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Some introductory remarks

My lecture series will cover three interrelated topics:
- A primer on gyrokinetic theory and simulation
- Features of linear and nonlinear gyrokinetics
- Recent progress towards a numerical tokamak

| will attempt to present the material in an accessible way

Please feel free to interrupt me if you have a question



Why invent

gyrokinetics?




"

ITER and plasma turbulence

ITER Is one of the
most challenging
scientific projects

Plasma turbulence
determines its energy
confinement time

www.Iter.org
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Turbulent fluctuations are quasi-2D

Reason: Strong background magnetic field

Use field-aligned coordinates and minimize the simulation volume




Turbulent mixing in a tokamak

ExB drift velocity
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Typical heat and particle diffusivities are of the order of 1 m?/s.



Gyrokinetic theory:

A brief guided tour
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What is gyrokinetic theory?

Dilute and/or hot plasmas are almost collisionless.

Thus, if kinetic effects (finite Larmor radius, Landau damping,
magnetic trapping etc.) play a role, MHD is not applicable,
and one has to use a kinetic description!

: 8 8 8
Vlasov-Maxwell equations [a tvoo+ i (E + E X B) - E} f(x,v,t) =0

Removing the fast gyromotion o

leads to a dramatic speed-up “<

Charged rings as quasiparticles; VEt VetV
gyrocenter coordinates; keep kinetic effects

Details may be found in: Brizard & Hahm, Rev. Mod. Phys. 79, 421 (2007)
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The gyrokinetic ordering

e [ he gyrokinetic model is a Vlasov-Maxwell on which the GK ordering is imposed:

= Slow time variation as compared to the gyro-motion time scale:

MKQENEHQ‘:{\ 1

= Spatial equilibrium scale much larger than the Larmor radius:

p‘an P~ p,fLT = €g <1
= Strong anisotropy, i.e. only perpendicular gradients of the fluctuating quantities
can be large (k1p~ 1, kjp~¢; ):
k”ﬂu ~ €q XK 1

= Small amplitude perturbations, i.e. energy of perturbation much smaller than the
thermal energy:

Efﬁ'f‘Tﬂ ~ Eg <1



" S
A brief historical review

A. Bottino

¢ [ he word "Gyrokinetic"” appeared in the literature in the late sixties.
Rutherford and Frieman, Taylor and Hastie [1968].

Goal: Provide a adequate formalism for the linear study of kinetic drift-waves
in general magnetic configurations, including finite Larmor radius effects.

e First nonlinear set of equations for the perturbed distribution function &F.
Frieman and Liu Chen [1982].
— Gyrokinetic ordering.

e Littlejohn [1979], Dubin [1983], Hahm[1988], Brizard [1989], ...

Firm and more transparent theoretical foundation for GK:
GK equations based on Hamiltonian or Lagrangian variation methods.

Lagrangian
N | .
remove gyro-angle dependency in Lagrangian
(change of coordinate system)

Il

equation of motion
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A Lagrangian approach

If the Lagrangian of a dynamical system is known...

Example: charged particle motion, in non canonical coordinates (&, 77):

I = (Ej{i',. t) 4+ rni") & —H(Z, T
c
H = %’UE + edp(Z, t)

with B=V x A and E = —V¢ — 8, 4/ec.

...Tthe equation of motion are given by the Lagrange equations:
d gL aL
— ———=0 withi=1....,6
dt 8¢, O E

Lagrange equation of motion for a charged particle:
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Guiding center coordinates

GK ordering, but kip>~1 = ki p <1
= (&), static magnetic field.

e Single particle Lagrangian:
T

Iy == (EE{E) - m'ﬁ) - E”UE + ep(T, 1)

e Change of coordinates:

particle coordinates (&, ¢) = guiding center coordinates {Rﬂ (LIATT)

u = v3/2B(R)
u” = “E'E

1 (U-€1
¢ = tan!| =
v - €2

R guiding center position; 2 = eB/mc gyrofrequency.
a = cos(yp) €1 + sin(yp) €>
é1(R, ), é(R, ) orthogonal unity vectors in the plane perpendicular to b = B/B.

