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 Introduction to thermonuclear fusion

 Basics of magnetic confinement fusion – the tokamak 

 Some key parameters for magnetic confinement fusion 
in tokamaks

 How the results from existing tokamaks led to ITER for 
the next step in fusion research

Synopsis
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Fusion – the fundamental principle

• Energy gain from fusion, like 
fission, is based on Einstein’s 
equation:

E = mc2

−mass loss for DT reactions 
corresponds to ~ 0.4%

• As illustrated, energy gain per 
unit mass is greater for fusion
−energy gain/ reaction:

DT fusion: 17.6 MeV
U fission: ~200 MeV
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Essential Fusion Reactions
T

D

Fusion
He

n

+ 20% of Energy (3.5 MeV)

+ 80% of Energy 
(14.1 MeV)

• The D-T fusion reaction is the simplest to achieve under terrestrial 
conditions: 

2D + 3T  4He (3.5 MeV) + 1n (14.1 MeV)

• Two other important reactions for DT fusion:
1n + 6Li  4He + 3T + 4.8 MeV

1n + 7Li  3He + 3T + 1n – 2.5 MeV

− these reactions will allow a fusion reactor to breed tritium
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Fusion Power Density vs Temperature
1 keV = 1.16 × 107 K

• High temperatures ( ~10 keV) are required for significant 
thermonuclear fusion energy production ⇒ dealing with plasmas!
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Basics of Magnetic Confinement Fusion:

The Tokamak
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• Magnetic fields cause ions and electrons to spiral around 
the field lines:

− in a toroidal configuration plasma particles are lost to 
the vessel walls by relatively slow diffusion across the 
field lines

Plasma Toroidal Magnetic Confinement

A special version of this torus is called a tokamak:

‘toroidal chamber’ and ‘magnetic coil’ (Russian)

F   q E v B 
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with primary winding

• External coils
− to produce a toroidal magnetic field

• Transformer
− to produce a toroidal current

− this plasma current creates a poloidal 
magnetic field

in the plasma

• Finally, poloidal coils
− to control the position and shape of the plasma

The Tokamak:

Magnetic Confinement in a Tokamak



Page 9ICTP Advanced Workshop on Fusion and Plasma Physics, Trieste, Italy     3 – 14 October 2011

12m

15m

JET: Joint European Torus

• JET is currently the largest 
tokamak
− Major/ minor radius: 3 m/ 1 m
− Plasma volume ~100 m3

− Toroidal field: 3.4 T
− Plasma Current: 7 MA

• In DT experiments in 1997, a 
peak fusion power of 16 MW 
was produced
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Internal View

with plasma

JET - the largest existing Tokamak
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• In configurations with only a 
toroidal field, ions and electrons 
drift vertically in opposite 
directions:

• An additional poloidal field allows 
particles to follow helical paths,
cancelling the drifts

• “Winding number” of helix is an 
important stability parameter for the 
system:

− qc = ”cylindrical” safety factor

− R/a = aspect ratio

Magnetic Confinement in a Tokamak

qc   
aB

RB
 ~ 

a2B

RIp

Toroidal field
∝ 1/R

Poloidal field
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• Formal definition of safety factor:

− absolute value of q and its variation across the 
plasma radius are important in plasma stability

− by elongating the plasma, more current can be 
squeezed into the plasma ring at fixed q:

−  also turns out to have important consequences 
for plasma stability

• Typically the pressure (temperature, density) 
and current profiles are peaked on the 
plasma axis:

– the profile of q is then the inverse, with q(0) ~ 1

Plasma Equilibrium in a Tokamak

a
b

B

j

p

q   d
d poloidal flux

toroidal flux

   b
aq0 ~ 1 q95 ~ 3
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Many Plasma Shapes Have Been Investigated

• Plasma shape affects confinement and stability properties

R Stambaugh, APS (2000)
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Temperature - Ti: 1-2 108 K   (10-20 keV)
(~10  temperature of sun’s core)

Density - ni: 1 1020 m-3

(~10-6 of atmospheric particle density)

