

2267-9

Joint ITER-IAEA-ICTP Advanced Workshop on Fusion and Plasma Physics

3 - 14 October 2011

A primer on gyrokinetic theory and simulation

JENKO Frank

Max Planck Institut fuer Plasmaphysik, Boltzmannstrasse 2 D-85748 Garching bei Muenchen GERMANY

Frank Jenko

A primer on gyrokinetic theory and simulation

Max-Planck-Institut für Plasmaphysik, Garching Universität Ulm

Advanced Workshop on "Fusion and Plasma Physics" October 3 – 14, 2011 Trieste, Italy

Some introductory remarks

My lecture series will cover three interrelated topics:

- A primer on gyrokinetic theory and simulation
- Features of linear and nonlinear gyrokinetics
- Recent progress towards a numerical tokamak

I will attempt to present the material in an accessible way

Please feel free to interrupt me if you have a question

Why invent gyrokinetics?

ITER and plasma turbulence

ITER is one of the most challenging scientific projects

Plasma turbulence determines its energy confinement time

Turbulent fluctuations are quasi-2D

Use field-aligned coordinates and minimize the simulation volume

Turbulent mixing in a tokamak

ExB drift velocity

$$\tilde{\mathbf{v}}_E = \frac{c}{B^2} \mathbf{B} \times \nabla \tilde{\phi}$$

$$\mathbf{Q} \equiv \frac{3}{2} \langle \tilde{p} \, \tilde{\mathbf{v}}_E \rangle = -n \chi \nabla T$$

Typical heat and particle diffusivities are of the order of 1 m²/s.

Gyrokinetic theory: A brief guided tour

What is gyrokinetic theory?

Dilute and/or hot plasmas are almost collisionless.

Thus, if kinetic effects (finite Larmor radius, Landau damping, magnetic trapping etc.) play a role, MHD is not applicable, and one has to use a kinetic description!

 $\left[\frac{\partial}{\partial t}\right]$

Vlasov-Maxwell equations

$$+\mathbf{v}\cdot\frac{\partial}{\partial\mathbf{x}}+\frac{q}{m}\left(\mathbf{E}+\frac{\mathbf{v}}{c}\times\mathbf{B}\right)\cdot\frac{\partial}{\partial\mathbf{v}}\left[f(\mathbf{x},\mathbf{v},t)=0\right]$$

Removing the fast gyromotion leads to a dramatic speed-up

 $\omega \ll \Omega$

Charged rings as quasiparticles; gyrocenter coordinates; keep kinetic effects

Details may be found in: Brizard & Hahm, Rev. Mod. Phys. 79, 421 (2007)

The gyrokinetic ordering

- The gyrokinetic model is a Vlasov-Maxwell on which the GK ordering is imposed:
- \Rightarrow Slow time variation as compared to the gyro-motion time scale:

$$\omega/\Omega_i \sim \epsilon_g \ll 1$$

 \Rightarrow Spatial equilibrium scale much larger than the Larmor radius:

$$ho/L_n \sim
ho/L_T \equiv \epsilon_g \ll 1$$

 \Rightarrow Strong anisotropy, i.e. only perpendicular gradients of the fluctuating quantities can be large ($k_{\perp}\rho \sim 1$, $k_{\parallel}\rho \sim \epsilon_g$):

$$k_\parallel/k_\perp\sim\epsilon_g\ll 1$$
 .

⇒ Small amplitude perturbations, i.e. energy of perturbation much smaller than the thermal energy:

$$e\phi/T_e \sim \epsilon_g \ll 1$$

A. Bottino

A brief historical review

• The word "Gyrokinetic" appeared in the literature in the late sixties. Rutherford and Frieman, Taylor and Hastie [1968].

Goal: Provide a adequate formalism for the linear study of kinetic drift-waves in general magnetic configurations, including finite Larmor radius effects.

- First nonlinear set of equations for the perturbed distribution function δF.
 Frieman and Liu Chen [1982].
 → Gyrokinetic ordering.
- Littlejohn [1979], Dubin [1983], Hahm[1988], Brizard [1989], ...

Firm and more transparent theoretical foundation for GK:

GK equations based on Hamiltonian or Lagrangian variation methods.