My
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Guiding center coordinates (cont’d)

|

= E =, = S B .
LDF{ ('fﬂ't.i'”b + EA(R)) ; R-l- %‘1‘:‘ o HD_[{

Hpx gvﬁ + uB + gp(R)

I

e Lagrange equations:

S = B ~# b b
R = yb+H (VexB + tvp + Uc)
|
_ e R , .
v = (—p?Bﬂ-eE)- : =10 p = 2
TT!.'U”
Texp = £ ExB E x B drift
fvp= =bxVB VB drift
o = ”ﬁ bx (b-V)b Curvature drift

with B* = B + (mc/e)yV x b = B(1 + O(p|/Lz)).
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Including fluctuating fields

Particle world, (&, )

U

static fields

4

Guiding center, (R, v, UL, )
(remove gyro-angle dependence)

Y

> Fluctuating fields

!

Gyrocenter coordinates (R, 9|, 7L, @)
(remove gyro-angle dependence)
Y
Equations of motion
VIasov equation
Self consistent Poisson equation
(Self consistent Ampere's law)
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Resulting Lagrangian 1-form

Eliminate explicit gyrophase dependence via near-identity (Lie) transforms
to gyrocenter coordinates:

[ = (mobo+ S Ayby+ © ) X + o -
b . £

m
— (?U:T + puBy + pBy +e qafl1> dt

o1 = Io(A) o1, Ay =I(N) Ay, By = 1i(A) By
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Euler-Lagrange equations

X=ub+o (LB, + B xB+LbxV(B+E )—!—U—ﬁ(‘?xb)
- T \BTY T B2 mQ 7 -
X 7. i .
i’” = — (EE1 — ‘ELV(B o BIH)) fr =20
TIL’U”
8f . Of . . Of _
§+X-3—X+U||3%lm—0
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Gyroaveraged potentials

e Full Lorentz dynamics

e Gyrokinetic approx.: ¢°™ (&, p) = 5& [§7 dpd (T + )

1 s
Iy
[]__5_.......... _I ................................................................
ok-.
-0.5
0 2 4 kp 6 g 10

= oy J25 dR R G(R) Jo([Rlp)
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Appropriate field equations

Reformulate Maxwell’'s equations in gyrocenter coordinates:

ny ol B,
Vigr = -4y eny, ﬂ_uzﬂ_u_( —H.TEH) - + ||z Iyl || == ”

47
Vidy=-—2 Jy;

By PiL Efﬁ"l 5 1oy B
Zu v, 1,1 2| 2
B an‘j‘ ( {_]T _|_ ” 1 UH ||I 1” B :

Nonlinear integro-differential equations in 5 dimensions...
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Major theoretical speedups G.Hammett

relative to original Vlasov/pre-Maxwell system on a naive grid, for ITER 1/p. = a/p ~ 1000

m Nonlinear gyrokinetic equations

eliminate plasma frequency: w, /€, ~ m/m, x103
eliminate Debye length scale: (p/Ap.)? ~ (M/m,)3? x10°
average over fast ion gyration: Q./w~ 1/p. x103

m Field-aligned coordinates
adapt to elongated structure of turbulent eddies: 4,/4,~ 1/p. x103

m Reduced simulation volume
reduce toroidal mode numbers (i.e., 1/15 of toroidal direction)  x15
L, ~ a/6 ~ 160 p ~ 10 correlation lengths X6

m | Total speedup x1016

m For comparison: Massively parallel computers (1984-2009)  x107



Status guo In gyrokinetic simulation

m over the last decade or so,
GK has emerged as the
standard approach to
plasma turbulence

m a variety of nonlinear GK
codes is being used and
(further) developed

m these codes differ with
respect to their numerics,
physics, parallel scalability,
and public availability

US

GYRO GTC
GEM GS2

GENE

ORB5 |

GYSELA G5D

ELMFIRE
Europe Japan



Extreme computing

In support of ITER:
The GENE code
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The gyrokinetic Vlasov code GENE

http://gene.rzg.mpg.de
GENE is a physically comprehensive Vlasov code:

» allows for kinetic electrons & electromagnetic fluctuations, collisions,

and external ExB shear flows
* is coupled to various MHD equilibrium codes and two transport codes

« can be used as initial value or eigenvalue solver

o supports local (flux-tube) and global (full-torus), gradient-driven and
ulations GENE is well benchmarked

and hyperscalable

ideal scaling
measured times

flux-driven si
10

Time per timestep

Strong scaling on BG/P

0.1 L— - - - -
16384 32768 65536 131072 262144

Mo, of cores



Concepts for efficiency & flexibility

ﬁield-aligned (Clebsch-type) coordinates\
to exploit the high anisotropy of plasma
turbulence

parallel (z) derivatives taken to be small

\compared to perpendicular (x,y) ones /

ﬁsplitting:

