

2267-23

Joint ITER-IAEA-ICTP Advanced Workshop on Fusion and Plasma Physics

3 - 14 October 2011

Dust in tokamaks

DE ANGELIS Umberto Universita' di Napoli 'Federico II' ianza Fizicha, Complesso Universitario Monte S

Dip. di Scienze Fisiche, Complesso Universitario Monte S. Angelo via Cintia, 80126 Napoli ITALY Joint ITER-IAEA-ICTP Advanced Workshop on "Fusion and Plasma Physics" Trieste, October 3 - 14, 2011

Dust in tokamaks U. de Angelis

University of Naples and INFN Sezione di Napoli, Napoli, Italy

C. Castaldo Euratom ENEA Association, Frascati, Italy M. De Angeli, E. Lazzaro Istituto di Fisica del Plasma, CNR, Milan, Italy D. Jovanovic Institute of Physics Belgrade, Belgrade, Serbia C. Marmolino Department STAT, University of Molise, Pesche (IS), Italy S. Ratynskaia Royal Institute of Technology (KTH), Stockholm, Sweden

1

Outline

- State of the art: what we do and do not know about dust in tokamaks
- Hyper-velocity particles
- Dust dynamics
- Stochastic heating
- Diffusion of a dust cloud
- Blobs
- Scattering of radiation: new diagnostics?

DIAGNOSTICS OF DUST

- Postdischarge methods are well established: Analysis of particles collected after experimental campaigns
- Analysis of deposits showed large spread in dust size from sub- μ m to 100 $\,\mu$ m
- Currently the main challenge is diagnostics of dust *during the discharge*
- Dust parameters of interest: (apart from material), size, velocity and number density

DIAGNOSTICS DURING DISCHARGES

- Visible imaging
 - Few hundreds m/s for a bright dust grain of few μ m
 - Individual particle observed with velocities up to 500 m/s
- Capture by porous aerogel targets
 - For both slow and fast dust

Light scattering

- No information on velocity
- JIPPT-IIU after disruption, radius 0.4-1 μm K. Narihara et al. 1997 NF 37 1177
- DIII-D SOL during discharge, 6 10³ m⁻³, radius 80-90 nm W. P. West *et al 2006* PPCF, 48, 1661
- FTU after disruptions, 10⁷ m⁻³, radius 50 nm E. Giovannozzi *et al.* 2007 AIP Conf. Proc. Vol. 988, pg. 148
- densities of nano-particles of order 3x10^7 cm^(-3) are consistent with observations S.I.Khrasheninnikov, T.K.Soboleva and D.H.Mendis in Proc. 19th PSI Conf., San Diego, 2009

AEROGEL IN

SPACE

(mm scale on figures below)

Stardust, 1999-2004

AFTER: F. Hortz et al. 2006 Science 314

Shuttle, 1992

AFTER: P. Tsou 1995 Journ. Non.Cryst. Solids 186 415

TOKAMAKS

Aerogel compatibility with tokamak operation

Ratynskaia S. *et al* 2008 PPCF **50** 124046

FIRST EXPOSURES

• HT-7 tokamak Morfill G. E. *et al.* 2009 New J. Phys. **11** 113041

• **TEXTOR tokamak** Ratynskaia S. *et al.* 2009 Nuclear Fusion **48** 122001

EXTRAP reversed-field pinch

Bergsåker H. et al. 2010

J. Nuclear Materials

Joint ITER-IAEA-ICTP Advanced Workshop on "Fusion and Plasma Physics" Trieste, October 3 - 14, 2011

RESULTS OF DUST CAPTURE BY AEROGEL IN TEXTOR

S. Ratynskaia, H. Bergsåker, B. Emmoth, A. Litnovskiy et al 2009 NF 49 122001

- First time-resolved measurements
- Most of the dust of ohmic discharges was collected during the flat-top phase
- Particle flux density of 20-50 particles cm⁻² s⁻¹, for particles that were sufficiently big to be visible optically (> 6 μ m) and sufficiently fast (~ 100 m/s) to stick to the surface.
- Fast dust is more rare

10/5/11

Joint ITER-IAEA-ICTP Advanced Workshop on "Fusion and Plasma Physics" Trieste, October 3 - 14, 2011