Lagrangian ↓ remove gyro-angle dependency in Lagrangian (change of coordinate system) ↓ equation of motion

A Lagrangian approach

If the Lagrangian of a dynamical system is known...

Example: charged particle motion, in non canonical coordinates (\vec{x}, \vec{v}) :

$$\begin{split} L &= \left(\frac{e}{c}\vec{A}(\vec{x},t) + m\vec{v}\right) \cdot \dot{\vec{x}} - H(\vec{x},\vec{v}) \\ H &= \frac{m}{2}v^2 + e\phi(\vec{x},t) \end{split}$$
 with $\vec{B} = \nabla \times \vec{A}$ and $\vec{E} = -\nabla \phi - \partial_t \vec{A}/c$.

...the equation of motion are given by the Lagrange equations: $\frac{d}{dt} \frac{\partial L}{\partial \dot{q}_i} - \frac{\partial L}{\partial q_i} = 0 \quad \text{with } i = 1, \dots, 6$

Lagrange equation of motion for a charged particle:

$$\vec{v} \Rightarrow -\frac{\partial L}{\partial \vec{v}} = 0 \Rightarrow \dot{\vec{x}} = \vec{v}$$

$$\vec{x} \Rightarrow \frac{d}{dt} \frac{\partial L}{\partial \vec{v}} - \frac{\partial L}{\partial \vec{v}} = 0 \Rightarrow \dot{\vec{v}} = \frac{e}{m} \left(\vec{E} + \frac{\vec{v}}{c} \times \vec{B} \right)$$

Guiding center coordinates

GK ordering, but $k_{\perp}\rho \simeq 1 \Rightarrow k_{\perp}\rho \ll 1$ $\Rightarrow \vec{B}(\vec{x})$, static magnetic field.

• Single particle Lagrangian:

$$L = \left(\frac{e}{c}\vec{A}(\vec{x}) + m\vec{v}\right) \cdot \dot{\vec{x}} - \frac{m}{2}v^2 + e\phi(\vec{x},t)$$

Change of coordinates:

particle coordinates $(\vec{x}, \vec{v}) \Rightarrow$ guiding center coordinates $(\vec{R}, v_{\parallel}, \mu, \varphi)$

$$\begin{aligned} \vec{x} &= \vec{R} + \vec{\rho} \equiv \vec{R} + \frac{v_{\perp}}{\Omega} \hat{a}(\vec{R}, \varphi) \\ \mu &= v_{\perp}^2 / 2B(\vec{R}) \\ v_{\parallel} &= \vec{v} \cdot \vec{b} \\ \varphi &= \tan^{-1} \left(\frac{\vec{v} \cdot \vec{e}_1}{\vec{v} \cdot \vec{e}_2} \right) \end{aligned}$$

 \vec{R} guiding center position; $\Omega \equiv eB/mc$ gyrofrequency. $\hat{a} \equiv \cos(\varphi) \ \vec{e_1} + \sin(\varphi) \ \vec{e_2}$ $\vec{e_1}(\vec{R}, \varphi), \ \vec{e_2}(\vec{R}, \varphi)$ orthogonal unity vectors in the plane perpendicular to $\vec{b} \equiv \vec{B}/B$.

Guiding center coordinates (cont'd)

$$L_{DK} = \left(m v_{\parallel} \vec{b} + \frac{e}{c} \vec{A}(\vec{R}) \right) \cdot \dot{\vec{R}} + \frac{\mu B}{\Omega} \dot{\varphi} - H_{DK}$$
$$H_{DK} = \frac{m}{2} v_{\parallel}^2 + \mu B + q \phi(\vec{R})$$

Lagrange equations:

$$\begin{split} \dot{\vec{R}} &= v_{\parallel} \vec{b} + \frac{B}{B_{\parallel}^*} \left(\vec{v}_{E \times B} + \vec{v}_{\nabla B} + \vec{v}_C \right) \\ \dot{v_{\parallel}} &= \left(-\mu \nabla B + e\vec{E} \right) \cdot \frac{\dot{\vec{R}}}{mv_{\parallel}} \quad ; \quad \dot{\mu} = 0 \quad ; \quad \dot{\varphi} = \Omega \end{split}$$