Apply same approach as in the derivation
of the GKE and split the distribution
function

f=F,+ of
where
F,: stationary background,
here: local Maxwellian
\éf: fluctuating part with &f/F, << 1

/

- ‘-:,

>

Lowest-order nonlinearity kept

C)(T)l {f)fla
dy Jx

(BO X

can be switched on for testing

C)(;l E)flo

™~ —

dr dy

next order

A By 1
V|01 4+ c—v)—5
{; Tl

23




Numerical methods — Time stepping scheme

Method of Lines:
 turn PDEs into ODEs by discretizing the spatial derivative first

» solve for the continuous time coordinate

Time Solver:

a0

Linear system: —
ot
* |terative eigenvalue solver
based on PETSc/SLEPc/Scalapack lib’s
— solve for largest abs/re/im eigenvalues :
— gain insight in linear stability/physics —mmz

2(]0 _

100 |

Irm
o

» Explicit Runge-Kutta (ERK) schemes

—200 ¢




Numerical methods — Time stepping scheme (cont’d)

Time Solver: Linear stability regions for

low-order ERK schemes
ﬁull) Nonlinear system: \ Im
dg

5 = Vlol =2+ Llg] + Nlg]

» Several ERK methods, e.g. 4™ order ard

At
In+1 = gn T 3 (k1 + 2ko + 2k3 + ky)

l‘:l :V(tne gn)- 15t 1
by =V(tn + At/2, gn + k1AE/2),
ks =V(tn + A2, gn + kaAL/2).

\ ks =V(t, + AL, gn + kaAt). /

Optimum linear time step can be precomputed
using iterative EV solver

Adaptive CFL time step adaption for nonlinearity
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Phase space discretization

« GENE is a Eulerian code, representing the 5D distribution function on a
fixed grid in (x, vy, 1)

v/ps

(IE*) @ z/gR = O

+ I

—20 0

20 40

40 §

—60 | i P SR

trapped/passing
" boundary

—60 —40 —20

x/pg

radial direction x:
toroidal direction y:

parallel direction z:
v,-velocity space:
L-velocity space:

equidistant grid (either configuration or Fourier space)
equidistant grid in Fourier space

equidistant grid points

equidistant grid

Gauss-Legendre or Gauss-Laguerre knots 26



Phase space discretization (cont’d)

fq n Ofo 1
l'E||
ot | ()l”
|

l |

C)f f(ﬁ(k—z)) — 8f(3(k—1)) + Sf(-?(kﬂ Y= f(z Z(k+2) )

cL 122

e 4 order finite differences are basic choice

* however, the more elaborate Arakawa-scheme is employed, if

possible [A. Arakawa, JCP 135, 103 (1997), reprint]

(Exception:

spectral methods are employed in the

« y direction - always

« X direction - depends on the type of operation (local/global)

~

27
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Local vs. global GENE
m Local: inthe radial direction

0 Simulation domain small compared to machine size;
thus, constant temperatures/densities and fixed gradients

3

T —
as | a/Ly(r) | E : /
L Local sim. domain
i ' p*=pJa<<1
L5 4
1t ™ ]
0s | [ T Global sim. domain
0 : : ; : \‘
8] nz2 04 06 08 1 ————
T‘IIE
m Global: adding nonlocal features in the radial direction T e

0 Consider full temperature & density profiles; radially varying metric ,

1 Dirichlet or v. Neumann boundary conditions

1 Heat sources & sinks

28
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Local vs. global GENE: Numerics

Spectral methods T ' ' ' * derivatives:
derivatives: l \ ‘ finite difference
e derivatives: /><—\| 2| / f scheme, typically 4™
8f . ~— 15t \ 1 order
— k.f(k —
Or — 1 xf( 33) — ! \\ |
. C |« Use interpolation
» Gyroaverage & field — schemes for
operators can be given """ gyroaverage & field operators
analytically: - |
(o) (X-+1)
| - = e G(X . ky,z.pn) - d1( X, ky. 2
— Z Jo(kip)o(k,, z)elkLX . G(X, Y ) - O1(X ys Z)
y
ki

with gyromatrix G(X. k. z, i)
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Gyro-averaging procedure Iin more detall

Qlﬁ f(m F(x + 1))

f(x) =

e discretize gyro-angle integration
e coordinate transform
e interpolation between grid-cells required
* here: 1-dimensional problem (y remains in Fourier space)
» use “finite-elements” which allows easy extraction of gyro-
averaged quantities\at original grid points (~ Hermite polynomial interpol.)

