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Outline

Properties of Tokamak Core Turbulence
Implications on Tokamak Confinement Scaling

Self-organized Structures in Torus

Radially Elongated Eddys
Zonal Flows

Emphasis:
Study of underlying Physics Mechanisms leading to
Paradigm Shift
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Outline

Properties of Tokamak Core Turbulence



Microinstabilities in Tokamaks

. Tokamak transport is usually anomalous, even in the absence of
large-scale magneto-hydro-dynamic (MHD) instabillities.

« Caused by small-scale collective instabilities driven by gradients
in temperature, density, ...

* Instabilities saturate at low amplitude due to nonlinear
mechanisms

* Particles E x B drift radially due to fluctuating electric field
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Global confinement scales with

core turbulence level

Equipe TFR & A. Truc, NF (1986)
Brower NF (1987) TEXT

Paul et al, PoF (1992) TFTR R=2.5m, a=0.89m
Durst et al, PRL (1993)

Local confinement also scales

with turbulence level
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Amplitude of Tokamak Microturbulence

TFTR  Fonck, Mazzucato, et al.
1 ¢ : , : a Relative fluctuation levels (%)
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- Reflectometry
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* Relative fluctuation amplitude on / n, at core typically
less than 1%

* At the edge, it can be greater than 10%

» Confirmed in different machines using different
diagnostics



k-spectra of tokamak micro-turbulence
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Ko pi~0.1-0.2

-from Mazzucato et al., PRL '82 (u-wave scattering on ATC)
Fonck et al., PRL'93 (BES on TFTR)

-similar results from

TS, ASDEX, JET, JT-60U and DIlI-D



Properties of Tokamak Core Microturbulence

from Measurements
*on/ny~ 1%

*k . pi~kyp~0.1-0.2

* k, < 1/gR << k;: Rarely measured
*®-KeUp ~A® ~ Oy
Broad-band = Strong Turbulence

Sometimes Doppler shift dominates in rotating
plasmas



Contours of Density Fluctuations Exhibit Turbulence Structure

Fully Developed lon Temperature Gradient (ITG) Driven Turbulence:

from Gyrokinetic Particle Simulations by S. Ethier, W. Wang et al.,



Outline

Properties of Tokamak Core Turbulence

Implications on Tokamak Confinement Scaling
with respect to Machine Size
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Kinetic Description of Micro Instabilities

@ Linear Threshold Condition for ITG Mode

From Fluid Theory, we learned that for flat density, uniform B,

1/3 (k

% I TG linear growth rate o |

/3
CS)2 ,for ., >0 >> kv,

Oy,
This prediction from fluid picture — ... >0 for any value of ‘VTI‘
However, as |VTI‘ \ a)\, so that w >> kv, (fluid approx.) breaks
down. — To accurately predict the onset condition for ITG, one must do
kinetic theory, which is valid for 2. v, so that wave-particle

[
resonant interaction (Landau damping) is properly described.
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From NLGK for uniform ]_§

0 c r q 0
Loy thvv-Lv @ o —eo
Linearize it, i.e., <f> =F+d | ¢ Z%+5¢
and drop nonlinear terms y
By further separating nonadiabatic part o/ from adiabatic part ( (JT J
of = | |5¢ F,+oh
( t+vVJ5h+( —|ﬁ( 5p)+ ;5 V{5¢)- J = — (3.2)
(60)=J,(k.p, )50
v 3 — For Maxwellian F,
o+t - |fte
2v: 2 le|5¢ — (3.3)
oh = J F,
®—kpy, d
where =4Il __(ije_ wSZail
nn, 7, L, 12



Dispersion Relation can be obtained from quasi-neutrality condition :

o O -
|€|T¢ :—|e|T¢+Id v.J,0h . (34)

/ adiabatic part  nonadiabatic part  of ion response
adiabatic e-response

Fluid limit of ITG (Lecture |) can be obtained by taking @ >> kv,
and k£ p, —0 limit (for Vn=0, I'=0).

Stability is determined by Imaginary part of Eq. (3.4).