$\vec{v}_{E \times B} \equiv$	$rac{c}{B^2} ec{E} imes ec{B}$	$E \times B$ drift
$\vec{v}_{\nabla B} \equiv$	$\frac{\mu}{m\Omega} \vec{b} \times \nabla B$	∇B drift
	$rac{v_{\parallel}^2}{\Omega}ec{b} imes(ec{b}\cdot abla)ec{b}$	Curvature drift

with $\vec{B^*} \equiv \vec{B} + (mc/e)v_{\parallel} \nabla \times \vec{b} = B(1 + \mathcal{O}(\rho_{\parallel}/L_B)).$

Including fluctuating fields

Resulting Lagrangian 1-form

Eliminate explicit gyrophase dependence via near-identity (Lie) transforms to gyrocenter coordinates:

$$\Gamma = \left(m v_{\parallel} \mathbf{b}_0 + \frac{e}{c} \,\bar{A}_{1\parallel} \,\mathbf{b}_0 + \frac{e}{c} \,\mathbf{A}_0 \right) \cdot d\mathbf{X} + \frac{mc}{e} \,\mu \,d\theta - \\ - \left(\frac{m}{2} v_{\parallel}^2 + \mu B_0 + \mu \bar{B}_{1\parallel} + e \,\bar{\phi}_1 \right) \,dt$$

$$\bar{\phi}_1 \equiv I_0(\lambda) \phi_1, \quad \bar{A}_{1||} \equiv I_0(\lambda) A_{1||}, \quad \bar{B}_{1||} \equiv I_1(\lambda) B_{1||}$$

Euler-Lagrange equations

$$\dot{\mathbf{X}} = v_{\parallel} \mathbf{b} + \frac{B}{B_{\parallel}^*} \left(\frac{v_{\parallel}}{B} \bar{\mathbf{B}}_{1\perp} + \frac{c}{B^2} \bar{\mathbf{E}}_1 \times \mathbf{B} + \frac{\mu}{m\Omega} \mathbf{b} \times \nabla (B + \bar{B}_{1\parallel}) + \frac{v_{\parallel}^2}{\Omega} (\nabla \times \mathbf{b})_{\perp} \right)$$

$$\dot{v}_{\parallel} = \frac{\dot{\mathbf{X}}}{mv_{\parallel}} \cdot \left(e\bar{\mathbf{E}}_1 - \mu\nabla(B + \bar{B}_{1\parallel}) \right) \qquad \qquad \dot{\mu} = 0$$

$$f = f(\mathbf{X}, v_{\parallel}, \mu; t)$$
$$\frac{\partial f}{\partial t} + \dot{\mathbf{X}} \cdot \frac{\partial f}{\partial \mathbf{X}} + \dot{v}_{\parallel} \frac{\partial f}{\partial v_{\parallel}} = 0$$

Gyroaveraged potentials

- Full Lorentz dynamics
- Gyrokinetic approx.: $\phi^{\text{eff}}(\vec{x},\rho) = \frac{1}{2\pi} \int_0^{2\pi} d\varphi \Phi(\vec{x}+\vec{\rho})$ $= \frac{1}{(2\pi)^2} \int_{-\infty}^{\infty} d\vec{k} \, e^{i\vec{k}\vec{x}} \phi(\vec{k}) J_0(|\vec{k}|\rho)$

Appropriate field equations

Reformulate Maxwell's equations in gyrocenter coordinates:

$$\begin{split} \nabla_{\perp}^{2}\phi_{1} &= -4\pi\sum en_{1}, \quad \frac{n_{1}}{n_{0}} = \frac{\bar{n}_{1}}{n_{0}} - \left(1 - \|I_{0}^{2}\|\right)\frac{e\phi_{1}}{T} + \|xI_{0}I_{1}\|\frac{B_{1\|}}{B}, \\ \nabla_{\perp}^{2}A_{1\|} &= -\frac{4\pi}{c}\sum \bar{J}_{1\|}, \\ \frac{B_{1\|}}{B} &= -\sum \epsilon_{\beta} \left(\frac{\bar{p}_{1\perp}}{n_{0}T} + \|xI_{1}I_{0}\|\frac{e\phi_{1}}{T} + \|x^{2}I_{1}^{2}\|\frac{B_{1\|}}{B}\right), \end{split}$$

Nonlinear integro-differential equations in **5 dimensions**...