R A U N
m=0 _ b
a Z = = 05t \ cC
—Pu m\L = OinOum - )
8.‘1‘“ ! ( 3 )

T=2T(;) \

Gyromatrix is constructed at initialization only:
[ 1 o ik, rY A 05t
Gin(ky, 2, 1) = oy d9A () +1r7)e™

\f(k’y? 2, ;L) — g(ky, 2, u) , f(lgy’ Z) 0 02 04 0.6 J 038
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Boundary conditions - overview

radial direction x;

toroidal direction y:

parallel direction z:

v,-velocity space:

L-velocity space:

local: periodic '\’
global: Dirichlet f(z.,y, z)|,c5 =0

r

Twann D siny =0, 3)|1~.eB =i
7 [Beer, PoP '95]

periodic

quasi-periodic
f(x,ky,z+ L)
= f(z, ky, z) exp (—2mingq(x);)

magnetic sheatr tilts the
simulation box — phase
factor

Dirichlet b.c.

Not required (if collisions are neglected)
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Source and sink models in GENE

Full domain:

= Radially dependent heat source/sink in whole domain (density and
parallel momentum are unaffected)

(f T (R, vy )
(f V(X vy - 1))

afy

L= = [yl 0) = (X v .)

Localized sources:

df .
= Krook operator, d—tl = —vk(2) /1, to damp fluctuations close to the
boundaries

» Heat source model (cmp. Grandgirard et al., PPCF '07)

af
% =Sy = SS5:SE Example of a heat source profile:

DT f % Slg/l;(l') ‘ 1
Sp=2—" UL ) WU TR
E =3 -3 Oc 35 ¢
3pos(x) \ Tos(x)/Too(20) 2 f

SCI? — Sx,in(x) / /dgx S:I?,in(x) J(QC, Z) 1'"?

and floating boundary conditions o1 02 03 04 05 08 o7 o
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Magnetic geometry

o arbitrary flux-surface shapes can be considered as long as the metric
g=(gY) = (Vu'- V) is provided to compute expressions like

1 glighi — g%igli
qg g g 4 ) ( dj

1
Bj

(Bo x V() - V= a =

 simple choice: circular concentric flux surfaces

gﬂ‘-ﬂ :I.
v - { =
gV =g¥" = 5z — i:ﬂ sin z,
qo
. S1T1 2
g7 =g = —=-
=
i qz S
oo, 2
=) ~ 2L egizsins + LT (1 - 22con),
qo It
| Y
g¥* =g"¥ = — | —Szggsinz + i—g (I —2ccosd)|,
o qon T
> o l f ! )
g7 =— (1 — 2 cos?),
=

 others can be read in via interfaces to TRACER/GIST (field line tracer)
and the equilibrium code CHEASE






Diagnostics Tool

Output: GENE

GENE diagnostics

-] X

|data pati’?

| $apfaihlel

tmpl | tmpa ‘

loutput path: |}

default: output

E
start time: 42.3
lend time: M2, 344434

|runss

particle species

show series info |

show reference values

first :
| resolve
steps

last
zparze factor: !El

normalize to

geometry profiles |

show nirg data |

output format

Me R I data: BSCI
a1 Wit = | I datat H5
H | postscript I ,
4 E—
man ] chpt l mom globall sCan I nrg ] usp l
node var res p=2png =i ] st |
7 | Ballooning modes of f o= i load form |
7| Boperp = == B a2 =awe form | e O |
7 | Contour plots off of f off T ol e ‘
'?_ Correlations {x/y,t) off - ?
P | Fluz spectra (hudkuxd off of f e = B - show variable list |
'?_ Parallel flux profiles E= i - - e ?
? | Frequencies off off B — I
'?_ Crozs phases on off =] recent. HS | Ha files |
? | Probability distributions = — recent ps | ps files ‘
'?_ Slices Q =2 1 =2 an _0
| exit |




Global Gyrokinetic Simulation of

Turbulence in

ASDEX Upgrade

(GENE

gene.rzg.mpg.de
gene@ipp.mpg.de



Summary and outlook
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Some outroductory remarks

Goal of this first lecture:
Introduction to gyrokinetic theory and simulation

More info:
Review by Brizard & Hahm, 2007
http://gene.rzg.mpg.de

Topic of next lecture:
Linear and nonlinear gyrokinetics “in action”



