonian

Silurian

Ordovician

Cambrian

Density of events = log(7)

http://www.yorku.ca/esse/veo/earth/image/1-2-2.JPG




Flows after A. Mullhaupt (1984)

X continuous, £ continuous
(vector fields, ODEs, PDEs,
FDEs/DDEs, SDEs)

BDES, kinetic logic

x discrete, £ continuous

Xx continuous, £ discrete
(diffeomorphisms,
OAEs, PAEs)

Automata

x discrete, £ discrete
(Turing machines, real computers,
CAs, conservative logic)




Definition: A BDE is conservative if its solutions are immediately periodic,
I.e. no transients; otherwise it is dissipative.

Remark: Rational vs. irrational delays.

Example:
1) Conservative x()=x-1)
2) Dissipative x(2) =x(—-1)Ax(z—-0)

Analogy with ODEs

Conservative — Hamiltonian Dissipative — limit cycle

no transients attractor

M. Ghil & A. Mullhaupt, J. Stat. Phys., 41, 125-173, 1985




Examples. Convenient shorthand for scalar 2"d order BDEs
XxX=ypoz<=x(t)=x(t—-1)ox(z—-0)

1. Conservative

xX=yVz=y®Dz=y+z(mod2)

xX=yAz=1®y®z

Remarks: i) Conservative =dinear (mod 2)
i) —dew conservative connectives (~ ODES)

2. Dissipative
xX=yAz=>x—0

XxX=yvz=x—1

Conservative ——=seversible
—rvertible

A. Mullhaupt, Ph.D. Thesis, May 1984, CIMS/NYU
M. Ghil & A. Mullhaupt, J. Stat. Phys., 41, 125-173, 1985




Structural stability & bifurcations

BDEs with periodic solutions only are structurally stable,and conversely

Remark. They are dissipative.

Meta-theorems, by example.

The asymptotic behavior of
x(t))=x(t—-0)AX(t—7T)
IS given by
x(t)=x(t-0)

Hence, if T <0 =1 then solutions are asymptotically periodic;

if however O <T =1 then solutions tend asymptotically to 0.

Therefore, as 6 passes through T, one has Hopf bifurcation.




Qutline

- Applications to climate modeling
- ENSO - interannual variability in the Tropics



Thermohaline circulation and glaciations

NH Ice Sheet Ice Flow

NH Continent

Pev Prain Rout Rin Antarctic Ice Sheet

Arctic Ocea

7/
Subpolar Sea

Logical variables

T - global surface temperature;
V- NH ice volume, V), =V,

Vs - SH ice volume, V¢ = 1;

C - deep-water circulation index

M. Ghil, A. Mullhaupt, & P. Pestiaux,
Climate Dyn., 2, 1-10, 1987.







The large-scale Southern Oscillation (SO) pattern associated
with El Nifio (EN), as originally seen in surface pressures

30°W 0°  30°E  60° © 120" 150°E 180" 150°W 120°

Neelin (2006) Climate Modeling and Climate Change, after Berlage (1957)

Southern Oscillation:
The seesaw of sea-level pressures p, between
the two branches of the Walker circulation

Southern Oscillation Index (SOI) = normalized difference between
p, at Tahiti (T) and p, at Darwin (Da)




Time series of atmospheric pressure
and sea surface temperature (SST) indices

0.5 1.0 1.5
Frequency (cycles/year)

Data courtesy of NCEP’s Climate Prediction Center
Neelin (2006) Climate Modeling and Climate Change




SOl = SLP,,,, — SLP

Darwin

| | ) | ] P O e s [ |

1940 1950 1960 1970 1980 1990 0 20 40 60 80 100
Time Count

A. Saunders & M. Ghil, Physica D, 160, 54—78, 2001
(courtesy of Pascal Yiou)




Atmosphere* Wlnd anomahes

T- wave adjustments
B - local feedbacks

A. Saunders & M. Ghil, Physica D, 160, 54—78, 2001




Devil's Bleachers'in'a 1-D.ENSO Model

Ratio of ENSO frequency to annual cycle

Frequency Ratio

| [ Chaotic Regime
0.01 0.20 0.25 0.33 0.50 1.00

F.-F. Jin, J.D. Neelin & M. Ghil, Physica D, 98, 442-465, 1996
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« “Partial” BDEs — spatio-temporal models
- theoretical results + connections to Boolean networks & CAs



Consider on-off sites u(t) on a line and
ui(t) = up4(t-0,) A uft-0,) A u;,4(t-6y)

where A is the XOR operator, and
g, = const. for now is the time delay.

We use periodic boundary conditions,

ui(t) = upp(f)

and thus have n = 2N “ordinary” BDEs.

The initial state is uy(0) = 1,
with all other u(0) = 0.

The evolution of the solution is the

“Pascal’s triangle” in the figure.

