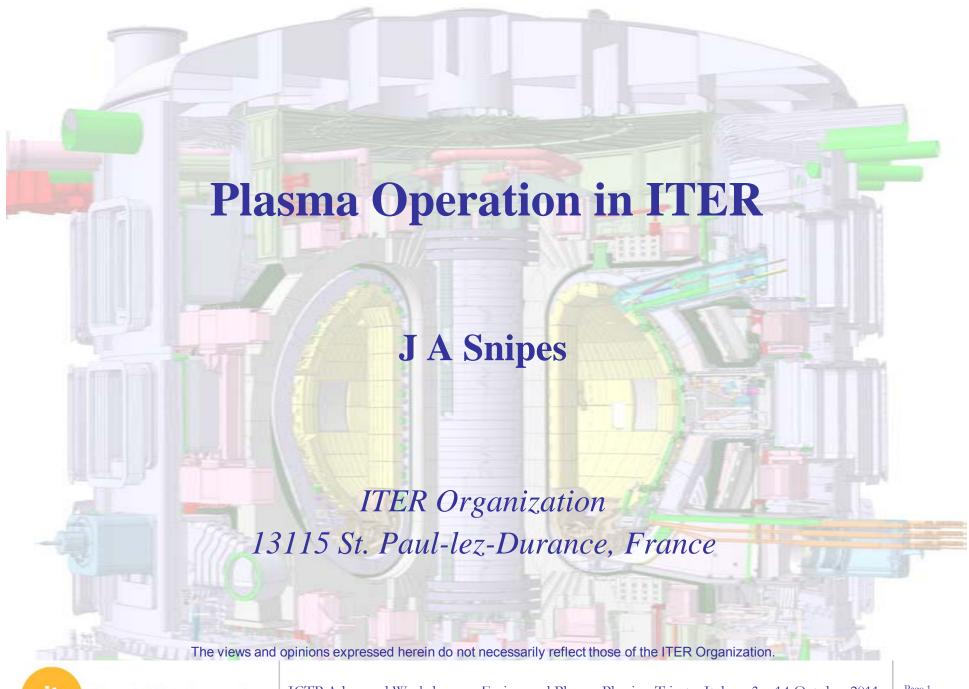


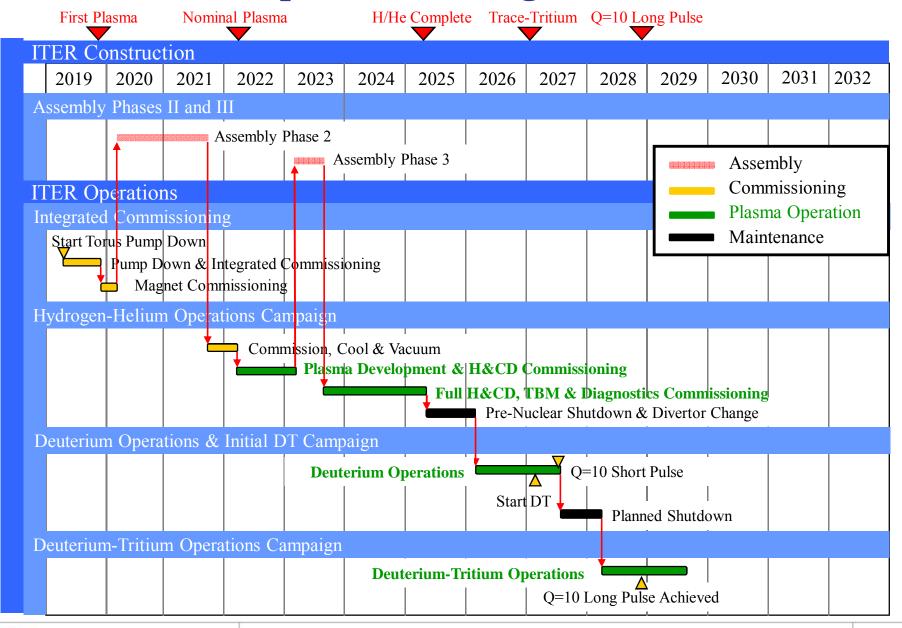
2267-3


Joint ITER-IAEA-ICTP Advanced Workshop on Fusion and Plasma Physics

3 - 14 October 2011

Plasma Operation in ITER

SNIPES Joseph Allan


Directorate for Plasma Operation Plasma Operations Group, POP, Science Division Building 523/023, Route de Vinon sur Verdon 13115 St Paul lez Durance FRANCE

