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General properties of fusion plasmas

What characterizes fusion plasmas?

We need to take inhomogeneities into account

Mainly interested in low frequency phenomena,  ω<<Ωci

this applies to MHD and transport, (not to heating)
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Low frequency perturbations give more transport!

(1.1
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Thermodynamics

Gradients of density, temperature etc always have to be 
present in a confined plasma

This means that the system is not in thermodynamic 
equilibrium

There will always be free energy avaliable that may drive 
instabilities

Since we want to confine density and temperature we 
should look for instabilities driven by gradients in these

The system prefers to relax with comparable length 
scales of density and temperature. If these are too 
different we may get pinch effects with a tendency to 
equilibrate these length scales
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Stability and transport

Plasma confinement is usually divided into  Large scale 
stability and Transport. 

Large scale stability is usually described my Magneto 
Hydro Dynamics  (MHD).  Here one fluid equations are 
usually used.

Transport is usually due to small scale  (Micro) 
instabilities. These usually require multi fluid or kinetic 
descriptions.
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Multifluid - MHD

MHD instabilities generally require detailed 
geometry. However, their growthrate is so large that 
it is typically larger than the drift frequencies (which 
are different for different species) and, accordingly, 

we can use a single fluid description.

Microinstabilities are more localized.  They can often 
be described by a WKB approximation and are thus 
not quite so sensitive to geometry. On the other 
hand growthrates are of the order of drift 

frequencies which are different for different species. 
Thus  multifluid or kinetic descriptions are needed.  
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Multi fluid - MHD

Toroidal effects represent the third dimension in which 
particles are not confined by the magnetic field. 
Although microinstabilities are less sensitive to 
geometry, toroidal effects are very important, in 
particular in the core. 

The interchange driving terms are linear in curvature, 
thus one fluid equations are only linear in curvature 
(other curvature effects give a real eigenfrequency)

There is, however, one toroidal effect entering together 
with the Alfve’n frequency which requires a two fluid 
description in the core
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Different habits in using physics 
descriptions

A very strong fusion community dealing primarily with 
large scale instabilities (which are indeed the most 
dangerous) has made single fluid MHD equations one of 
the most used descriptions. 

Unfortunately the difficulties with dealing with more 
detailed two fluid effects and the success of one fluid 
equations outside of their formal regime of applicability 
has led to a too strong focus on one fluid equations, 
some researcher using only one fluid or kinetic 
descriptions.  As it turns out, a multi fluid description is 
usually the best for all types of low frequency 
phenomena 
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Different habits  cont.
In addition to the efficiency of multi fluid descriptions 
they have also the advantage of describing physics in 
a clear way. This is particularly true in comparison 
with kinetric descriptions.

It is not unusual that too simplified two fluid equations 
are used for the intrepretation of kinetic results.  

A  fluid model for Ion Temperature Gradient (ITG) 
modes which includes only linear terms in the 
curvature, merely serves to show that there exist 
destabilizing terms in the temperature gradient!



Chalmers University of Technology

Habits-cont.
• As it turns out, a multi fluid description is usually 

the best for all types of low frequency modes once 
you know how to deal with convective diamagnetic 
and stress tensor effects. This is so since the two 
fluid derivation of MHD type modes is not much 
more complicated than the one fluid derivation and 
advanced fluid closures make a kinetic treatment 
unnecessary for instabilities driven by gradients in 
configuration space (this excludes modes driven 
resonantly by fast particles).  Unfortunately there 
are also risks of making mistakes with e.g. 
convective diamagnetic effects and this has 
sometimes lead researchers to use only one fluid 
or kinetic models. 
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Low ion temperature
In many cases also small ion temperature has been 
assumed. In this way it is possible to avoid most of the 
difficulties with the two fluid approach. However, one of 
the main goals with fusion plasmas is to get sufficiently 
high ion temperature for thermonuclear reactions! 

Some outstanding research was made in the 1970’s with 
the Hasegawa – Mima equation by using small ion 
temperature. This research reviled the cascades both to 
lower and higher modenumbers and the generation of 
zonal flows.

However, including ion temperature effects requires a 
considerably more involved description with several 
similar equations and today further work with small ion 
temperature equations are mainly mathematical 
exercises.
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Expansions for weak curvature

• As will be shown later, a weak curvature expansion for 
ITG modes  merely shows that there are destabilizing 
temperature gradient terms. While terms linear in the 
curvature are mainly destabilizing, effects that are 
quadratic in the curvature are stabilizing!