For 4,= const. it is equivalent to an elementary CA (ECA).

Ghil et al. (Physica D, 2008)
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The figure now shows the solution
of the same PBDE, when the initial
state is a random distribution of
“on” and “off” sites.

The qualitative behavior is characterized
by “triangles"” of empty (white) or
occupied (black) sites,

without any recurrent pattern.

This behavior does not depend on the
particular random initial state.

Ghil et al. (Physica D, 2008)
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1. Hierarchical structure
2. Loading by external forces
3. Elements’ ability to fail & heal

\\

\./

4\

/n\\ o//r\

+++

Failures

/\\ Interaction among elements
/T\\ \ A

A. Gabrielov, V. Keilis-Borok, W. Newman, & I. Zaliapin (2000a, b, Phys. Rev. E; Geophys. J. Int.)




|. Zaliapin, V. Keilis-Borok & M. Ghil (2003a, J. Stat. Phys.)

IL: Low seismicity
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|. Zaliapin, V. Keilis-Borok & M. Ghil (2003a, J. Stat. Phys.)
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Healing time, A,
|. Zaliapin, V. Keilis-Borok & M. Ghil

(2003a, J. Stat. Phys.)
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Outcomes of prediction

Critical Critical
Phenomenon Phenomenon

Successful Failure
prediction to predict

J

Time

Critical - Alarms
Phenomena

Possible outcome of “yes” or “no’ prediction. Its probabilistic nature is
reflected in estimated probabilities of false alarms and failures to predict.

Forecasting algorithm for natural & social systems:

can we beat statistics-based approaches?
Ghil & Robertson, 2002, PNAS; Keilis-Borok. 2002, Annu. Rev. EPS.




P — set of parameters for precursor I1
(e.g. magnitude threshold, time window, efc.)

I1,(P) — Boolean alarm process
t(P) — fractional time covered by alarms

n(P) — fractional number of unpredicted target events

AP) — fractional number of false alarms

P= argmin[f(P)]
=II, vII, v..vII

A

collective

P =argmin [n(P)]
A

collective

=II, AIL, A ATT
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Minimax prediction strategy in BDE model:
voting of individual premonitory patterns.

Individual alarms

Rise of correlation range

Rise of intensity

Rise of clustering

Transformation of GR law

(All 6) =
(At least 5) > IN
(At least 1)~

3100 3200 3300 3400 3500 3600 3700
Time, “years”

I False alarm I Correct alarm *Large earthquake

Collective
alarms

After Zaliapin, Keilis-Borok, & Ghil (2003b, J. Stat. Phys.)
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Boolean Delay Equations (BDEs) on Networks:
An Application to Economic Damage Propagation

Michael Ghil
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with B. Coluzzi and G. Weisbuch (ENS), and
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Motivation

Aggregate modeling of the economy — long-term growth models
(Solow, 1956) or general equilibrium models (Arrow and Debreu, 1954) —

cannot account for firm-to-firm damage propagation

Input-output models (Leontieff, 1986) can account for multiplicity
of firms and paths, but not for distinct lags

Heterogeneous production-and-exchange networks have been
shown to strongly affect propagation of damage & shortages

We use here a Boolean delay equation (BDE) model with
distinct delays =» quick look at the effects of network topology
— open vs. closed system (free vs. forced)

— fixed vs. random geometry

— deterministic vs. random delays
Conclusions

—in a closed system, damage asymptotes to a fixed fraction 0 S 1 O
—in an open system, “waves” of damage can occur



Network topologies

Braid structure, input-
output degree k=2

Four types of networks:

a) periodic, k= 1; =V // %

b) fully connected, k= N—1; = AW S

c) random, »— (k) > N/2; Y0

d) scale-free, ' S\ et
Prob(k) ~ k™% a > 0. N, D

Strogatz (Nature, 2001)



Model formulation, | — Network

We consider a network of N firms on the vertices of a directed graph or digraph.
The case of a directed random graph (DRG) or random Erdds-Rényi (1961) graph
will be of particular interest.
The edges of the digraph are described by the connectivity matrix A, with

A;; =1, if firm ¢ needs the output of firm j,

and A;; = 0, otherwise.