Major theoretical speedups

relative to original Vlasov/pre-Maxwell system on a naïve grid, for ITER $1/\rho_* = a/\rho \sim 1000$

- Nonlinear gyrokinetic equations
 - □ eliminate plasma frequency: $\omega_{pe}/\Omega_i \sim m_i/m_e$ x10³
 - □ eliminate Debye length scale: $(\rho_i / \lambda_{De})^3 \sim (m_i / m_e)^{3/2}$ x10⁵
 - □ average over fast ion gyration: $\Omega_i / \omega \sim 1 / \rho_*$ x10³

Field-aligned coordinates

□ adapt to elongated structure of turbulent eddies: $\Delta_{\mu}/\Delta_{\perp} \sim 1/\rho_{*}$ x10³

Reduced simulation volume

- \Box reduce toroidal mode numbers (i.e., 1/15 of toroidal direction) x15
- \Box L_r ~ a/6 ~ 160 ρ ~ 10 correlation lengths x6

Total speedup

- For comparison: Massively parallel computers (1984-2009) x10⁷
- **x10**¹⁶

Status quo in gyrokinetic simulation

- over the last decade or so, GK has emerged as the standard approach to plasma turbulence
- a variety of nonlinear GK codes is being used and (further) developed
- these codes differ with respect to their numerics, physics, parallel scalability, and public availability

Extreme computing in support of ITER: The GENE code

The gyrokinetic Vlasov code GENE

http://gene.rzg.mpg.de

GENE is a physically comprehensive Vlasov code:

- allows for kinetic electrons & electromagnetic fluctuations, collisions, and external ExB shear flows
- is coupled to various MHD equilibrium codes and two transport codes
- can be used as initial value or eigenvalue solver

Concepts for efficiency & flexibility

Field-aligned (Clebsch-type) coordinates to exploit the high anisotropy of plasma turbulence

parallel (z) derivatives taken to be small compared to perpendicular (x,y) ones

Numerical methods – Time stepping scheme

Method of Lines:

- turn PDEs into ODEs by discretizing the spatial derivative first
- solve for the continuous time coordinate

Numerical methods – Time stepping scheme (cont'd)

Time Solver:

(Full) Nonlinear system: $\frac{\partial g}{\partial t} = \mathcal{V}[g] = Z + \mathcal{L}[g] + \mathcal{N}[g]$ • Several *ERK* methods, e.g. 4th order $g_{n+1} = g_n + \frac{\Delta t}{6} (k_1 + 2k_2 + 2k_3 + k_4)$ $k_1 = \mathcal{V}(t_n, g_n),$ $k_2 = \mathcal{V}(t_n + \Delta t/2, g_n + k_1 \Delta t/2),$ $k_3 = \mathcal{V}(t_n + \Delta t/2, g_n + k_2 \Delta t/2),$ $k_4 = \mathcal{V}(t_n + \Delta t, g_n + k_3 \Delta t).$

 Optimum linear time step can be precomputed using iterative EV solver

Adaptive CFL time step adaption for nonlinearity

Linear stability regions for low-order ERK schemes

Phase space discretization

GENE is a *Eulerian* code, representing the 5D distribution function on a fixed grid in (**x**, v_{||},μ)

radial direction x: toroidal direction y: parallel direction z: v_{\parallel} -velocity space: μ -velocity space:

equidistant grid (either configuration or Fourier space) equidistant grid in Fourier space

- equidistant grid points
- equidistant grid
 - Gauss-Legendre or Gauss-Laguerre knots

Phase space discretization (cont'd)

$$\frac{\partial f_{\sigma}}{\partial t} + \dot{\mathbf{X}} \cdot \nabla f_{\sigma} + \dot{v}_{\parallel} \frac{\partial f_{\sigma}}{\partial v_{\parallel}} = 0$$

$$\frac{\partial f}{\partial z} \rightarrow \frac{f(z_{(k-2)}) - 8f(z_{(k-1)}) + 8f(z_{(k+1)}) - f(z_{(k+2)})}{12\Delta z}$$