DUST IMPACT IONIZATION IN FTU TOKAMAK

C Castaldo *et al* 2007 Nuclear Fusion **47** L5 S. Ratynskaia *et al* 2008 Nuclear Fusion **48** 015006

Impact craters

Joint ITER-IAEA-ICTP Advanced Workshop on "Fusion and Plasma Physics" Trieste, October 3 - 14, 2011

DUST IMPACT IONIZATION-FOR RARE FAST DUST

- For most materials the hypervelocity regime (when the impact speed > the speed of the compression waves both in the target and projectile) has been reached when the impact speed exceeds 2-3 km/s
- The resulting pressure can reach 1 TPa and the temperature can be sufficient to cause vaporization and ionization of the materials.
- Diagnostics based on the phenomenon:
 - (i) charge released (ii) craters on the target surface
- Laboratory studies of impacts [M. J. Burchell et al, Meas. Sci. Technol. 10, 41 (1999).]
 - charge 10¹¹-10¹³ e upon impact of ~1 μ m Fe particle on Mo surface with velocity of few km/s
 - (with t = 10-100 ms) ~10 mA current feasible to measure in SOL
- Probe measurements in FTU near the wall, equatorial plane

- Two equatorial probes (separation 0.6 cm)
- Lack of correlation, expecially for largest fluctuations
- Very rare extreme events
- Rate increases towards walls

DUST IMPACTS - CRATERS ON THE TARGET SURFACE

- Dimensions of the craters are function of the projectile parameters empirical results available
- Craters smooth, no rough rims from ejected molten metal typical for the unipolar arcs
- Cracks observed not typical for the arcs where surface damage is due to heating by the arc current
- Arc hops and leaves scratches on mm scale- none were found

Joint ITER-IAEA-ICTP Advanced Workshop on "Fusion and Plasma Physics" Trieste, October 3 - 14, 2011

DUST IMPACT PHENOMENA VS ARCS

Probe current spikes are < 50 mA

The unipolar arcs are characterized by a threshold current ~1 A, necessary to sustain the arcs B. Juttner 2001 J. Phys. D 34 R103

Crater morphology;

- Characteristic scale 10-100 microns
- The rough rims from ejected molten metal (typical for unipolar spots) are missing
- The arc hops from one spot to another causing several mm scratches
 not observed

COMBINATION OF ELECTRIC MEASUREMENTS WITH OPTICAL

To discriminate dust impact ionization events from features due to collective plasma structures (blobs)

60 mm max

simultaneous detection of

Charge released

and

• Line emission at a target material wavelength

Castaldo C. et al 2010 PPCF 52 105003

10/5/11 Joint ITER-IAEA-ICT

Joint ITER-IAEA-ICTP Advanced Workshop on "Fusion and Plasma Physics" 12 Trieste, October 3 - 14, 2011

Hypervelocity Particles in Fusion Devices

Numerical codes for micron-size particles: Visible imaging

 $v \le 200 \ m/s$

 Rudakov D. 2007 1st Workshop on Dust in Fusion Plasmas (<u>http://cpunfi.fusion.ru/eps-dust-media2007/Rudakov.....S1-3</u>)

DIII-D size $\geq 10 \mu m$, $v \geq 0.5 km/s$

FTU: few km/s, micron-size particles

IMPACT IONIZATION

Figure 1. Results of the empirical expressions of [2]: number of ions produced upon impact of an iron projectile on a molybdenum surface target as a function of the projectile velocity and radius. The dashed line corresponds to the fast and the full line to the total ionization. See text for definitions.

10/5/11 Joint ITER-IAEA-ICTP Advanced Workshop on "Fusion and Plasma Physics" 13 Trieste, October 3 - 14, 2011

Dynamics of dust in gap edge plasma-first wall

Typical profiles in plasma-wall gap and main forces on dust

Isolated Fe Dust particles' motion

$$\frac{d\mathbf{r}}{dt} = \mathbf{v}$$

$$\frac{dM_d \mathbf{v}}{dt} = \mathbf{F}_{fric,i} + \mathbf{F}_{fric,n} + \mathbf{F}_E + \mathbf{F}_{v \times B} + \mathbf{F}_{\nabla B} + M_d \mathbf{g} + \Theta_{d,w}$$