Energy confinement time - E: few seconds ( current  radius2)
(ITER plasma pulse duration ~1000s)

Fusion power amplification:

Present devices: Q ≤ 1
ITER goal: Q ≥ 10
“Controlled ignition”: Q ≥ 30

Plasma fusion performance

i i E
Fusion PowerQ = n T
Input Power


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• Existing experiments 
have achieved nT values
~ 11021 m-3skeV
~ QDT = 1

• JET and TFTR have 
produced DT fusion 
powers of >10MW for ~1s

• ITER is designed to a 
scale which should yield
QDT ≥ 10 at a fusion 
power of 400 - 500MW for
300-500s

ITER

Fusion Triple Product
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• Tokamaks have a built in heating scheme: “Ohmic”
heating by the plasma current
− but plasma resistivity varies as Te

-3/2, so heating power 
declines with increasing Te

− so Ohmic plasma temperatures of several keV are possible, 
but additional heating is required to achieve 10-20 keV

• Two basic heating schemes:
− injecting neutral particle beams
− injecting radiofrequency waves – because the plasma 

refractive index depends on density and magnetic fields, 
several RF options are possible

• Each heating technique also provides some current 
drive

Plasma Heating
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• Neutral beam injection (NBI):
− intense particle beams are accelerated, 

neutralized and injected into plasma
− Eb ~ 100 keV, Pb up to 40MW in TFTR
− very effective:

− heating
− current drive
− fuelling
− rotation drive

• For ITER:
− Eb ~ 1 MeV is required to penetrate 

plasma/ drive current
− negative ion source technology
− higher energy  little fuelling, little 

rotation drive

Injection of Neutral Particle Beams
fuelling

heating

TFTR
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• Ion Cyclotron Radiofrequency Heating (ICRF):
− launched at frequencies ~ ci  f ~ 50 MHz
− technology conventional
− wave coupling to plasma problematic – penetration through edge

• Electron Cyclotron Resonance Heating (ECRH):
− launched at frequencies ~ ce  f > 100 GHz
− source technology non-conventional: “gyrotrons”
− coupling, absorption, space localization very good

• Lower Hybrid Heating/ Current Drive (LHCD):
− “lower hybrid” a complex wave resonance in plasma: f ~ 5 GHz
− technology fairly conventional (source: klystrons)
− wave coupling to plasma problematic – penetration through edge

Radiofrequency Heating
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• Current drive provides:
− replacement of the transformer drive  towards steady-state plasma
− manipulation of the current profile to improve confinement/ stability
− direct suppression of plasma instabilities

Current Drive

• Current drive efficiency (CD = 
driven current/input power):
− typically increases with Te

− for beams, also increases with Eb

 favourable for ITER

C Gormezano et al,  Nucl Fusion 47 S285  (2007)



Page 20ICTP Advanced Workshop on Fusion and Plasma Physics, Trieste, Italy     3 – 14 October 2011

Plasma Confinement: H-mode

JET

• It is found that the plasma confinement state (E) can bifurcate:
− two distinct plasma regimes, a low confinement (L-mode) and a high 

confinement (H-mode), result
− this phenomenon has been shown to arise from changes in the plasma 

flow in a narrow edge region, or pedestal
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• Predictions of fusion performance in ITER rely 
essentially on a small number of physics rules:
• H-mode energy confinement scaling (IPB98(y,2)):

• H-mode threshold power:

(i.e., a certain level of power needs to flow across the plasma 
boundary to trigger an H-mode)

 E,th
98(y,2)  0.144 I0.93B0.15P0.69n0.41M0.19R1.970.580.78  (s)

 E  IR2P2 / 3

 PLH  0.098M1B0.80n 20
0.72S0.94  (MW)

 H98(y,2)  E,th
exp / E,th

98(y,2)NB:

ITER Physics Basis I
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Fusion Performance Depends on Confinement
 Uncertainty in achievable 

energy (HH98(y,2)) and helium 
particle (*

He/E) confinement 
gives a large uncertainty in 
resulting fusion performance

 Q=10 Inductive Scenario uses 
HH98(y,2) = 1 and *

He/E = 5 
based on empirical data from 
existing tokamaks

 Too much core helium ash 
accumulation could reduce 
fusion performance 

 Q > 50 is not excluded 
within the uncertainty

*
He/E

(a) 2.5
(b) 5
(c) 10

Zeff 1.8
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th  IpR2P-2/3

• Energy confinement time is one of many parameters studied in 
a wide range of tokamak experiments
• multi-tokamak experimental database provides scaling prediction 

for ITER energy confinement time, 

How is ITER scale determined ?
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ITER is twice as large 
as our largest existing 

experiments

JET
Vplasma 80 m3

Pfusion ~16 MW 1s
tplasma ~30 s

ITER
Vplasma 830 m3

Pfusion ~500 MW 300 – 500 s
tplasma ~600 – 3000 s

Tore Supra
Vplasma 25 m3

Pfusion ~0 MW 
tplasma ~400 s
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• MHD stability:

β = (plasma kinetic energy)/(plasma magnetic energy)

• Divertor physics:

 q95  3

  n / nGW  1
 
nGW (1020 )  I(MA)

a2

 
N  (%) aB

I(MA) N  2.5

  ,  det ermined by control considerations

 
q95  2.5 a2B

RI
f(,,)

 Peak  t arget  power  ~  10MWm2

 Helium  transport :  He
* / E  ~  5

 Impurity  content :  nBe / ne    0.02  (  ~ 0.1%  Ar  for  radiation)

ITER Physics Basis II
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• The interaction of the plasma fluid and the magnetic field is 
described by magnetohydrodynamic (MHD) stability theory
− provides a good qualitative, and to a significant extent quantitative, 

description of stability limits and the associated instabilities

• There are two basic types of instability:
− “ideal” instabilities produce field line bending – can grow very rapidly
− “resistive” instabilities cause tearing and reconnection of the magnetic 

field lines  formation of “magnetic islands”

MHD Stability - Plasma Operational Limits

• Plasma control techniques are being 
applied to suppress or avoid the most 
significant instabilities
− Neo-classical tearing modes (NTMs)

− Edge localized modes (ELMs)

− Disruptions and vertical displacement events 

− Allows access to higher fusion performance
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MHD Stability: Disruptions

H-
mode

L-
mode

CQ

TQ

Plasma 
current

Plasma 
energy

RE current

t

Typical chain of events during 
a plasma disruption

• The ultimate stability limit in tokamak plasmas is set by major 
disruptions: large scale MHD instabilities
− loss of plasma energy in milliseconds (thermal quench – TC)
− plasma current decays in 10s of milliseconds (current quench – QC)

• Produces:
− very large heat loads on plasma facing surfaces
− significant electromagnetic forces in vacuum vessel
− large runaway electron beam

Mitigation 
techniques 
essential
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• li-qa diagram describes stable plasma operating space of internal 
inductance vs safety factor, limited by disruptions:
− low li typically has to be negotiated during the plasma current ramp-up
− high-li limit typically occurs due to excessive radiation at plasma edge, 

resulting in cold edge plasma and narrow current channel (e.g., at density 
limit)

qa=2 limit

JET
Limiter plasmas

MHD Stability - Plasma Equilibrium Limits

Snipes, et al,  
Nucl Fus 28
(1988) 1085

2
0

2 2
2 a

i
a

B rdr
l

a B



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• Experiments have shown that 
tokamak plasmas can sustain a 
maximum density:
− limit depends on operating regime 

(ohmic, L-mode, H-mode …)

− limit may be determined by edge 
radiation imbalance or edge 
transport processes

− limit can be disruptive or non-
disruptive

• Comprehensive theoretical 
understanding still limited
− “Greenwald” density:

nGW = I(MA)/ a2

− operational figure of merit

JET

MHD Stability - Density Limits
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 Maximum value of normalized 
plasma pressure, , is limited 
by MHD instabilities:

 Typically, “Troyon” limit
describes tokamak plasmas:

N ≤ 2.8-3.5

 More generally, “no-wall” limit:
N ≤ 4li

  
(%)  100  p 

B2 / 2o

N 
(%)