Outline

- > ITER Experimental Program
- > ITER Operational Scenarios
- > ITER Plasma Control System (PCS) description
- > Plasma control areas
 - Wall conditioning and tritium removal
 - Axisymmetric magnetic control
 - Kinetic control
 - Non-axisymmetric control MHD instabilities and error fields
 - Event handling disruptions
- **Conclusion**

ITER Experimental Program Schedule

What are ITER plasmas designed to do?

⇒ ITER Operational Scenarios

ITER Scenarios

• Baseline scenarios:

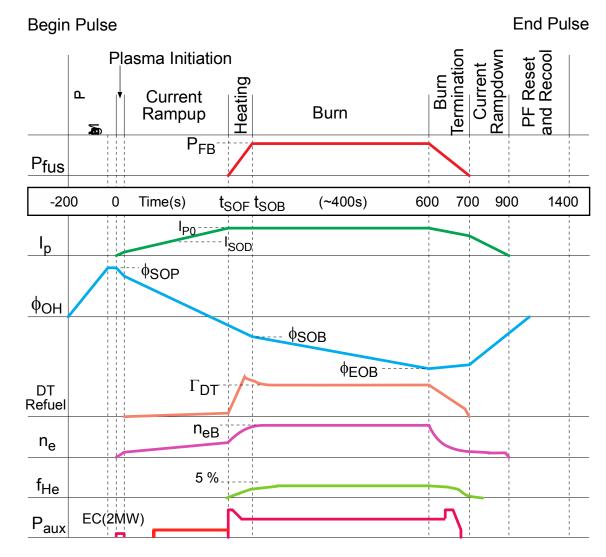
Single confinement barrier

- ELMy H-mode:
 - \triangleright Q=10 for \ge 300s
 - > well understood physics extrapolation to:
 - control
 - self-heating
 - α-particle physics
 - divertor/ PSI issues
 - physics-technology integration
- Hybrid:
 - \triangleright Q=5 50 for 100 2000s
 - conservative scenario for technology testing
 - performance projection based on extension of ELMy H-mode

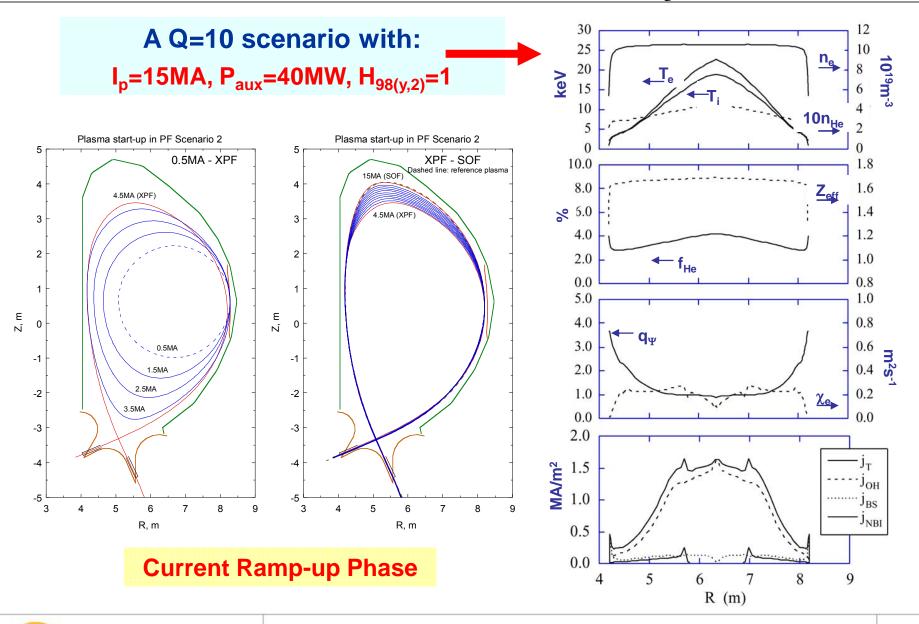
Advanced scenarios:

Multiple confinement barriers

- > satisfy steady-state objective
- > prepare DEMO
- develop physics in a range of scenarios:
 - extrapolation of regime
 - self-consistent equilibria
 - MHD stability
 - controllability
 - divertor/ impurity compatibility
 - satisfactory α-particle confinement

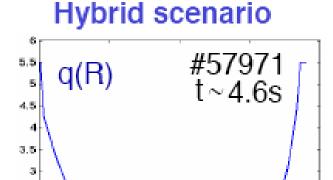

15MA Inductive Scenario - Schematic

Typical 15MA Q=10 inductive scenario has:


- current ramp-up phase of 70-100s
- heating phase of ~50s
- burn phase of 300-500s
- shutdown phase of 200-300s

Typical pulse repetition time ~1800s

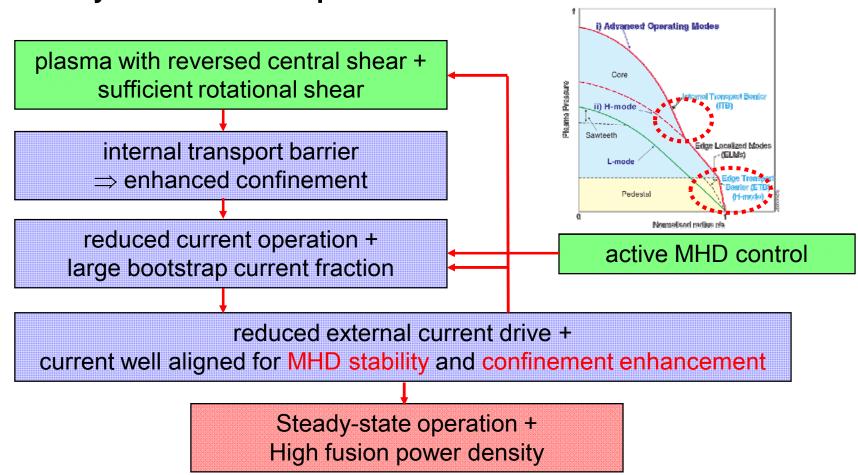
based on burn duty cycle of 25%


ITER Plasma Scenario - ELMy H-mode

ITER Hybrid Scenario Operation

(M L Watkins et al, 21 IAEA FEC, Chengdu, 2006)

2.5


1.5

Major radius [m]

- The so-called "hybrid" mode (improved H-mode) developed in recent years may allow ITER both to operate at higher fusion performance and for longer durations:
 - Flat central q-profile with q(0) ~ 1 appears critical
 - R&D is ongoing to demonstrate extrapolability of regime to ITER

Steady-State Operation

Discovery of internal transport barriers ⇒ "advanced scenarios"

 But development of an integrated plasma scenario satisfying all reactor-relevant requirements remains challenging

ITER Plasma Control

Plasma Control System Has Five Control Areas

The ITER Plasma Control System (PCS) has five control areas:

- Wall conditioning and tritium removal: clean in-vessel components and control tritium inventory
- Plasma axisymmetric magnetic control: plasma initiation, plasma current, position, and shape
- Plasma kinetic control: power and particle flux to the 3) divertor and first wall, fuelling, non-inductive plasma current, plasma pressure & fusion burn
- Non-axisymmetric mode control: sawtooth, neoclassical tearing mode (NTM), edge localized mode (ELM), Alfven eigenmode (AE), error field and resistive wall mode (RWM)
- **Event handling:** adaptive control to changing plasma and plant system conditions including disruption mitigation

PCS Must Navigate Within Plasma Operational Limits

Extensive $R&D \rightarrow$ various stable plasma operational limits:

- current limit: edge plasma safety factor, $q (\propto a^2 B_{\phi}/RI_p) > 2$, $q = d\phi/d\theta$ = path of magnetic field lines around the torus, field lines close on themselves when q=m/n for integer m,n
- equilibrium limit(s): operating space q and / (internal inductance)
- elongation limit: maximum elongation, κ, depends on plasma equilibrium & inductive coupling to the tokamak
- density/ radiation limit(s): maximum density/ radiation level depends on confinement regime
- pressure limit(s): β (= kinetic/magnetic pressure \propto p/B²), limited by various MHD instabilities

Plasma control system steers in operating space within these limits to ensure good confinement and high fusion power

Operational Sequence Changes in Real-Time

- > Pre-programmed sequence and segment switching + real-time changes in operational sequence in response to faults or conditions
- > Heating system fault during a pulse > PCS changes operational sequence to a backup experiment to save valuable plasma time
- Real-time integrated plasma modeling used to adjust plasma parameters based on expectations of the modeling
- Adaptive control algorithms use a database of previous plasma conditions to change the control scheme in real-time to achieve desired results (improve performance, avoid disruptions!)