• In fact, the bulk of tokamaks are in the regime where 
quadratic terms in the curvature dominate!  The most 
common stability condition

where R is the major radius and LT   is the temperature
scalelength ,  actually shows that curvature is 
stabilizing!
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Multi fluid description

We will now show the low frequency fluid expansion 
which is commonly used for microinstabilities
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Here v was approximated with vE in vp . We note that vE is 
the same for different particle species. 
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Fluid drifts
The fluid equations are in themselves exact but each 
equation couples to the next higher equation. The only 
approximation thus lies in using a finite number of fluid 
equations.  The low frequency drifts, of course, have 
the additional approximation of assuming ω<<Ωc. The 
small parameter involved here is, however, typically 
less that 10-2.   Then the reason for including the ion 
polarisation drift at all is that in the continuity equation 
the divergence of the ExB and diamagnetic fluxes give 
inverse background lengthscales while the divergence 
of the polarisation drift gives us the perpendicular wave 
number and we assume:
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Properties of fluid drifts

Since  the fluid equations include the pressure 
force which is due to the simultaneous action of 
all particles, they lead to drifts that are pure fluid 
drifts in inhomogeneous plasmas.

The fact that more particles from the higher density side
go through a point leads to an average velocity. The 
same thing happens if the particles on one side rotate
more rapidly (temperature gradient)

Fig 1. Diamagnetic drift
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The magnetic drift

As we can see from the expansion (1.3), the magnetic 
drift is missing. This is because it is not a fluid drift.

The particle drift is compensated by the fact that more 
particles contribute from the side with weaker magnetic 
field in such a way that there is no fluid drift.

Fig 2. Magnetic drift
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Properties of drifts

Eq (1.4) is the lowest order consequence of the fact 
that the diamagnetic drift does not move particles. In 
the momentum equation the stress tensor cancel 
convective diamagnetic effects. Such effects are 
cancelled also in the energy equation as we will soon 
see.

0)n(  v (1.4)

In a homogeneous magnetic field the fact that the 
diamagnetic drift does not move particles is 
expressed by:
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Alfve’n waves

To demonstrate the derivation of MHD modes by 
using the two fluid expansion we will now derive the 
dispersion relation of Alfve’n waves.  Quasineutrality 
gives:

0 j (1.5)
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Alfve’n waves cont.

in combination with 1.6 
gives:
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where

(1.8)

This derivation is probably simpler than with the one fluid 
equations.

The Alfve’n frequency plays an important stabilizing role for 
MHD modes. The vanishing of E║ means that magnetic
fieldlines are frozen into the plasma. Thus they get bent, with 
increasing magnetic energy,

due to pressure or current driven instabilities.
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Interchange modes

Now adding magnetic curvature:
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Where j indicates particle species and vD is the 
magnetic drift 
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Interchange modes  cont.

• The critical point of the physics description is here 
how we treat the pressure perturbations. 

• In single fluid MHD it is here conventional to use 
an adiabatic incompressional approximation. Thus 
we use only the convective perturbation:   (ξ is the 
ExB displacement)

jj PP  ξ (1.11)

Fig3  Convective perturbations 
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Interchange modes cont.

Since vDi is proportional to Ti we notice that 
(1.10) only depends on temperatures through the 
pressures.    This is a particular property of the 
ideal MHD limit. We can now write the total 
dispersion relation as:
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P = Pe+Pi. Of course also (1.12) depends on 
temperature only through the sum of ion and electron 
temperatures. Since we use quasineutrality for these 
low frequency perturbations, the density n is just a 
multiplicative factor.  We can say that the ideal MHD 
limit is degenerate with respect to temperatures.
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Degeneracy of temperature dependence

regarding temperatures and pressures. Eq (1.12) is the 
dispersion relation for electromagnetic interchange 
modes where the last term is destabilizing (pressure 
typically decreases with r). In tokamak geometry we 
have to use an eigenvalue equation since both     
parallel modenumber   and the curvature  are space 
dependent. The curvature is destabilizing only on the 
outside of a tokamak so unstable modes tend to 
localise there and lead to ballooning like perturbations. 
Thus Eq (1.12) turns into the eigenvalue equation of 
the MHD ballooning mode in proper geometry.
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Nonadiabatic nonisothermal compressional 
equations

As mentioned above the critical approximation, leading 
to the conventional treatment of ballooning modes in the 
MHD limit is (1.12).  We will now extend this to a 
nonadiabatic compressional treatment. This is actually 
all we need for modes driven by gradients in 
configuration space!  We use the energy equation:
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Nonadiabatic, compressional… cont