Ion-drag force:sling shot effect

$$\mathbf{F}_{fric,\alpha} = \xi_{\alpha} \xi_{fric,\alpha} m_{\alpha} n_{\alpha} v_{th,\alpha} \left(\mathbf{V}_{\alpha} - \mathbf{v} \right) \sigma_d$$

Quasiselastic reflections from the wall up to

$$V_d \leq 1 km/s$$

Periodic reinjection in acceleration layer

Joint ITER-IAEA-ICTP Advanced Workshop on "Fusion and Plasma Physics" Trieste, October 3 - 14, 2011

Example of acceleration of a 4μ m(diameter) Fe dust particle in FTU with a single wall collision

10/5/11 Joint ITER-IAEA-ICTP Advanced Workshop on "Fusion and Plasma Physics" 15 Trieste, October 3 - 14, 2011

Example of acceleration of a $4\mu m$ Fe dust particle in FTU with few wall collision

16

Example of acceleration of a $4\mu m$ Fe dust particle in FTU with 10^2 wall collision

- Exit time = 0.10 s
 Diameter = 3.62 um
 Reflections = 101
 Last velocity = 1.39 km/s
 Last Larmor radius = 24282.04 cm
- Max inward pos = 24.61 cm
- Max dust temp = 2731.86 K

10/5/11

Joint ITER-IAEA-ICTP Advanced Workshop on "Fusion and Plasma Physics" Trieste, October 3 - 14, 2011

Example of "racetrack Billiard" acceleration of $2\mu m$ Fe dust particle in FTU by ion drag and N wall collisions*

10/5/11

Joint ITER-IAEA-ICTP Advanced Workshop on "Fusion and Plasma Physics" 18 Trieste, October 3 - 14, 2011

Stochastic Heating

Dust charge fluctuations \longrightarrow non conservation of energy in dust-dust interaction

$$\varepsilon = \frac{1}{2} m_d \int v^2 \Phi^d(v) d^3 v \qquad \frac{d\varepsilon}{dt} = v\varepsilon \qquad v \cong \frac{\omega_{pd}^2}{v_{ch}} \frac{1}{Z_d}$$

1) From the self-consistent kinetic description of dusty plasmas de Angelis U *et a*l *Physics of Plasmas* **12**(5) 052301 2005

$$\frac{d\Phi^d}{dt} = I_C + I_{NC}$$

2) From a Fokker-Planck approach to systems with variable charge lylev A V et al Physics of Plasmas **12**(9) 092104 2005

$$\frac{d\Phi^d}{dt} = St_{dd}F^M + St_{dn}F^M$$

3) As an energetic instability of a harmonic oscillator with random frequency Marmolino C *Physics of Plasmas* in print 2011

$$\frac{d^2 x(t)}{dt^2} = -\frac{4\pi n_d q^2(t)}{m_d} x(t) ; \qquad \frac{d\left\langle \varepsilon(t) \right\rangle}{dt} = v \left\langle \varepsilon(t) \right\rangle$$

10/5/11

Joint ITER-IAEA-ICTP Advanced Workshop on "Fusion and Plasma Physics" 19 Trieste, October 3 - 14, 2011

Two Step Model

Nanoparticles are stochastically heated and transfer energy to microparticles via collisions: For the case of dissipation on ions with energy Ti.

$$\frac{d\varepsilon}{dt} = v\varepsilon - 2\gamma_{\mu} \left(\varepsilon - \frac{3}{2}T_{i}\right)$$
 nanoparticles
$$\frac{dE}{dt} = \Gamma\varepsilon^{1/2} \left(\varepsilon - E\right) - 2\gamma_{\mu} \left(E - \frac{3}{2}T_{i}\right)$$
 microparticles

Geometrical cross-section

$$\Gamma = n_d \frac{\sqrt{m}}{M} \pi A^2$$
Condition for growth
$$v_{eff} = v - 2\gamma_n > 0$$

Marmolino C, de Angelis U, Ivlev A & Morfill G E, AIP Conf. Proc. **1061**, 105 (2008) Marmolino C, de Angelis U, Ivlev A & Morfill G E, Phys. Plasmas **16**(3), 033701 (2009)

10/5/11Joint ITER-IAEA-ICTP Advanced Workshop on "Fusion and Plasma Physics"20Trieste, October 3 - 14, 2011

10²

10²⁸

10¹³

1016

105

100

10-*

8/8; E/E

H.V.