- 4th order finite differences are basic choice
- however, the more elaborate Arakawa-scheme is employed, if possible [A. Arakawa, JCP 135, 103 (1997), reprint]

Exception: spectral methods are employed in the y direction - always x direction - depends on the type of operation (local/global)

Local vs. global GENE

- Local: in the radial direction
 - □ Simulation domain small compared to machine size;

thus, constant temperatures/densities and fixed gradients

Periodic boundary conditions; allows application of spectral methods

- **<u>Global</u>**: adding nonlocal features in the *radial* direction
 - □ Consider full temperature & density profiles; radially varying metric
 - □ Dirichlet or v. Neumann boundary conditions
 - Heat sources & sinks

Local vs. global GENE: Numerics

Gyro-averaging procedure in more detail

$$\bar{f}(\mathbf{x}) \equiv \frac{1}{2\pi} \oint \mathrm{d}\theta \, f(\mathbf{x} + \mathbf{r}(\theta))$$

- discretize gyro-angle integration
- coordinate transform

c (1

- interpolation between grid-cells required
 - here: 1-dimensional problem (y remains in Fourier space)
 - use "finite-elements" which allows easy extraction of gyroaveraged quantities at original grid points (~ Hermite polynomial interpol.)

$$f(x) = \mathbf{\Lambda}(x) \cdot \mathbf{f} = \sum_{m=0}^{(p-1)/2} \mathbf{P}_m(x) \mathcal{D}^m \mathbf{f}$$

$$\frac{\partial^u}{\partial x^u} P_{n,m}(x) \Big|_{x=x_{(i)}} = \delta_{in} \delta_{um}$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

0.8

$$\mathcal{G}_{in}(k_y, z, \mu) = \frac{1}{2\pi} \int_0^{\infty} d\theta \Lambda_n(x_{(i)} + r^*) e^{-iyt} d\theta \int_0^{-1} \frac{1}{0} e^{-iyt} d$$

μ-velocity space: Not required (if collisions are neglected)

Source and sink models in GENE

Full domain:

Radially dependent heat source/sink in whole domain (density and parallel momentum are unaffected)

$$\frac{df_{1}}{dt} = -\gamma_{h} \left[\langle f_{1}(\vec{X}, |\mathbf{v}_{\parallel}|, \mu) \rangle - \langle f_{0}(\vec{X}, |\mathbf{v}_{\parallel}|, \mu) \rangle \frac{\langle \int d\vec{v} \langle f_{1}(\vec{X}, |\mathbf{v}_{\parallel}|, \mu) \rangle \rangle}{\langle \int d\vec{v} \langle f_{0}(\vec{X}, |\mathbf{v}_{\parallel}|, \mu) \rangle \rangle} \right]$$

Localized sources:

- Krook operator, $\frac{df_1}{dt} = -\nu_{\rm K}(x)f_1$, to damp fluctuations close to the boundaries
- Heat source model (cmp. Grandgirard et al., PPCF '07)

$$\frac{\mathrm{d}f_1}{\mathrm{d}t} = \mathcal{S}_H = \mathcal{S}_0 \mathcal{S}_x \mathcal{S}_E$$

$$\mathcal{S}_E = \frac{2}{3} \frac{1}{p_{0\sigma}(x)} \left(\frac{v_{\parallel}^2 + \mu B_0}{T_{0\sigma}(x)/T_{0\sigma}(x_0)} - \frac{3}{2} \right) f_{0\sigma}$$

$$\mathcal{S}_x = \mathcal{S}_{x,in}(x) / \int \mathrm{d}^3 x \, \mathcal{S}_{x,in}(x) J(x, z)$$

$$\mathcal{S}_x = \mathcal{S}_{x,in}(x) / \int \mathrm{d}^3 x \, \mathcal{S}_{x,in}(x) J(x, z)$$

and floating boundary conditions

 $S_{x,in}(x)$

0.8

0.9

Magnetic geometry

- arbitrary flux-surface shapes can be considered as long as the metric $g = (g^{ij}) = (\nabla u^i \cdot \nabla u^j)$ is provided to compute expressions like $\frac{1}{B_0^2} (\mathbf{B}_0 \times \nabla \zeta) \cdot \nabla = \frac{1}{\mathcal{C}} \frac{g^{1i}g^{2j} g^{2i}g^{1j}}{\gamma_1} \partial_i \zeta \partial_j$
- simple choice: circular concentric flux surfaces

 others can be read in via interfaces to TRACER/GIST (field line tracer) and the equilibrium code CHEASE

