Joint ITER-IAEA-ICTP Advanced Workshop on Fusion and Plasma Physics

3 - 14 October 2011

Introduction to Fusion Leading to ITER

SNIPES Joseph Allan
Directorate for Plasma Operation
Plasma Operations Group POP, Science Division
Building 523/023, Route de Vinon sur Verdon
13115 St Paul lez Durance
FRANCE
Introduction to Fusion Leading to ITER

J A Snipes

ITER Organization
13115 St. Paul-lez-Durance, France

Acknowledgements:
D J Campbell, many colleagues in the ITER IO, ITER Members

The views and opinions expressed herein do not necessarily reflect those of the ITER Organization.
Synopsis

- Introduction to thermonuclear fusion
- Basics of magnetic confinement fusion – the tokamak
- Some key parameters for magnetic confinement fusion in tokamaks
- How the results from existing tokamaks led to ITER for the next step in fusion research
Fusion – the fundamental principle

• Energy gain from fusion, like fission, is based on Einstein’s equation:

\[E = \Delta mc^2 \]

− mass loss for DT reactions corresponds to ~ 0.4%

• As illustrated, energy gain per unit mass is greater for fusion

− energy gain/ reaction:

\[DT \text{ fusion: } 17.6 \text{ MeV} \]
\[U \text{ fission: } \sim 200 \text{ MeV} \]
Essential Fusion Reactions

The D-T fusion reaction is the simplest to achieve under terrestrial conditions:

\[^2D + ^3T \rightarrow ^4He \ (3.5 \text{ MeV}) + ^1n \ (14.1 \text{ MeV}) \]

Two other important reactions for DT fusion:

\[^1n + ^6Li \rightarrow ^4He + ^3T + 4.8 \text{ MeV} \]

\[^1n + ^7Li \rightarrow ^3He + ^3T + ^1n - 2.5 \text{ MeV} \]

- these reactions will allow a fusion reactor to **breed tritium**
Fusion Power Density vs Temperature

1 keV = 1.16 × 10^7 K

- High temperatures (~10 keV) are required for significant thermonuclear fusion energy production ⇒ dealing with plasmas!
Basics of Magnetic Confinement Fusion:

The Tokamak
Plasma Toroidal Magnetic Confinement

- Magnetic fields cause ions and electrons to spiral around the field lines:

\[F = q(E + v \times B) \]

- In a toroidal configuration plasma particles are lost to the vessel walls by relatively slow diffusion across the field lines.

A special version of this torus is called a tokamak:

‘toroidal chamber’ and ‘magnetic coil’ (Russian)
The Tokamak:

- **External coils**
 - to produce a toroidal magnetic field

- **Transformer with primary winding**
 - to produce a *toroidal current* in the plasma
 - this plasma current creates a *poloidal magnetic field*

- **Finally, poloidal coils**
 - to control the position and shape of the plasma
JET: Joint European Torus

- JET is currently the largest tokamak
 - Major/ minor radius: 3 m/ 1 m
 - Plasma volume ~100 m³
 - Toroidal field: 3.4 T
 - Plasma Current: 7 MA

- In DT experiments in 1997, a peak fusion power of 16 MW was produced
JET - the largest existing Tokamak

Internal View

with plasma
Magnetic Confinement in a Tokamak

In configurations with only a toroidal field, ions and electrons drift vertically in opposite directions:

An additional poloidal field allows particles to follow helical paths, cancelling the drifts.

“Winding number” of helix is an important stability parameter for the system:

\[
q_c = \frac{aB_\phi}{RB_\theta} \sim \frac{a^2B_\phi}{RI_p}
\]

- \(q_c\) = ”cylindrical” safety factor
- \(R/a\) = aspect ratio
Formal definition of safety factor:

\[q = \frac{d\Phi}{d\Psi} \]

- absolute value of \(q \) and its variation across the plasma radius are important in plasma stability
- by elongating the plasma, more current can be squeezed into the plasma ring at fixed \(q \):
 \[\kappa = \frac{b}{a} \]
- \(\kappa \) also turns out to have important consequences for plasma stability
- Typically the pressure (temperature, density) and current profiles are peaked on the plasma axis:
 - the profile of \(q \) is then the inverse, with \(q(0) \sim 1 \)
Many Plasma Shapes Have Been Investigated

- Plasma shape affects confinement and stability properties

R Stambaugh, APS (2000)
Plasma fusion performance

Temperature - T_i: $1 - 2 \times 10^8$ K (10-20 keV)

($\sim 10 \times$ temperature of sun’s core)