PCS Requires Multiple Actuators

- ➤ Wall conditioning and tritium removal control requires ion cyclotron (IC), electron cyclotron (EC), & high frequency glow discharge cleaning (HFGDC))
- ➤ Plasma axisymmetric magnetic control requires Central Solenoid (CS), Poloidal Field (PF), and internal Vertical Stability (VS) coils & power supplies
- ➤ Plasma kinetic control requires heating and current drive H&CD (IC, EC, & neutral beam injection (NBI)), Ar, Ne, H, D, & T gas and pellet injection, real-time pumping & strike point control
- Non-axisymmetric mode control requires H&CD systems, ELM coils and pellet pacing, gas and pellet fuelling, shape control, & external correction coils
- Event handling requires axisymmetric magnetic control & disruption mitigation

ITER Heating & Current Drive Systems

NB	IC	EC	LH
Neutral Beam - 1 MeV	Ion Cyclotron 40-55MHz	Electron Cyclotron 170GHz	Lower Hybrid ~5 GHz
		Waveguide Miter bends Internal shield Focusing mirror Co-direction Counter - direction Steering mirror Support plate Front shield Ma minors (SMA) Ma minors (SMA)	Taper section PAM RF window RF window Mode converter
33MW* +16.5MW#	20MW* +20MW#	20MW* +20MW#	OMW* +40MW#
Bulk current drive limited modulation	Sawtooth control modulation < 1 kHz	NTM/sawtooth control modulation up to 5 kHz	Off-axis bulk current drive

*Baseline Power *Possible Upgrade **P**_{aux} for Q=10 nominal scenario: 50MW

130 MW (max installed) (110 MW simultaneous)

Why Four Heating Systems?

Technology:

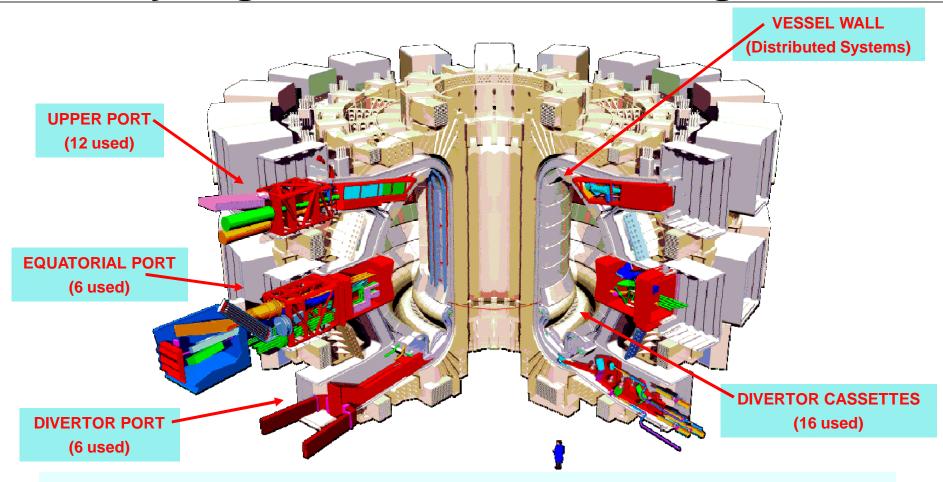
- ICRF and LHCD fairly conventional
- NBI and ECRH source technology challenging

Coupling to plasma:

- NBI and ECRH straightforward
- ICRF and LHCD problematic: antenna design challenging due to difficulty in coupling wave through (evanescent) plasma edge