In kinetic regime, with strong ion Landau damping, k2< Vr

such that w << w.,;, at marginality. So the usual “ion heating”

term coming from V(¢)6%Fo is negligible. (The last term in Eq. (3.3))

l
Tracing back the origin of the rest in Eq. (3.3),

13



mp Then, Imfd3v< p L_ 0
L =Ky,

le., margin)ality condition

corresponds to near “zero” relaxation of the velocity-dependent

free energy due to wave-particle resonance.
@, 1+ v 3 \
T 2 O —ky)

lim Im _wdvrdﬂﬂ 1 0 ( My Joz(kj_pz)e_vzn‘%]

®—0 —k”vH or 23/2
. * 1 a —v T/2vs V
=lmIm| dv av, v "Iyl k.
00 e o~k Or {[TMJJ e ( Qj}
a —v?/2vE, no(]") _
‘k|£}£%a}[ mro(/ﬁpf) =0 — (3.5)
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%)
Therefore, for —<<v,, |
[

o | ny(r) _ _
o {sz(’”) L (kJ_pz' )} =0 (3.6)

defines the linear threshold of ITG instability. (FO (b)=1, (b)e‘b)

For k p, —0, nl?Z(Z')) ="const." IS8 the marginality profile.
17 (r

So if ITG instability were very violent enough to throw out ion heat very
rapidly once it’'s excited, one can imagine that the ion temperature

profiles in tokamak plasmas are approximately near the linear

marginal profile. Of course, it's an oversimplified and pessimistic viewpoint,

but has an interesting implication and sometimes a useful rough guidance.

15



Neutral Beam Heating Heat Source(r)

7(r) [ -....l Anomalous
« fransport
due to
lon heat ITG
transport
r#
If '
Diffusion P au ‘ ‘ ~ ‘ ‘
coefficient Stff VT’ V]: Threshold
due to rather than || or
ITG e Non-stiff n ~ Ucritical
- I I

| .
Threshold V7|

Soif T,(r)« const-n,(r)° is the marginality profile, and

n, is given, 7.(0) is almost uniquely determined by 7. edge
’ 16



L) For Very Low FAr)] For Very High
iedge ];,edge
d d

** In this extreme limit, 7:(0) (better be high for fusion)
Is mostly determined by T (a) not much by transport in the core
(since it's so rapid, throws away excess heat
which will raise 7' (») above marginality.)
*» This is (very simplified) reason why ITER needs to achieve

H-mode plasmas in which T, ise (pedestal) is high.

17



Back to Sr {;?2(2) FO(kLpI.):| =0 In Eq. (3.6),

If we know #,(r) and the wavelength of ITG, the marginally unstable
ion temperature profile is given by 7:(y) = Const.(no(,ﬂ)ro(hpi))z ,

or Tf(f‘)_[no(r)ﬂfo(hpf("))jz.
(@ (m@ ) L,k p@)

Eq. (3.6) implies that the onset condition for ITG instability in uniform

plasma is given by n = dinT, L, S 2
' dlnn, L, |
Mo 1+2b{1——]1(b’)]

(3.7)
[O (bz)

2
1 K/ B.B. Kadomtsev and O.P. Pogutse,
T~ ) Review of Plasma Physics Vol. 5.

Pg. 249 (1970)
1 b= (kJ_pz' )2 18




Spatial Structure of Microturbulence

A. Role of Magnetic Geometry

So far in this lecture series, we've discussed microinstabilities
in the context of “local theory”, i.e., for given values of Macroscopic
d, . .
Parameters, n,(x =x,), %(x =x,), B, (uniform), etc.
W|th 5¢(x,y, z, f) _ Zé‘gﬁk wei(kxx+kyy+kuz)—iwt

k,» \

Independent of x, while

there are »,(x), 7'(x) profiles
SO on.

A challenge is to find more realistic and relevant representation
of tokamak microinstabilities.

19



Very rough estimation of the anomalous transport coefficient
D.,, using dimensional analysis based on
“Random Walk” argument

o (X)

Each particles ‘ :
walk randomly in each
|0 direction
< | >
AX /X\ >
in At

Diffuse with a
coefficient ~ AX? / At

Since anomalous transport is caused by fluctuating 5\/X due to

microinstabilities in plasmas, we can argue

AX"‘i ,At~a)c'jrurb—1 -1
K

ecorrelation time 7 linear KR |
X

20



Then,

DTu rb -

AX? _Yiin _ @ ky P (CTij

At k2 K2 Klp L\ eB

L~a, L, for drift waves, LTi for ITG turbulence, ...so on

It's obvious that depending on the choice of kx and ky,

DTurb scaling has many possibilities.