Ip(MA) / aB

Plasma MHD Stability – Pressure Limit: 
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• Essential problem is:
 handle power produced by plasma 

with (steady-state) engineering limit for 
plasma facing surfaces of 10 MWm-2

 extract helium from the core plasma to 
limit concentration below ~6%

 prevent impurities from walls 
penetrating into plasma core

 ensure plasma facing surfaces survive 
sufficiently long

Power and Particle Exhaust

Core 
plasma

Scrape-off layer (SOL) plasma: 
region of open field lines

Divertor targets

Private 
plasma

X-point
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• The divertor is a significant 
element of the solution
 surfaces for high heat fluxes 

(10 MWm-2)
 cryopumping to extract particles 

leaving the plasma, including 
helium

Power and Particle Exhaust

ITER divertor cassette –
54 cassettes make up the 
complete toroidal ring

• The divertor is fundamental to 
exhaust power from a burning plasma:
 impurities are added to the edge plasma  

to increase radiation
 a large pressure gradient develops along the field lines into the 

divertor
 the divertor plasma temperature falls to a few eV
 a large fraction of the plasma exhaust power is redistributed by 

radiation and ion-neutral collisions
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• Access to plasmas which are dominated by a-particle heating will 
open up new areas of fusion physics research, in particular:

− confinement of ’s in plasma
− response of plasma to -heating
− influence of -particles on MHD stability

• Experiments in existing tokamaks have already provided some 
positive evidence

− “energetic” particles (including -particles)  are well confined in  the 
plasma

− such particle populations interact with the background plasma and 
transfer their energy as predicted by theory

− but energetic particles can induce MHD instabilities (Alfvén 
eigenmodes) - for ITER parameters at Q=10, the impact is expected to 
be tolerable

Burning Plasma Physics
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• In existing experiments single 
particle theory of energetic ion 
confinement confirmed:
− simple estimate, based on banana 

orbit width shows that Ip ≥ 3MA 
required for -particle confinement

• Classical slowing down of fast 
ions well validated:
− data range 30keV NBI (ISX-B) to 

3.5MeV -particles (TFTR)

• Energetic ion heating 
processes routinely observed 
in additional heating 
experiments W W Heidbrink, G J Sadler, Nucl Fusion 34 535 (1994)

Energetic Ion Confinement
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• In a tokamak plasma, the Alfvén wave continuum splits into a 
series of bands, with the gaps associated with various features of 
the equilibrium:
• a series of discrete frequency Alfvén eigenmodes can exist in these gaps:

• toroidicity-induced (TAE) gap created by toroidicity
• ellipticity-induced (EAE) gap created by elongation
• triangularity-induced (NAE) gap created by additional non-

circular effects

• beta-induced (BAE) gap created by field compressibility
• kinetic toroidal (KTAE) gap created by non-ideal effects

such as finite Larmor radius
… and others!

• These modes can be driven unstable by the free energy arising 
from energetic particle populations with velocities above the Alfvén 
velocity, eg -particles

Alfvén Eigenmodes
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• A fusion power plant requires physics parameters that are 
simultaneously close to the limits of what might be achievable on 
the basis of our (experimental and theoretical) understanding

• Several key issues in (burning) plasma physics for a tokamak
power plant must be developed in the current programme and 
demonstrated (and extended) in ITER:
• Operating scenario - steady-state ?

• High confinement at high density and high radiated power fraction

• High fusion power  high  operation  robust MHD stability

• Effective disruption avoidance and control

• Power (and particle) exhaust with relevant PFCs

• Tritium efficiency

• -particle confinement

• Reactor-relevant auxiliary systems (H&CD, diagnostics, fuelling, 
control …)

Physics for Fusion Power Plants 
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When? Fusion 
Power

Burn 
Duration Q

1997 16 MW ~1 second 0.65

2027-2028 500-700 MW ~7 minutes 10

~2040               2-2.5 GW      days/steady-state       30

ITER on the Path to Fusion Energy
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References: Tokamak Fusion Physics