Density - n_i: 1×10^{20} m$^{-3}$

($\sim 10^{-6}$ of atmospheric particle density)

Energy confinement time - τ_E: few seconds (\propto current \times radius2)

(ITER plasma pulse duration \sim1000s)

Fusion power amplification: $Q = \frac{\text{Fusion Power}}{\text{Input Power}} \propto n_i T_i \tau_E$

\Rightarrow Present devices: $Q \leq 1$

\Rightarrow ITER goal: $Q \geq 10$

\Rightarrow “Controlled ignition”: $Q \geq 30$
• Existing experiments have achieved $nT\tau$ values
 $\sim 1 \times 10^{21} \text{ m}^{-3}\text{skeV}$
 $\sim Q_{\text{DT}} = 1$

• JET and TFTR have produced DT fusion powers of $>10\text{MW}$ for $\sim 1\text{s}$

• ITER is designed to a scale which should yield $Q_{\text{DT}} \geq 10$ at a fusion power of 400 - 500MW for 300-500s
Tokamaks have a built-in heating scheme: “Ohmic” heating by the plasma current

- but plasma resistivity varies as $T_e^{-3/2}$, so heating power declines with increasing T_e
- so Ohmic plasma temperatures of several keV are possible, but additional heating is required to achieve 10-20 keV

Two basic heating schemes:

- injecting neutral particle beams
- injecting radiofrequency waves – because the plasma refractive index depends on density and magnetic fields, several RF options are possible

Each heating technique also provides some current drive
Injection of Neutral Particle Beams

• Neutral beam injection (NBI):
 - intense particle beams are accelerated, neutralized and injected into plasma
 - \(E_b \sim 100 \text{ keV}, P_b \text{ up to } 40\text{MW} \) in TFTR
 - very effective:
 - heating
 - current drive
 - fuelling
 - rotation drive

• For ITER:
 - \(E_b \sim 1 \text{ MeV} \) is required to penetrate plasma/deserve current
 - \(\rightarrow \) negative ion source technology
 - higher energy \(\Rightarrow \) little fuelling, little rotation drive
Radiofrequency Heating

• **Ion Cyclotron Radiofrequency Heating (ICRF):**
 - launched at frequencies ~ ω_{ci} ⇒ $f \sim 50$ MHz
 - technology conventional
 - wave coupling to plasma problematic – penetration through edge

• **Electron Cyclotron Resonance Heating (ECRH):**
 - launched at frequencies ~ ω_{ce} ⇒ $f > 100$ GHz
 - source technology non-conventional: “gyrotrons”
 - coupling, absorption, space localization very good

• **Lower Hybrid Heating/ Current Drive (LHCD):**
 - “lower hybrid” a complex wave resonance in plasma: $f \sim 5$ GHz
 - technology fairly conventional (source: klystrons)
 - wave coupling to plasma problematic – penetration through edge
Current Drive

• Current drive provides:
 - replacement of the transformer drive \(\Rightarrow\) towards steady-state plasma
 - manipulation of the current profile to improve confinement/stability
 - direct suppression of plasma instabilities

• Current drive efficiency \(\eta_{CD} = \text{driven current/input power}):
 - typically increases with \(T_e\)
 - for beams, also increases with \(E_b\)
 \(\Rightarrow\) favourable for ITER

Plasma Confinement: H-mode

• It is found that the plasma confinement state (τ_E) can bifurcate:
 - two distinct plasma regimes, a low confinement (L-mode) and a high confinement (H-mode), result
 - this phenomenon has been shown to arise from changes in the plasma flow in a narrow edge region, or pedestal
• Predictions of fusion performance in ITER rely essentially on a small number of physics rules:
 • H-mode energy confinement scaling (IPB98(y,2)):
 \[
 \tau_{E,th}^{98(y,2)} = 0.144 I^{0.93} B^{0.15} P^{-0.69} n^{0.41} M^{0.19} R^{1.97} \varepsilon^{0.58} \kappa^{0.78} \text{ (s)}
 \]
 \[
 \tau_E \propto IR^2 P^{-\frac{2}{3}}
 \]
 NB: \(H_{98(y,2)} = \frac{\tau_{E,th}^{exp}}{\tau_{E,th}^{98(y,2)}} \)
 • H-mode threshold power:
 \[
 P_{LH} = 0.098 M^{-1} B^{0.80} n_{20}^{0.72} S^{0.94} \text{ (MW)}
 \]
 (i.e., a certain level of power needs to flow across the plasma boundary to trigger an H-mode)
Fusion Performance Depends on Confinement

- Uncertainty in achievable energy ($H_{H98(y,2)}$) and helium particle (τ_{He}^*/τ_E) confinement gives a large uncertainty in resulting fusion performance.