10-6

FIGURE 2. The normalized energy of the nano (ε) and micronsize (*E*) particles versus time in seconds, for different values of the density of the nanoparticles. For each pair, the curve for ε is the one with earlier growth. Full line $n_d = 5.3 * 10^4$ cm⁻³ (below the instability threshold, corresponding to $n_d = 5.3905 * 10^4$ cm⁻³); dashed line $n_d = 6.* 10^4$ cm⁻³; dot-dashed $n_d = 6.* 10^5$ cm⁻³.

10/5/11 Joint ITER-IAEA-ICTP Advanced Workshop on "Fusion and Plasma Physics" 21 Trieste, October 3 - 14, 2011

Diffusion and S.H. of a dust cloud

Marmolino C, Bacharis M, Allen J E, de Angelis U, Willis C, Phys. Plasmas in print (2011)

- a cloud of nm dust particles forms near the wall;
- spherical clouds are used here for analytical estimates: "small" (r < 3 cm = FTU SOL linear dimension) and "large" spherical clouds.
- the Orbit Limited Motion (OML) approximation is used to calculate Q_d and the diffusion approximation is valid
- $n_d < 10^9 \text{ p/cm}^3$ and neutrality.

Cloud diffusion

$$\frac{\partial n_d(r,t)}{\partial t} = \frac{D}{r^2} \frac{\partial}{\partial r} \left[r^2 \frac{\partial n_d(r,t)}{\partial r} \right]$$
$$D = \frac{k_B T_i}{m_d \gamma_i} \approx 2 \times 10^5 \frac{\text{cm}^2}{\text{sec}} \quad \text{FTU SOL} \text{ plasma and } a_g = 5 \text{ nm}$$

Initial condition, a spherical cloud with a gaussian dust distribution

$$n_d(r,t=0) = \frac{N_d}{(2\pi r_o^2)^{3/2}} Exp\left(-\frac{r^2}{2r_o^2}\right)$$

Joint ITER-IAEA-ICTP Advanced Workshop on "Fusion and Plasma Physics" 23 Trieste, October 3 - 14, 2011

10/5/11

The radius evolution

10/5/11

The S.H. of a diffusing cloud

Joint ITER-IAEA-ICTP Advanced Workshop on "Fusion and Plasma Physics" Trieste, October 3 - 14, 2011 25

Plasma blobs

- Blobs are long-lived quasi-coherent structures, created at the edge of the tokamak core by the turbulence in the unfavorable curvature region, driven by the unstable interchange and ballooning modes.
- Plasma blobs are strongly elongated along the magnetic field, in the form of filaments. They start as the avalanches of the hot and dense core plasma across the last closed magnetic surface into the cold and tenuous SOL region.
- Their dynamical properties are governed by the dissipations, including processes at the contact with the conductive wall.
- Experimentally, blobs are easily detected by Langmuir probes at the tokamak wall. They produce spiky electrostatic signals.
- Effects of dust on Blob dynamics
 D. Jovanović, U. de Angelis, *et al* Phys. Plasmas 14, 083704 (2007)

Dimensionless equations

Electron continuity:

$$\left[\frac{\partial}{\partial t} + (\vec{e}_z \times \nabla \phi) \cdot \nabla\right] n_e = \nabla_{\perp} \left(D \nabla_{\perp} n_e \right) - \sigma n_e,$$

Charge continuity:

$$\nabla_{\perp} \cdot \left\{ n_i \left[\frac{\partial}{\partial t} + (\vec{e}_z \times \nabla \phi) \cdot \nabla \right] \nabla_{\perp} \phi \right\} - \frac{\partial n_e}{\partial y} = \\ n_i \, \chi_0 \, \phi - \nabla_{\perp} \cdot \left[n_i \left(\chi_2 - \chi_4 \, \nabla_{\perp}^2 \right) \nabla_{\perp} \phi \right] .$$

- χ_0 losses to the tokamak wall χ_2 losses due to ion -dust collisional,
 - viscous losses
- χ_4

10/5/11 Joint ITER-IAEA-ICTP Advanced Workshop on "Fusion and Plasma Physics" 27 Trieste, October 3 - 14, 2011