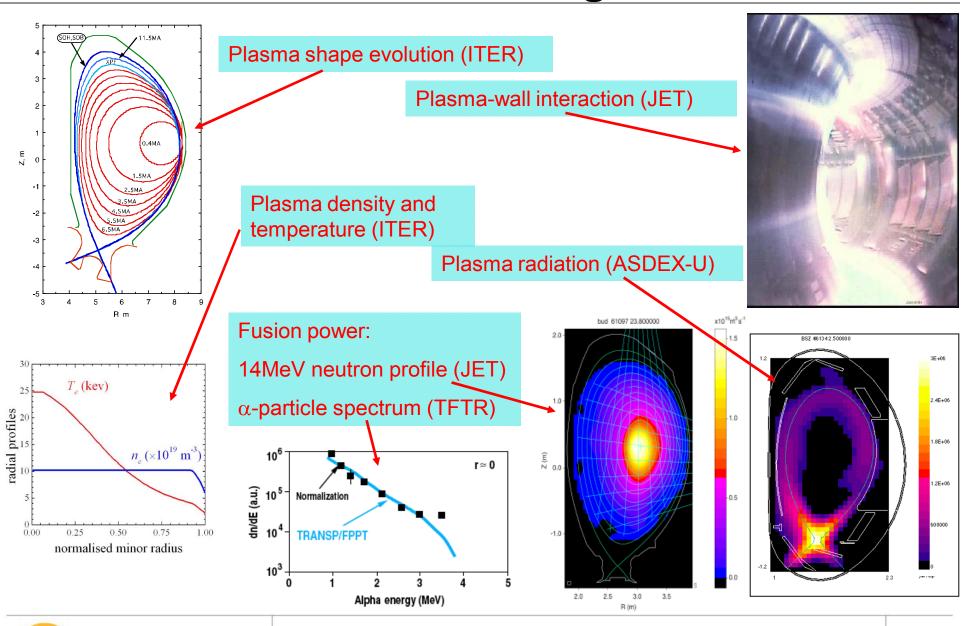
Radial localization:

- Resonance condition favours ECRH and ICRF radial localization
- NBI and LHCD more global in effects


Current drive:

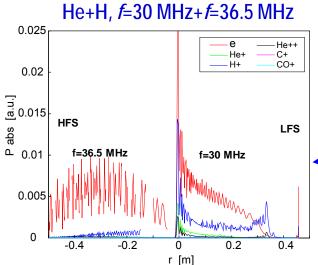
- NBI and LHCD most efficient
- ECRH and ICRF used in more specialized applications where space localization important

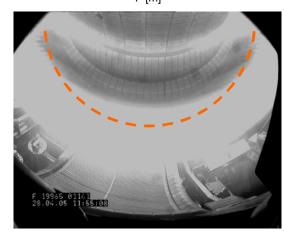
PCS Requires Measurements for Control


- Wall conditioning and tritium removal requires residual gas species and partial pressures on timescales of minutes and hours
- Plasma axisymmetric magnetic control requires neutral pressure, impurity radiation, stray fields, plasma current & position, poloidal field & flux, coil currents, toroidal field, and vessel eddy currents
- Plasma kinetic control requires particle flux and heat load on the first wall and divertor, impurity content, radiated power, D_{α} emission, neutral pressure, core and divertor helium content, electron, ion, and impurity densities, core DT mix, temperature & current density profiles
- Non-axisymmetric mode control requires measurements of sawteeth, ELMs, NTMs, error field characterization, RWMs, plasma rotation, and Alfvén eigenmodes
- Event handling requires measurements of plant system status, high first wall and divertor heat load, oscillating and locked modes, and runaway electrons

Analyzing the Plasma - ITER Diagnostics

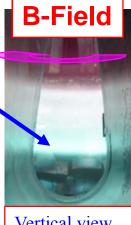
- About 50 large scale diagnostic systems are foreseen:
 - Diagnostics required for protection, control and physics studies
 - Measurements from DC to γ -rays, neutrons, α -particles, plasma species
 - Diagnostic Neutral Beam for active spectroscopy (CXRS, MSE)