- $Q=10$ Inductive Scenario uses $H_{H98(y,2)} = 1$ and $\tau_{He}^*/\tau_E = 5$ based on empirical data from existing tokamaks.

- Too much core helium ash accumulation could reduce fusion performance.

- $Q > 50$ is not excluded within the uncertainty.
How is ITER scale determined?

- Energy confinement time is one of many parameters studied in a wide range of tokamak experiments.
 - Multi-tokamak experimental database provides scaling prediction for ITER energy confinement time, τ.

$$\tau_{th} \propto I_p R^2 P^{-2/3}$$
ITER is twice as large as our largest existing experiments

Tore Supra
\[V_{\text{plasma}} = 25 \, m^3 \]
\[P_{\text{fusion}} \approx 0 \, MW \]
\[t_{\text{plasma}} \approx 400 \, s \]

JET
\[V_{\text{plasma}} = 80 \, m^3 \]
\[P_{\text{fusion}} \approx 16 \, MW \, 1s \]
\[t_{\text{plasma}} \approx 30 \, s \]

ITER
\[V_{\text{plasma}} = 830 \, m^3 \]
\[P_{\text{fusion}} \approx 500 \, MW \, 300 – 500 \, s \]
\[t_{\text{plasma}} \approx 600 – 3000 \, s \]
ITER Physics Basis II

• MHD stability:

\[q_{95} = 3 \quad q_{95} = 2.5 \frac{a^2 B}{RI} f(\varepsilon, \kappa, \delta) \]

\[\frac{n}{n_{GW}} \leq 1 \quad n_{GW} (10^{20}) = \frac{l(MA)}{\pi a^2} \]

\[\beta_N \leq 2.5 \quad \beta_N = \beta(\%) \frac{aB}{l(MA)} \]

\(\kappa, \delta \) determined by control considerations

\[\beta = \frac{\text{plasma kinetic energy}}{\text{plasma magnetic energy}} \]

• Divertor physics:

Peak target power \(\sim 10 \text{MWm}^{-2} \)

Helium transport: \(\tau_{He}^* / \tau_E \sim 5 \)

Impurity content: \(n_{\text{Be}} / n_e = 0.02 (+ \sim 0.1\% \text{ Ar for radiation}) \)
The interaction of the plasma fluid and the magnetic field is described by magnetohydrodynamic (MHD) stability theory - provides a good qualitative, and to a significant extent quantitative, description of stability limits and the associated instabilities.

There are two basic types of instability:
- “ideal” instabilities produce field line bending – can grow very rapidly
- “resistive” instabilities cause tearing and reconnection of the magnetic field lines \(\Rightarrow \) formation of “magnetic islands”

Plasma control techniques are being applied to suppress or avoid the most significant instabilities
- Neo-classical tearing modes (NTMs)
- Edge localized modes (ELMs)
- Disruptions and vertical displacement events
- Allows access to higher fusion performance
MHD Stability: Disruptions

Typical chain of events during a plasma disruption

- The ultimate stability limit in tokamak plasmas is set by major disruptions: large scale MHD instabilities
 - loss of plasma energy in milliseconds (thermal quench – TC)
 - plasma current decays in 10s of milliseconds (current quench – QC)

- Produces:
 - very large heat loads on plasma facing surfaces
 - significant electromagnetic forces in vacuum vessel
 - large runaway electron beam

Mitigation techniques essential
• \(l_i - q_a \) diagram describes stable plasma operating space of internal inductance vs safety factor, limited by disruptions:
 - low \(l_i \) typically has to be negotiated during the plasma current ramp-up
 - high-\(l_i \) limit typically occurs due to excessive radiation at plasma edge, resulting in cold edge plasma and narrow current channel (e.g., at density limit)

\[
l_i = \frac{2\int_0^a B_\theta^2 r dr}{a^2 B_{\theta a}^2}
\]
Experiments have shown that tokamak plasmas can sustain a maximum density:

- limit depends on operating regime (ohmic, L-mode, H-mode …)
- limit may be determined by edge radiation imbalance or edge transport processes
- limit can be disruptive or non-disruptive

Comprehensive theoretical understanding still limited

- “Greenwald” density:
 \[n_{GW} = \frac{I(\text{MA})}{\pi a^2} \]
- operational figure of merit

Greenwald 'limit':
\[n_{e,\text{lim}}(10^{20} \text{ m}^{-3}) = \frac{I(\text{MA})}{\pi a^2} \]
Plasma MHD Stability – Pressure Limit: β