If one takes a practical approach of using values of kx and ky
(where the spectrum

from experimental measurements, k |k oc ,Oi_l )
peaks

Then

D, ~('0‘ j(CT‘j : oci is called the “Bohm” scaling.
L \ eB eB

Since it's reduced by a factor (ﬁj <<1 , "gyroBohm” scaling
L 21



While it's more common to get “gyroBohm” scaling

from simple local theory, most experiments in tokamaks exhibited
results which are closer to “Bohm” scaling rather than “gyroBohm”
scaling, especially for ion thermal transport ( ¥; ) in

L-mode plasmas. It's very important to achieve a thorough
understanding of “size-scaling” of D for

Turb ’

prediction to larger devices in the future.

cl.
D oc| —-
Boh
onm eB
or
D o | P cT; ?
rosoim = g N eB ) 8 B

22



i ?
Then, what scales of K., and ky cangiveus D, *
“‘Bohm” came from experimental observations on very early
basic devices (i.e., small). Then, even drift wave

type instabilities have relatively low mode numbers.

Eg., Quantization condition

k@~ N, (N,,M, ~O(1) integer)

kya ~ Myﬂ'

D - ky Pi CTi - CTi | 363R ENGINEERING
o L\ eB eB



We learn that if ix, ;ty oc a (system size)
one can get “Bohm” scaling of transport.

Then, what happens to present day larger tokamaks? say a & 100p.

- From B.E.S.
Microwave Scatt.
etc.

- Eddy size ~ /1X , j,y ~ several pO;

- From Nonlinear Gyrokinetic Simulations

24




So we want to know what physics mechanisms determine

dominant /1)( and /’Ly (eddy size to be more precise).

- “Nonlocal Analysis” is required to find

“spatial structure of micro-turburbulence.”

Linear theory limit

“eigenmode structure of
microinstabilities”

¢ Toroidal Geometry, taking into account of

‘§‘~B¢oc£: 1
R R,+rcosé

*» In the end, Self-Organization or Self-Regulation

determines the spatial structure of tokamak micro-turbulence
25



So far, in slab X ——

y ro but B has both
£ R¢ B, (toroidal) components
B, (poloidal)
p(r.0,0)=> 6, (1™ pitch of
n.m fluctuation”
B, r determines -
¢
- A > gk pichof nmez,
q r A
m
If two coincide, 9(I,) :F .
1 This radial location r = I IS called the
“mode rational surface.” o

v



i(m0—ng) k = —, k = ——
c < - © ’ R

i(k,y+k, z) ~+ o~ o

e’ = B,¢+ B,0

B k-B _m B, n B,
‘B| r B RB 1B

ok = 5 (m ng(r))

* k=0 at r=r,.(q0)="")

m, n fixed but g(¥) & therefore k, varies with 7 .

Expanding q(r)=q(r,)+(r— r)t ](I")-l-

k (r—r,)=k/(x) increases with x,

flips sign across 7, (or x=0).

27



» Near mode rational surface B = B(z +ij;) (3.9)
L

_gqR

where L . §=——- magnetic shear.

B a

X

v

“Sheared Slab Geometry”

28



In sheared slab geometry (with one rational surface),

k 0
ko=—2x e
L ’ o’
s k has been shifted away.

“OoP(x,t) = Zé’gék »(x)e 182200« This mode refers to

ky “a single heI|C|ty fluctuation”

(n m) with = _) q(,,- )
n

Radial Mode Structure of Drift Wave

Lecture |. | 242 Wi kllzcs2 S —0
Local theory TR~ PP ¢’30) B
In sheared slab :
o ., CYk’
1+p2k2 pSZ _ e s Y L2 5¢;}’a) =0 (3.10)

oxt o 0l

29



* Weber Egn. : familiar from Single Harmonic Osc. In Q.M.

h* 0
2m ox*

1

———w=(E—VSHo(x))W=[E—Emwzxzjw (3.11)

- We know how get Eigenfunctions a

nd Eigenvalues of this eqn.