We analyze, w.l.0.g., the impact of damage z1(¢ : 0 <t < 7.) to a single firm on the
production {Z; : 1 <@ < N} of all the firms. We let

x; = 0 if firm ¢ is damaged,
and z; = 1 if it is is not.
We study the effect on damage propagation of

(i) the network topology, i. e. of the matrix A, and
(ii) the distribution of delays, Timin < T < Tmax-

Mean density: B
(i) deterministic case p(t) _q a:z (t)

(ii) random case { fH i dT@,J (7i.5) | 11n. 5 dARKP (Ani)p(t)

1 N



Model formulation, | - BDE model

The availability (of the stock) S; of a good produced by firm j for firm i obeys:

Sii(t) = x;(t — ;) for free (autonomous) models, and

Sii(t) =x;(t — ;) Va;(t — 1 ;) for forced models (with re-supply).
x; | T; | Sy Free models
0 0| O |7and i inactive, the stock can not be reconstituted
011 j active and 7 inactive, the good is stocked
110 0 j inactive and i active, the stock is finished
1] 1] 1 j active and i active, the stock is updated
z; | xj | Sji Forced models
0| 0| 1 | 7and < inactive, the stock is supplied from outside
0(1] 1 j active and i inactive, the good is stocked
10| 0 4 inactive and 7 active, the stock is finished
1] 1] 1 j active and i active, the stock is updated

Table 1: The input-output table of the stock S;; of a given product as a Boolean function of
the activities (x;,x;) of the customer firm 7 and supplier firm j, in the free models described
by Eq. (1) and in the forced models described by Eq. (2), respectively.



Selected results — I, (0(?))
Random digraph (DRG) with

Braid structure, k=1, random delays

Te = Tmin > Tmax = 10 days

11— T

ave

0.995 | =
0.99 f B ot Rt ]
2 N Free network :
£ 0985 \ ] g
% \. NG . %
0.98 N
N N=10
o75 | N-20 -
0.975 N-20
N=100 = =
0.97 . . . . .
0 5 10 15 20 25 30

Short times, 0 < ¢t < 30 days

1

0.995 ¢

()
o
© S
©
(4]

0.98
I
0.975 - Nig .
=50
=1
0.97 0, : : :
0 100 200 300 400 500

t

Long times, (0 < ¢ < 500 days

(p(t)) ~—1— % as t — o0

rage connectivity z> 1

z=151)
Ty z=1.5 1
: 2217510 o
i z=1.75 1
08 f z=2 1,
’ : z=2 Tj
06 f |
04}
02t
0 . . . . )
0 50 100 150 200 250 300

Fixed delays, 7o = 1 day, vs.
random ones, Tmin < Tij < Tmin-

p(t)

Fixed delays vs. random,
z=0.525, N=100



Selected results — I, (p(t)) Free network

Periodic solutions in a DRG with average connectivity z=0.525<1, N=100
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Concluding remarks, | — General

Summary

« BDESs on networks provide great flexibility in modeling
complex systems

* The behavior of these systems is rich and varied.

 Just starting to be explored for economic applications.

Main conclusions (repeated)
* In a closed system, damage asymptotes to a fixed density,

(P(1)) = Pooy Poo <1 OT poo = 1.

* In an open system, (cyclostationary) “waves” of damage
may OocCculr, (P(t)) = Poo(l), Poo(t +T') = poo(t).



Concluding remarks, Il — Specific

Free models

Mean damage is nonzero and possibly total if:

* mean input connectivity is larger than 1;

« T is larger than the shortest propagation time between nodes.

Damage spreading velocity

depends on network topology: the number of affected nodes increases
— linearly in time for the braid chain, and
— exponentially for random digraphs (DRGs)

Forced models

External supplies limit damage and damage waves move across the structure

* The transient up to asymptotic behavior diverges exponentially with N,

« a shorter transient to effectively constant mean damage equals the passage
time of the first wave through the system’s connected component; and

« This behavior is obtained even for shorter initial damage.
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1. BDEs have rich behavior:
periodic, quasi-periodic, aperiodic, increasing complexity

2. BDEs are relatively easy to study
3. BDEs are natural in a digital world

4. Two types of applications

- strictly discrete (genes, computers)

- saturated, threshold behavior (nonlinear
oscillations, climate dynamics,
population biology, earthquakes)

5. Can provide insight on a very qualitative level
(~ symbolic dynamics)

6. Generalizations possible
(spatial dependence — “partial” BDEsS;
stochastic delays &/or connectives)




Hmmm, this is interesting! 6

Q But what does it all mean?

Needs more work!!!
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RESERVE SLIDES







Network topologies

Braid structure, input- Bow-tie structure,
output degree n=2 e. g. the Web

The two bows correspond to the giant components Z\Ss. and O\ S;. respectively,
whereas the tie represents the giant strongly connected component S;c =ZNQO.
We consider here the most general case, in which W =ZUQUT.

Here W is the weakly connected component.
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Forecasting algorithms for natural and social systems:
Can we beat statistics-based approach?

Possible outcomes of prediction

Successful prediction Failure to predict

®
False alarm

B Correct alarm 1 Predicted event

Bl False alarm ! Failure to predict

"~ Function depicting precursor
Threshold for declaring an alarm

Ghil and Robertson (2002, PNAS)
Keilis-Borok (2002, Annu. Rev. Earth Planet. Sci.)
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