Radial propagation of blobs

Collapse into a thin shell (all sizes of blobs) in the absence of dissipations

Collapse into a shell and spatial shrinking of small blobs due to viscosity:

28

Radial propagation of blobs

Raleigh-Taylor instability (fingering) of large blobs by losses to the wall

Dissipation of blobs due to ion-dust collisions

10/5/11 Joint ITER-IAEA-ICTP Advanced Workshop on "Fusion and Plasma Physics" 29 Trieste, October 3 - 14, 2011

Maximum radial distance travelled by a blob

Typical solution (in DIII-D tokamak) for the maximum excursion, as a function of the blob size L and the ratio P of the total dust and electron charge densities. Losses to the dust (green), Losses to the wall (red), No losses (blue) $L_{\parallel}=5 \text{ R}$

10/5/11

Joint ITER-IAEA-ICTP Advanced Workshop on "Fusion and Plasma Physics" Trieste, October 3 - 14, 2011

30

Amount of 30 nm dust that dissipates the blob before reaching the wall

The minimum dust number density, and the minimum amount of dust in the entire scrape-off layer that dissipate the blobs before they reach the wall.

						Threshold dust	Threshold dust	Total dust mass
Machine	z_d	ζ	$ u_{ch}$	$P_M^{(in)}$	$P_T^{(in)}$	number density	specific gravity	at threshold
					$(L_{\parallel} = 5R)$	$n_{d,T}$	$ ho_{d,T}$	$M_{d,T}$
C-Mod H	1317	2.75	20.8 MHz	0.63	0.016	$1.68 \times 10^{14} \text{ m}^{-3}$	35.8 g/m^3	$3.26 \mathrm{~g}$
C-Mod L	1269	2.77	33.5 MHz	0.13	0.010	$1.73 \times 10^{14} \text{ m}^{-3}$	36.8 g/m^3	$3.36 \mathrm{~g}$
DIII-D	577	2.77	22.6 MHz	0.15	0.0063	$1.09 \times 10^{14} \text{ m}^{-3}$	23.2 g/m^3	14.27 g
JET	2556	2.73	10.6 MHz	1.22	0.016	$0.62 \times 10^{14} \text{ m}^{-3}$	13.2 g/m^3	38.13 g
NSTX	751	2.77	11.9 MHz	0.04	0.010	$0.80 \times 10^{14} \text{ m}^{-3}$	16.9 g/m^3	$5.81 \mathrm{~g}$
T-10	866	2.77	$55.4 \mathrm{~MHz}$	0.09	0.003	$1.10 \times 10^{14} \text{ m}^{-3}$	23.3 g/m^3	$8.06 \mathrm{~g}$
TCV	1155	2.77	32.0 MHz	0.08	0.005	$0.87 \times 10^{14} \text{ m}^{-3}$	18.5 g/m^3	2.43 g

TABLE II: The parameters of the dust fluid, in the case of dust grains with the radius a = 30 nm.

Just 3 – 30 g of nanometer-sized dust in the entire SOL is sufficient to prevent the blobs from reaching the wall. This may provide a new method for the detection of nanometer dust.

Main effects of dust particles in plasmas

V. N. Tsytovich, U. de Angelis, Phys Plasma **6**, 1093 (1999). V. Tsytovich, G. Morfill, and H. Thomas, Plasma Phys. Rep. **30**, 816 (2004).

- dust represents new dissipation by continuously collecting plasma (electron and ion) fluxes
- thus an inclusion of a source is necessary to define a steady-state in such systems
- fluctuations in the collected fluxes lead to fluctuations of the dust charge
- dust discreteness plays an important role even in cases where continuous (Vlasov) description for electrons and ions is sufficient

Modifications of plasma responses as potential dust diagnostic

- Modification of the plasma density fluctuations implies
- □ changes in the amplitude and spectrum of their respective $(\alpha = \{i, e\})$ correlators

$$S_{k,\omega}^{\alpha} = \left\langle \delta n_{k,\omega}^{\alpha} \delta n_{k,\omega}^{\alpha^*} \right\rangle$$