- Maximum value of normalized plasma pressure, β, is limited by MHD instabilities:

$$\beta(\%) = 100 \frac{\langle p \rangle}{B^2 / 2\mu_0}$$

$$\beta_N = \frac{\beta(\%)}{I_p(\text{MA})/aB}$$

- Typically, “Troyon” limit describes tokamak plasmas:

$$\beta_N \leq 2.8-3.5$$

- More generally, “no-wall” limit:

$$\beta_N \leq 4 \times |i|$$
• Essential problem is:
 - handle power produced by plasma with (steady-state) engineering limit for plasma facing surfaces of 10 MWm$^{-2}$
 - extract helium from the core plasma to limit concentration below ~6%
 - prevent impurities from walls penetrating into plasma core
 - ensure plasma facing surfaces survive sufficiently long

Scrape-off layer (SOL) plasma: region of open field lines
The divertor is a significant element of the solution:
- surfaces for high heat fluxes (10 MWm\(^{-2}\))
- cryopumping to extract particles leaving the plasma, including helium

The divertor is fundamental to exhaust power from a burning plasma:
- impurities are added to the edge plasma to increase radiation
- a large pressure gradient develops along the field lines into the divertor
- the divertor plasma temperature falls to a few eV
- a large fraction of the plasma exhaust power is redistributed by radiation and ion-neutral collisions
Burning Plasma Physics

- Access to plasmas which are dominated by a-particle heating will open up new areas of fusion physics research, in particular:
 - confinement of α’s in plasma
 - response of plasma to α-heating
 - influence of α-particles on MHD stability

- Experiments in existing tokamaks have already provided some positive evidence
 - “energetic” particles (including α-particles) are well confined in the plasma
 - such particle populations interact with the background plasma and transfer their energy as predicted by theory
 - but energetic particles can induce MHD instabilities (Alfvén eigenmodes) - for ITER parameters at $Q=10$, the impact is expected to be tolerable
Energetic Ion Confinement

- In existing experiments single particle theory of energetic ion confinement confirmed:
 - simple estimate, based on banana orbit width shows that $I_p \geq 3\text{MA}$ required for α-particle confinement

- Classical slowing down of fast ions well validated:
 - data range 30keV NBI (ISX-B) to 3.5MeV α-particles (TFTR)

- Energetic ion heating processes routinely observed in additional heating experiments

Alfvén Eigenmodes

• In a tokamak plasma, the Alfvén wave continuum splits into a series of bands, with the gaps associated with various features of the equilibrium:
 • a series of discrete frequency Alfvén eigenmodes can exist in these gaps:
 • toroidicity-induced (TAE) gap created by toroidicity
 • ellipticity-induced (EAE) gap created by elongation
 • triangularity-induced (NAE) gap created by additional non-circular effects
 • beta-induced (BAE) gap created by field compressibility
 • kinetic toroidal (KTAE) gap created by non-ideal effects such as finite Larmor radius
 • ... and others!

• These modes can be driven unstable by the free energy arising from energetic particle populations with velocities above the Alfvén velocity, eg α-particles
Physics for Fusion Power Plants

• A fusion power plant requires physics parameters that are simultaneously close to the limits of what might be achievable on the basis of our (experimental and theoretical) understanding

• Several key issues in (burning) plasma physics for a tokamak power plant must be developed in the current programme and demonstrated (and extended) in ITER:
 • Operating scenario - steady-state?
 • High confinement at high density and high radiated power fraction
 • High fusion power \Rightarrow high β operation \Rightarrow robust MHD stability
 • Effective disruption avoidance and control
 • Power (and particle) exhaust with relevant PFCs
 • Tritium efficiency
 • α-particle confinement
 • Reactor-relevant auxiliary systems (H&CD, diagnostics, fuelling, control …)
ITER on the Path to Fusion Energy

<table>
<thead>
<tr>
<th>When?</th>
<th>Fusion Power</th>
<th>Burn Duration</th>
<th>Q</th>
</tr>
</thead>
<tbody>
<tr>
<td>1997</td>
<td>16 MW</td>
<td>~1 second</td>
<td>0.65</td>
</tr>
<tr>
<td>2027-2028</td>
<td>500-700 MW</td>
<td>~7 minutes</td>
<td>10</td>
</tr>
<tr>
<td>~2040</td>
<td>2-2.5 GW</td>
<td>days/ steady-state</td>
<td>30</td>
</tr>
</tbody>
</table>
References: Tokamak Fusion Physics

http://www.iter.org - and associated links