We now use (1.13c) in (1.13a)  where we also have 
other convective diamagnetic effects. The last one is 
obtained by using the contimuity equation in the form:
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Eq (1.15) is the principal result needed to express  
temperature perturbations in toroidal magnetized
plasmas.
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The Energy Equation

Eq (1.15) is compressional and makes a continous 
transition between adiabatic and isothermal regimes since 
it includes the fluid resonance.  This leads to a model 
which is quadratic in curvature and thus includes the flat 
density regime where  the stability limit is given by  (1.2):
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Although the motivation we will give for the closure (1.13) 
is nonlinear, the agreement with linear kinetic theory is 
usually also quite good.  Thus the accuracy obtained for 
(1.2) when FLR and parallel ion motion are neglected is 
5%! 

(1.2)
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Finite Larmor Radius effects
The correct energy equation is obviously a cornerstone 
in a theory that includes ion temperature effects.  
However we also have to deal with Finite Larmor Radius 
effects  (FLR). These are avaliable through the stress 
tensor in fluid theory.
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Where the diamagnetic drift with subindex T includes the full pressure gradient. It appears as a convective diamagnetic effect but comes from ExB convective density and 
temperature perturbations.

Such perturbations are here substituted because the FLR term is assumed to be small but have, in practice, turned out to work better than expected.  This is seen from a 
comparison with gyrokinetics.

Subindex T on the diamagnetic drift indicates full pressure 
gradient. The apparent convective diamagnetic drift is 
instead a convective ExB drift in combination with a 
convective pressure perturbation 
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The parallel electric field

We have already used the MHD limit  E•B =0 in the 
derivation of Alfve’n waves.  We will now see under 
which circumstances this is a good approximation. For 
this purpose it is useful to combine the parallel equation 
of motion of electrons (Ohms law) with the electron 
continuity equation. Ignoring electron inertia we get:
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We now need an equation of state of electrons. At these 
low frequencies electrons are isothermal. However they 
thermalize along magnetic field lines that are bent. Thus 
we get:
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The parallel electric field cont.

This is just radial convection in the background 
temperature gradient due to the bending of the fieldline.  
We then get a cancellation between the temperature 
perturbations and:

Ae e
k

T e
e


 (1.18)

We
get

e

e

eef

ef

Dk
iA

kT
e

n
n ev













 
 


 (1.19)



Chalmers University of Technology

The electron continuity equation

The electron continuity equation now is:
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Here we included a background electron current giving Kink 
effects. We now also use
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Parallell electric field

• The relation between magnetic and electric 
potentials is then:
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The Parallel Electric field  cont

• We note that FLR, curvature and current gradient contribute 
to a parallel electric field. Since the denominator is quadratic 
in ω and it contains the growthrate, which is larger than all 
drifts in ideal MHD we can see that the parallel electric field 
gets small in this limit. When the frequency is mich smaller 
than the Alfve’n frequency and FLR is not too small, the 
Alfve’n terms dominate in both numerator and denominator 
and the broken rational factor approaches 1.  This is the 
electrostatic limit.  The current gradient term also enters in  
(1.6) and gives the usual MHD kink mode by assuming 
vanishing parallel electric field.  It enters mainly for low mode 
numbers and will usually be neglected in the following.  We 
can use the parallel electric field to separate between MHD 
type  (E║ small) and drift type (A║ small)  modes.
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Degeneracy of temperature and density 
gradients

The linear gyrokinetic equation is:
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It leads to the density response in 2d (no parallel
motion)
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Expansion in FLR and curvature
• An expansion in FLR  and ωD/ω* up to quadratic 

terms (which is only allowed at the edge) gives:
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where  Г = 7/4.  The corresponding fluid expansion, using 
(1.15) , agrees except for that  Г = 5/3. The difference is 
only 5% and seems to be due to that the kinetic temperature 
perturbations not are isotropic.  We here notice the 
presence of ηi in the last term. This is clearly a term that 
can not be recovered from ideal MHD. It actually is the only 
nonadiabatic term here and is due to the diamagnetic 
heatflow in the fluid model. In the electromagnetic 
ballooning mode, this term gives us the kinetic ballooning 
mode.
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Kinetic ballooning mode

• The term containing the temperature gradient 
separately now gives the kinetic ballooning 
mode. A plot of growthrate versus pressure 
gradient is shown in Fig 4