- modified radiation scattering
 V. N. Tsytovich, U. de Angelis, R. Bingham, J. Plasma Phys. 42, 429 (1989).
 U. de Angelis, R. Bingham, A. Forlani. V. Tsytovich, Phys. Scr. 798, (2002).
- \Box changes of the plasma permittivity $\boldsymbol{\mathcal{E}}_{\boldsymbol{k},\omega}$ and hence the plasma modes
- Modification of the Boltzmann equation and the collisional integrals yields modified transport coefficients
 V. N. Tsytevich and U. do Angolis, Phys. Plasmas 11, (2004)

V. N. Tsytovich and U. de Angelis, Phys.Plasmas 11, (2004).

Dust enchances plasma density fluctuations

□ Ion density fluct. spectral density by the multicomponent model

$$S_{k,\omega}^{i} = \left\langle \delta n_{k,\omega}^{i} \delta n_{k,\omega}^{i^{*}} \right\rangle = S_{k,\omega}^{i(0)} \left(1 - 2 \operatorname{Re}\left\{\frac{\chi_{k,\omega}^{i^{*}}}{\varepsilon_{k,\omega}^{*}}\right\} \right) + \frac{\left|\chi_{k,\omega}^{i}\right|^{2}}{\left|\varepsilon_{k,\omega}\right|^{2}} \left(S_{k,\omega}^{i(0)} + S_{k,\omega}^{e(0)} + Z_{d}^{2} S_{k,\omega}^{d(0)} \right)$$

 $\mathcal{E}_{k,\omega} = 1 + \chi_{k,\omega}^e + \chi_{k,\omega}^i + \chi_{k,\omega}^d$ \Box the correlators of the natural density fluctuations of the three species

$$S_{k,\omega}^{\alpha(0)} = \left\langle \delta n_{k,\omega}^{\alpha(0)} \delta n_{k,\omega}^{\alpha(0)*} \right\rangle = 2\pi \oint \Phi^{\alpha}(\nabla) \quad \text{id } \mathbf{k} \cdot \mathbf{v} \quad \mathbf{v}$$

$$\Box \text{ for thermal distributions the correlators take the form } S_{k,\omega}^{\alpha(0)} \propto \frac{n_{\alpha}}{k u_{T\alpha}} e^{-\zeta^2}$$

$$\text{where } \zeta = \frac{\omega}{\sqrt{2ku_{T\alpha}}}$$

$$\Box \text{ for low frequencies } \zeta \approx 1 \quad \text{we find} \quad \frac{Z_d^2 S_{k,\omega}^{d(0)}}{S_{k,\omega}^{\nu(0)}} \approx P Z_d \left(\frac{m_d}{m_i}\right)^{1/2} \propto a^{7/2}$$

10/5/11 Joint ITER-IAEA-ICTP Advanced Workshop on "Fusion and Plasma Physics" 34 Trieste, October 3 - 14, 2011

Density correlator (= power spectrum) – measurable plasma observable

plasma density ($\alpha = \{i, e\}$) correlators
defined as $S_{k,\omega}^{\alpha} = \left\langle \delta n_{k,\omega}^{\alpha} \delta n_{k,\omega}^{\alpha^*} \right\rangle$

i.e. the spectral correlation between density fluctuations at point **r** and $\mathbf{r'} = \mathbf{r} + \mathbf{X}$

$$S_{\omega}^{\alpha}(\mathbf{X}) = \int S_{\mathbf{k},\omega}^{\alpha} e^{i\mathbf{k}\cdot\mathbf{X}} \frac{d\mathbf{k}}{\left(2\pi\right)^{3}}$$

□ Typically measured by *single probe* (X=0) as electron/ion saturation currents (under assumption no T_e , T_i fluct.), e.g. for ions $\delta N(t) = \frac{I(t) - I}{\overline{I}} = \frac{\delta n_i(t)}{n_i}$ so that

$$P_{SD}(f) = \frac{1}{T} \underline{\delta N}(f) \underline{\delta N}^{*}(f)$$

10/5/11Joint ITER-IAEA-ICTP Advanced Workshop on "Fusion and Plasma Physics"35Trieste, October 3 - 14, 2011

Power spectra of ion density fluctuations

Ar- $\dot{N}H_3$ (dust free but similar ions with CH_4) Ar- CH_4 (carbon dust particles formed)

For meaningful comparison:

Discharges are similar macroscopically with lowest fluctuation levels achieved in discharge

Discharge parameters:

Microwave frequency: f = 2.45 GHz Launcher: Truncated waveguide TE_{1,0} Microwave power: P_{sour} = 350 W Neutral pressure: P_n = 2×10⁻³ mbar Gas flux: F_g = 0.45 sccm

Cusp ratio B_{point}/B_{line}: 0.3T / 0.19T Point to point distance: 78 cm Line cusp radius: 19 cm

Joint ITER-IAEA-ICTP Advanced Workshop on "Fusion and Plasma Physics" Trieste, October 3 - 14, 2011

Results of spectral measurements

"Reference" spectrum measured in dust free Ar and Ar–NH₃ plasmas (blue) and typical spectrum in dusty Ar–CH₄ plasma (green) Calculation of spectral density treating different sizes as distinct charged species in the multicomponent approach

Ratynskaia S, De Angeli M, Lazzaro E, Marmolino C, de Angelis U, Castaldo C, Cremona A, La Guardia L, Gervasini G, Grosso G, PoP **17**, 043703 (2010)

10/5/11Joint ITER-IAEA-ICTP Advanced Workshop on "Fusion and Plasma Physics"38Trieste, October 3 - 14, 2011

The differential cross section for plasma scattering of radiation

$$\frac{d^2\sigma}{d\Omega d\omega_s} = \frac{3}{32\pi^2}\sigma_T \left[1 + \cos^2\theta\right]_{k,\omega}^e$$

$$\omega = \omega_s - \omega_i; \quad \vec{k} = \vec{k}_s - \vec{k}_i; \quad k = \left(k_s^2 + k_i^2 - 2k_s k_i \cos\theta\right)^{/2}$$

$$\frac{v}{c} \ll 1; \quad k_s \cong k_i \cong \frac{\omega_i}{c} \rightarrow k \cong 2k_i \sin \frac{\theta}{2}$$

Joint ITER-IAEA-ICTP Advanced Workshop on "Fusion and Plasma Physics" 39 Trieste, October 3 - 14, 2011

10/5/11

The spectral density of the electron density fluctuations

$$S_{k,\omega}^{e} = \left\langle \delta n_{k,\omega}^{e} \cdot \delta n_{k,\omega}^{e^{*}} \right\rangle = S_{k,\omega}^{e(o)} \left(1 - 2\operatorname{Re}\left\{\frac{\chi_{k,\omega}^{e^{*}}}{\varepsilon_{k,\omega}}\right\} \right) + \frac{\left|\chi_{k,\omega}^{e}\right|^{2}}{\left|\varepsilon_{k,\omega}\right|^{2}} \left(S_{k,\omega}^{i(o)} + S_{k,\omega}^{e(o)} + Z_{d}^{2}S_{k,\omega}^{d(o)}\right) \right|$$
$$S_{k,\omega}^{\alpha(o)} = \left\langle \delta n_{k,\omega}^{\alpha(o)} \cdot \delta n_{k,\omega}^{\alpha(o)^{*}} \right\rangle = 2\pi \int \Phi^{\alpha}(\vec{v}) \delta\left(\omega - \vec{k} \cdot \vec{v}\right) d\vec{v} = \sqrt{2\pi} \frac{n_{\alpha}}{kv_{T_{\alpha}}} e^{-\left(\frac{\omega}{\sqrt{2}kv_{T_{\alpha}}}\right)^{2}}$$

$$\frac{Z_d^2 S_{k,\omega}^{d(o)}}{S_{k,\omega}^{i(o)}} \approx P Z_d \left(\frac{m_d}{m_i}\right)^{1/2} e^{-\left(\frac{\omega}{\sqrt{2}kv_{T_d}}\right)^2} \approx 10^3$$
$$\left(\omega = \omega_{\rm s} - \omega_i \approx 0; P Z_d \approx 1; a = 10nm\right)$$

10/5/11 Joint ITER-IAEA-ICTP Advanced Workshop on "Fusion and Plasma Physics" 40 Trieste, October 3 - 14, 2011

Approach # 1:

10/5/11

Approach # 2:

10/5/11

Joint ITER-IAEA-ICTP Advanced Workshop on "Fusion and Plasma Physics" 42 Trieste, October 3 - 14, 2011

Conclusions

How much submicron dust is present in tokamaks during operations?