One tricky point is that we have an antiwell potential (hill)

rather than potential well, for ‘Re(a))‘ - ‘Im(a))‘ .

V;E\riﬂ Wave (.X) A

—

# Physically meaningful solution should satisfy the causality condition.

\ X

"€ 1im|og(x)| =0 for Im(w) >0

x>0

unstable solution.

30



A F 3 F 3

~/

>
<>
=

>

for unstable solution
while fluctuation grows locally in time,

at a given time, it should decay in radius as |x| —> 00

o
Group Velocity : v, =—— As |x| 7% s
Ok g 0 for x>0
a_a) < () for X < O
ok

X

4 A
» UV W

31



([ ikC,
~ exp| — X
Out of two (mathematically) possible solutions \ 20L.p,
[ ik,C
we should choose the upper one! ~exp| +—22 2
\ 2&)LS)OS
£ =0,1,---

1 iDL, |
— — — . radial quantum
I+k,p; 1+k,p; L, number

Eigenvalue : @ = @.,

magnetic shear-induced damping

L.o.,p, L.
Ax(%)w\/;c—cpw L "
it

1]

S 4 W Ax™y :i.e., magnetic shear localizes the mode
within the device
(not determined by B.C. at the WALL).

- get “gyroBohm” scaling. (if it were unstable by additional
mechanism, eg., trapped electrons)

J
3\

/

32



One can also extend local theory of “ITG” to sheared slab geometry.
(negative compressibility

acoustic mode )
Analysis is slightly more complicated than e- DW, but can be reduced to
Weber-Eqn. [Coppi, Rosenbluth & Sagdeev, PF 10, 582 (1967)].

It's noteworthy that an elaborate nonlinear mode coupling theory

in sheared slab yielded (rather than from dimensional analysis
we’re discussing ).

7' oc gyroBohm

[G.S. Lee & PH. Diamond, Phys. Fluids 29, 3291 (1986)]



“Nonlocal “ kinetic theory can also be pursued in sheared slab geometry :

- Local kinetic theory predicted [K&P] Eq. (3.7)

2
;= 1.(b) for ITG excitation.
1425, [1 — 11]
]O (bz)
1
Since 17, =—", it predicts instability for very weak — for

flat density profile (, —so0 )

NO GOOD for that limit.

| don’t recall a credible analytic ITG onset condition in the flat density limit.

34



* For sheared slab, flat density case,

L, > 1_9(2 n l] Is the onset condition

L.
! [Hahm & Tang, PFB "89]

I e

—L > strong magnetic shear favorable for ITG stability !”

T

€

* In toroidal geometry : @ _k||V||

to w —k”v” — @, resonance (@, isfrom
VB & Curvature drift)

resonance should be generalized

If one keeps only @ — @, resonance, (ignoring k”v”)

i . i L +1 [Romanelli, PFB '89]
L, 3\T

— Comparisons to TFTR

35
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o (b)

rrrri

L L L |

. Bom
= l’f‘“."ﬁ r'lc =
--"’r Hahm
le

Ii!lllijllll lIlJJlIIlJIE'

0 0.2 0.4 T 05 0.8

MINOR RADIUS (m)

Comparison of measured 7,

Hahm
c

m

with the theoretical estimates nf" and n

[S. Scott et al.,, PRL 29, 531 (1990)]
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Role of Toroidal Geometry

Uniform B model — Sheared Slab Model — Toroidal
Geometry

B=B,(5+-=7)

LS
p stilasymmety . 1000 qence
direction R
m - — poloidal angle
No longer

symmetry direction

n :agood quantum # l

For given 7 |
many “m “ harmonics
‘» | 1 should couple

p — — (even in linear theory)
()

37



Before looking for a good representation of fluctuation
decomposition in torus, let's consider a simplest nontrivial

example of ITG mode in torus (with : can be unrelated to
“negative compressibility
acoustic’ ITG. )

It has an “interchange” or “Rayleigh-Taylor” character.