Fig 4  Growthrates of electromagnetic ballooning modes as a function 
of normalized β. The inner curve corresponds to ideal MHD while the 

outer includes Kinetic ballooning modes with a larger unstable region. 
Here εn = 0.35, ηi=2 and k2ρ2=0.01. The upper stability regime is due 
to the magnetic field geometry
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Degeneracy of  temperature and density 
gradients 

• Although the effect of the broken degeneracy is rather 
modest here, it will be lager for larger ηi and εn and it 
was one of the main effects (together with peeling 
modes) that limited the slope of the H-mode barrier in 
recent simulations I have made.  However, as we will 
see, using a single pressure gradient gives a 
dramatically worse approximation for Ion Temperature 
Gradient (ITG) modes.  We write the continuity 
equation for ions: 0)n(nnn
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Degeneracy of  temperature and density 
gradients 

Using (1.9)  we now get:
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Degeneracy of  temperature and density 
gradients 

• Here the stabilizing fist term under he root is 
often small due to the factor ¼ and, as it turns out, 
resistive instability would persist also if that term 
has stabilized the system. Thus the sign of the 
last term was sometimes given as the stability 
condition i.e. we get the stability limit:
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• This result is, of course, completely wrong. It can 
be seen as due to an expansion

Degeneracy of  temperature and density
gradients 
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Actually, if we use the convective perturbation only 
for temperature we get
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Spurious expansion in curvature

• We notice that the quadratic term in ω needed for 
instability vanishes for vanishing temperature 
gradient if (1.31) is combined with Boltzmann 
electrons if we myltiply with the denominator. 
However such a term can be obtained by 
expansion in ωD/ω !  This connects in a nice way 
to the common problem of expansion in   ωD/ω 
which was routinely done until the end of the 
1980’s. 



Chalmers University of Technology

Threshold for ITG using only pressure 
gradient

• In Fig 5 we show qualitatively and 
semiquantitatively the threshold of ITG when we 
use only pressure gradient and when we consider 
temperature and density gradients separately.

Fig 5  ITG threshold (-1) with convective pressure 
perturbation

The correct threshold is shown by the right curve.
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Global stability - Transport

• Our example  has shown us some general properties of 
instabilities associated with global stability and transport

• For MHD-type modes, geometry is more important than the 
physics description

• For drift waves :  The physics description is more important 
than geometry.

• Nevertheless there are cases, in particular in enhanced 
confinement regimes where geometry can be quite 
important for drift waves. However, the very fact that we 
have reduced transport means that the largest stabilizing 
and destabilizing terms are almost balancing so that small 
effects become important. The corresponding thing happens 
with MHD type modes, i.e. the physics description becomes 
important close to marginal stability.
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Radial growth of transport coefficients
• Another example of effect of the physics 

description on drift waves is the growth of 
transport coefficients with radius.

Fig 6 Radial  profiles of  χ  for a fluid or kinetc model that is expanded 
in  ωD/ω  (dashed) and an unexpanded model (full line). The 
experimental curve is also close to the full line.
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Expansion in ωD/ω
• It is instructive to look at the linear gyrokinetic density 

perturbation for ions.
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• We have already shown an expansion of this expression (15) 
but that was just in order to explore the similarity to the fluid 
response. The question is now under what circumstances we 
may be allowed to expand (1.32) in ωD/ω. If (1.32) for ions is 
combined with the Boltzmann response for electrons, the drift 
frequencies are the only frequencies that can generate ω. Thus 
we have to assume that   ω will be of  the order of the drift 
frequencies. Now we want to expand in  ωD so   ω* should be 
larger. Then assuming ω to be of order   ω* , the critical 
parameter to expand in is εn = ωD/ω

* 
= 2Ln /LB .
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Expansion in εn

• In practice εn is of order 1 iun the bulk plasma at 
least out to r/a = 0.8.  Close to the axis εn goes to 
infinity.  Using (1.13) and Boltzmann electrons one 
arrives at:
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• It is obvious that (9) leads to the type of thermal 
conductivity shown in Fig 6 for the unexpanded 
model at least close to the axis since both Ln and LT

become large towards the axis so that η remains 
finite. As it turns out, we need also electron 
trapping to recover the full curve in Fig 3.   Both  εn

and ωD in (1.33) are due to the curvature effect of 
the diamagnetic heatflow as given by (1.13c).    
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Ion thermal conductivity
• Thus the growth of Chi with radius in Fig (6) is 

due to both magnetic curvature and 
nonadiabaticity.  Now, Eq (1.30) is directly 
connected to the fluid closure since at marginal 
stability:

iDr 
3
5

 (1.34)