Input: GENE Launcher

	4		GENE Launcher			_ O X
		C	ENE Launche	ər		
Jobs =>	1	2	3	4	5	
Operation	Number of supplice			law an adda	T	Read parameters
Input/Output	Number of species:	2	P	New species]	New 'prob' dir.
Domain	Species information:					Write parameters
General	Current species: Species name:	<ir> 'ions'</ir>	1 × <	2 > trons'	_	Save as
Geometry	Density gradient:	2.000	2.000		_	Check
Species	Temperature gradi Particle mass:	ent: 4.500 1.000	3.500	0E-03	-	Submit
Nonlocal	Charge:	1	-1		_	Submit scan
Ref. Values	Temperature: Density:	1.000	1.500		-	Quit
Development			e advection 💷 Pas lete	Delete		🖾 Expert mode
Clear form Default values						
?						
	Messages					Current path: big

Output: GENE Diagnostics Tool

				GENE diagnostics					
				data path	: \$9pfs/hlrt	Ĭ.		tmp1	tmp2
	0.2	12		output pa	th: I			default: out	out
				runs:	jį.			show ser	ies info
				Start tim	e: 42,3	first	resolve	show refere	nce values
			2.	end time:	42,344434	last	steps	geometry	profiles
	0.0		A 24	sort meth	od: 0	sparse factor:	1	show nr	g data
	No. 1			particle	species	normalize to		output for	mat
	-0.1			₩ e		R_0 -		💷 data: AS	CI 🗎
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	122		⊥i		<u>m_i</u>		🗌 data: H5	
	-0.2					T_e		🗌 🗆 postscri	pt 📃
_	HILMS & ALLEY	held in this window to		I					
mo	n]chpt]mom globa	al]scan]nrg	Vsp	1					
mo	n)chpt)mom globa	al]scan]nrg mode	vsp var	res	ps2png			sta	rt
moi	n) chpt) mom globa Ballooning modes			res	ps2png off		X	sta	
?	Ballooning modes				off			load	form
?	Ballooning modes B_perp				off 			load save form	form
? ? ?	Ballooning modes B_perp Contour plots				off off	 off	1776	load save form	form as form
3 3 3	Ballooning modes B_perp Contour plots Correlations (x/y,t)	mode	var		off off off	 off 		load save form clear	form as form
5 5 5 5	Ballooning modes B_perp Contour plots Correlations (x/y,t) Flux spectra (ky/kx)	mode off	var off		off off off	 off 		load save form clear	form as form able list
3 3 3 3 3	Ballooning modes B_perp Contour plots Correlations (x/y,t) Flux spectra (kg/kx) Parallel flux profiles	mode off	var off		off off 	 off 		load save form clear	form as form
3 3 3 3 3 3	Ballooning modes B_perp Contour plots Correlations (x/y,t) Flux spectra (ky/kx) Parallel flux profiles Frequencies	mode off	var off		off off off off	 off 		load save form clear show varia	form as form able list
3 3 3 3 3 3 3	Ballooning modes B_perp Contour plots Correlations (x/y,t) Flux spectra (ky/kx) Parallel flux profiles Frequencies Cross phases	mode off	var off		off off off off	 off off		load save form clear show vari.	form form form able list H5 files ps files

Global Gyrokinetic Simulation of Turbulence in ASDEX Upgrade

gene.rzg.mpg.de
gene@ipp.mpg.de

Summary and outlook

Some outroductory remarks

Goal of this first lecture: Introduction to gyrokinetic theory and simulation

More info: Review by Brizard & Hahm, 2007 http://gene.rzg.mpg.de

Topic of next lecture:

Linear and nonlinear gyrokinetics "in action"