# must be localized at bad curvature (low B field) side.

—» motivate a “local” theory at bad curvature side.

‘ §| oC i mp particles drift in vertical direction (VB & curvature drift)
R

We’'ll get to details later, but )
_ v, +ubB
VVB,CU.I’V o vVB,CurV 3

Vri 38




An important consequence of this “energy dependent’ particle drift

m) On couplesto 57 !
Uniform B, b 8t5n+5ﬁE-§nO+n0V”5u“& 0

Now with nonuniform f}o . take moments of linearized GK eqgn in torus.

%, I C = ~ q 9,
[§+ ARSI |@f + (EV(&ﬁ)xb -V—;V(c?gﬁ)aT]Fo =0

most obvious addition due to toroidal effects

i _ L v”2 + uB
Id V- notingthat v, =v,,| ———

vT i

39



Then, 3
— O, + iy, - Vn, + T @01, +n,V ou +---=0

ot 1
To focus on “interchange” physics, take k” —>( (asdone by
and take a simple “flat density” limit. : Rc_>ma_ne||| .
In kinetic regime)
0 _ cl
—on, o o, >0 0, =——"—k
- 51‘ ]11 di d eBR Y
& (at bad curvature side)
Take simplest V7' evolution eqn.
0
aé’Tz +oug - VI & 0
(assumed @ > @, but || > @ )
(2x2) mp , T (simplified)
e Toroidal ITG

bad-curvature coupled to VT

40



This is another very illuminating limiting (but relevant) case.
Further readable physical discussion in M.A. Beers et al., Ph.D Thesis

Princeton U. '95.

Both in this fluid limit & analytic kinetic derivation of Romanelli, PFB’89

=0, ~ky
k” —> (O has been assumed.
resonance

This is incompatible with fluctuation localized in bad-curvature side

l.e., “ballooning” mode structure

41




Recap :

k .
@ In sheared slab : £ :L—yx - some fluctuations can be

Ay

localized in radius
(small k£, — minimize magnetic shear-induced damping

lon-Landau damping )

—_

& Extended along B
mp “flute-like fluctuations”

@ But "ballooning” fluctuations localized at bad curvature side.

1
m» L —
gR
B2
What's their radial extent? — Next Lecture. 45



Radially Elongated Eddy is a Natural Structure

Since
» Poloidal direction no longer symmetric in torus.

* Poloidal harmonics couple to form a Global Eigenmode.

Radially elongated eddy

=
(11 A@
Cf. This is a linear theory-based my
simple illustration. 32 -1 j=0 1 2 3

Some strongly prefer “nonlinear” explanation.



Radially Elongated Eddys extract free energy efficiently,
and minimize convective (vector) nonlinearity
which increases with k;,

- D ~AX2~7~0)*~ Ko _pi(CTij
o YAt k2 k2 (kZp ) L\eB

r r r

Radially Elongated Eddys transport heat very efficiently ! :

kr - (/Oia)_ll2
", ~ Ja—]




- _‘_'- Euratom G201

Streamers

* Maps of the flux in
poloidal planes.

3D Structure of

_ TORE SUPRA

e A SO B —

Q 50}
(o))
- Elongated structuresin = & - e
the radial direction: 8§ . Radus
streamers. Z
o
- Aligned with the
direction of field lines.
WKS KSTAR 13-15 November 2000 X. Garbet




- Euratom Ce:] , '_‘“”’é'?ﬁé’ﬁé*supm

e Diamond and Hahm Bursty Transport
95: profile
relaxations at all Beyer et al 99

spatial and time
scales (avalanches).

 Observed inmany
turbulence }

simulations (Carreras 96,
Sarazin and Gendrih 98

Garbet and Waltz 98, Beyer
et'al. 99,...) b -20 0 - 20

Flux vs. r and t

WKS KSTAR 13-15 November 2000 X. Garbet



Partial Summary

Radially Elongated Eddys (Streamers) can be formed in
toroidal geometry and transport heat efficiently.

---> Bohm Scaling of Confinement ~ Experimental Trends

Why not sufficient ?
Recall that from experimental measurements:

Eddy size ~ A,,4, ~several p

a7