• so we are at the fluid resonance at marginal 
stability.  However, this works well, both in 
comparison with kinetic theory and experiment.  
Fig 7 compares qualitatively and semi-
quantitatively the linear instability, nonlinear 
saturation and continued oscillations for a fluid 
model with nonlinear closure and a reactive fluid 
model according to Holod, Weiland and Zagorodny
(Phys. Plasmas 9, 1217 (2002
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Fluid closure
• and the Hammett Perkins Gyro – Landau fluid 

model according to Mattor and Parker Phys. 
Rev. Lett. 79, 3419  (1997). The interaction is 
between two slab ITG modes and a zonal flow.

Fig 7 Development in time of three-wave interaction between two 
slab ITG modes and a zonal flow with different fluid descriptions 
including reactive fluid, fluid with nonlinear closure and the Hammett 
Perkins gyro-Landau fluid model.
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Fluid closure
• The paper by Mattor and Parker showed that the 

fluid model with a nonlinear closure is quite close 
to the full kinetic model. The only difference 
between the reactive model and the model with 
nonlinear closure is the kinetic resonance. The 
velocity distribution is here Maxwellian and the 
highest moment (fifth) is expressed through the 
kinetic integral where a nonlinear frequency shift 
is included, i.e. nlL   (1.35)

The result of the nonlinear frequency shift in the 
kinetic integral may be difficult to see by inspection. 
However, in the expanded form, corresponding to the 
Universal instability (driven by inverse Landaudamping) 
it can be visualized.                
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Phase mixing due to nonlinear frequency 
shifts

• As seen from (1.36), the dissipation (energy) changes 
sign  when the frequency equals the diamagnetic drift 
frequency.     Thus the nonlinear frequency shift could 
easily change the   sign of the imaginary part  γ.   This 
is what happens in Fig 7. As can be seen the wave 
particle resonance is stabilizing near maxima and 
destabilizing near minima. It is the absence of this effect 
that  causes the Hammett Perkins model to phase lock 
at an amplitude above the other models.     Thus kinetic 
resonances effectively vanish although we keep the 
Maxwellian distribution function.              
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Fluid closure

• This particular case is coherent but turbulence can be 
seen as due to coupling of very many such systems.  
Already two waves lead to stochasticity of marginally 
trapped – detrapped particles.   B.V. Chirikov, Phys. Rep. 
52, 263 (1979).  Stochastic particles diffuse 
quasilinearly. However, in practice nonlinear effects
reintroduce correlations. The first example of this is the
kinetic equation for waves, i.e.

The Random phase approximation,  Sagdeev and Galeev,  
Nonlinear Plasma Theory, Benjamin, New York 1969.

The next example is the nonlinear Fokker Planck equation:
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Fokker-Planck equation

• When we consider turbulent collisions we are in a 
random phase situation where the friction coefficient 
β and diffusivity in velocity space Dv are proportional 
to sums of intensities of wave amplitudes (phase 
dependent terms have been averaged out). Clearly 
friction in this case gives a nonlinear frequency shift 
which is a strongly nonlinear feature, i.e. 
nonlinearities have reintroduced correlations.  When 
the coefficient are constants, (1.37) has an analytical 
solution: (S. Chandrasekhar, Stochastic Problems in 
Physics and Astronomy, Rev. Modern Physics 15, 1 
(1943)).  The shape of the solution is shown in Fig 8.
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Fokker-Planck equation

Fig 8. Mean square velocitydeviation <(Δv)2> as a function of time 
showing intitial quasilinear linear growth and later saturation due to 
strongly nonlinear effects.

Here the first linearly growing part  corresponds to quasilinear diffusion while the 
asymptotic flat part is strongly nonlinear. This type of behavior can be obtained by 
renormalization . (T.H. Dupree, Phys. Fluids 9, 1773 (1966),  J. Weinstock, Phys. 
Fluids 12, 1045 (1969)). An important aspect of the flat part is that there is no 
energy transfer between resonant particles and waves on the average. Thus linear 
wave-particle resonances have been averaged out! This is analogous to the 
coherent case we just discussed. In both cases the phase mixing of linear 
resonances is due to strongly nonlinear effects.
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Particle pinches
• A sensitive test on the presence of linear kinetic resonances is the 

strength of particle pinches. In Fig 9 we show Chi and D as a 
function of temperature gradient for a reactive fluid model, and a 
fluid model with Landau damping. 

•
Fig 9a

Fig 9b

Fig 9c

Fig 9d

Fig 9  Particle transport as a function of temperature gradient for a reactive fluid model a) and b) and 
for a fluid model where Landaudamping was added,  c) and d).The full lines show χi for comparison
while the dotted lines show particle diffusivities. Here a) and c) show that of the main ions (Hydrogen)
while b) and d) show the diffusivities of Coal.
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Quasilinear particle transport

• As it turns out quasilinear transport is more 
sensitive to particle pinches than fluid models 
where Landaudamping is added in the energy 
equation

Fig 10. Particle diffusion in Quasilinear kinetic theory  for the same parameters  as 
in Fig  9
kθ ρs = 0.3
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Effects of kinetic resonances on particle 
pinches

• As it turns out, the existence of the quasilinear particle pinch  
depends on modenumber. However, in order to obtain the 
total transport, we need to consider a modenumber
corresponding to the inverse correlation length of the 
system. This is typically given by (1.38) but can vary due to 
different parameters, typically due to magnetic shear, 
flowshear and magnetic q. This variation would usually be 
between 0.2 and 0.4.

• The fact that the transport of coal is insensitive to kinetic 
resonances of the main ions means that the main ions are 
also insensitive to the heating which is much more distant in

phase space

3.0sk We here used (1.38)
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Nonresonant heating

• Fig 11. Drift waves are so far away from the region of heating in phase 
space so they are independent.

• If the ITG mode associated with Coal would be unstable, however, we would
have to consider its resonance but the situation would be similar to that of 
the main ITG mode since it would be driven by gradients in real space.  The 
situation is quite different for instabilities driven by fast particles.
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Time scales

• Since the confinement time is limited in a reactor, we need to reach 
sufficiently high reaction rate to get out more energy than we put in 
during a confinement time. Since we, in a tokamak, have a pulsed 
operation, the pulse time is the time we need to control the plasma.  It is 
instructive to compare the different timescales in a reactor as shown in 
Fig 12.

Fig 12  Time scales in a fusion reactor
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Time scales  cont.

• While the growth time is a few times 10^-5, the confinement 
time is typically 2 – 3 s.  A quasistationary turbulent 
spectrum appears to exist after about 10^-3 s.  A lot of 
discussions have concerned the relevance of the parallel 
nonlinearity. Several aspects were given in:

• J. Candy, R.E. Waltz, S.E. Parker and Y. Chen,  Relevance of the parallel 
nonlinearity in gyrokinetic simulations of tokamak plasmas, Physics of 
Plasmas 13, 074501 (2006).

• There it was pointed out that the parallel nonlinearity 
enters on the transport timescale. Since the main 
parallel nonlinearity is due to Nonlinear Landaudamping, 
which considers beating of waves with almost equal 
modenumbers, we conclude that this nonlinearity can be 
seen as nonlinear Landaudamping. (N.L. Shatashvili and N.L. 
Tsintsadze, Physica Scripta T2:2, 511 (1982).
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Detuning of kinetic resonances
• The fact that the parallel nonlinearity enters on the confinement 

timescale was also noted by
• J. Weiland, A. Eriksson, H.Nordman and A. Zagorodny, Progress on 

Anomalous Transport in Tokamaks, Drift Waves and Nonlinear Structures, 
PPCF 49, 1 (2007).

• As a result of this ordering, also the friction and diffusivity in 
the Fokker-Planck equation enter on the confinement 
timescale. Thus in order to reach steady state in kinetic 
simulations we, in principle, have to rum our codes on the 
confinement timescale. 

• As it turns out, most gyrokinetic simulations appear to reach 
steady state on a much shorter timescale. We can actually see a 
possibility for that from Fig 7. There the kinetic resonance is 
averaged out on a few growth times.  However, that system is 
coherent while tokamak turbulence is almost completely 
incoherent 
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Kinetic resonances

• Thus the possibility we can see is if the kinetic 
resonances are averaged out due to the much 
stronger ExB nonlinearity while the dynamics is 
still coherent.  Since there is only one resonance 
(36), particles can be taken out of resonance by 
either parallel or perpendicular acceleration.

Dk   v (1.39)

• Thus if the stronger perpendicular resonance 
takes particles out of resonance during the 
coherent phase of the development, there will be 
no kinetic effect of the parallel nonlinearity. 
Nonlinear parallel fluid effects are usually 
ignorable.