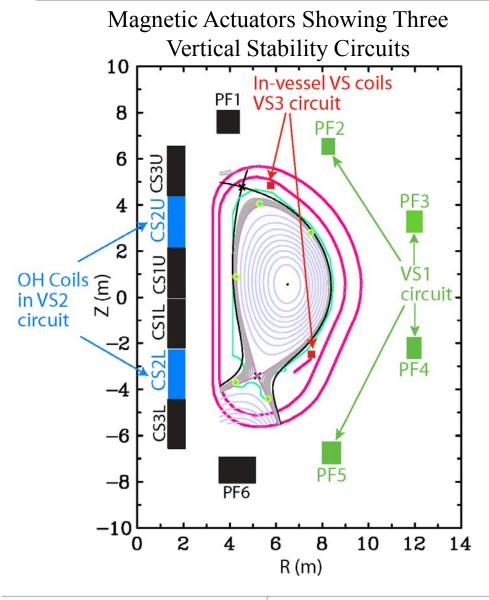

Fusion Plasma Diagnostics



Five Plasma Control Areas of ITER

1) Wall Conditioning and Tritium Removal

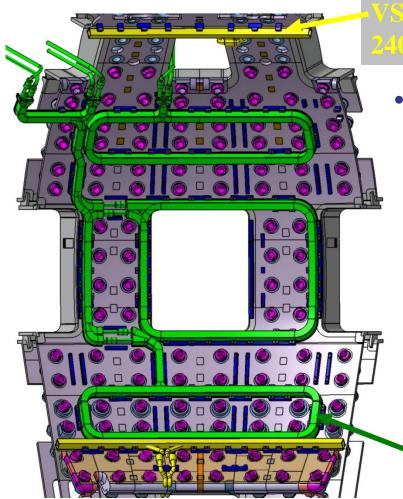

A. Lyssoivan, 18th PSI 2008



- > PCS will control plasma wall conditioning(WC) during the TF including PF control
 - for D and DT plasmas to reduce adsorbed H isotopes from the first wall
 - ICWC and possibly ECWC techniques
 - homogeneous ICWC on AUG with dual frequencies, He+H, & vertical field
 - High frequency glow discharge cleaning with toroidal field
 - 20 100 kHz HFGDC with B_T demonstrated on EAST with stable uniform glow toroidally, over wide range of pressure
 - removal rates similar to ICWC

X Gong, J Li, PSI 2010

2) Axisymmetric Magnetic Control


- > Includes plasma initiation, inductive plasma current, position, and shape control
- > PCS will control currents in CS, PF, and VS magnets, but not TF
- Plasma initiation will include several MW of startup ECH
- ➤ Inductive plasma current, shape, and radial position control will have a settling time of ~ 5 s
- Vertical position control with VS1+VS3 coils will have a settling time $\sim 0.1 \text{ s}$
- 12 14 > VS2 possible backup system

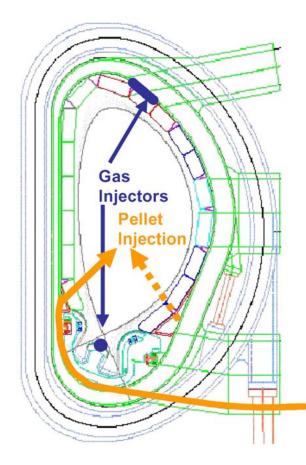
Vertical Position Control Based on VS1+VS3 Circuit

- \triangleright Baseline system for stabilizing plasma vertical displacements (ΔZ) (VS1+VS3) capable of restoring the plasma vertical position after a maximum uncontrolled vertical drift ~ 16 cm for $l_i < 1.2$
- $ightharpoonup l_i$ is the plasma internal inductance $l_i = \frac{2\int_0^a B_{\theta}^2 r dr}{a^2 B_{\theta \alpha}^2}$
- ➤ Assumed dZ/dt RMS noise ~ 0.6 m/s with 1 kHz bandwidth
- \triangleright Timescales > vacuum vessel radial field penetration time ($\sim 0.2 \text{ s}$)
- > If VS3 fails, possible backup: VS1 up to 9 kV & VS2 up to 6 kV VS1+VS2 alone capable of vertical position control after a maximum uncontrolled vertical drift given by:

$$Z_0(cm) = 160e^{-3.7\ell(3)} + 1.8$$

Magnetic Actuators Include In-Vessel Coils

- A set of in-vessel resonant magnetic perturbation (ELM) and vertical stability (VS) coils is being designed:
 - -9 toroidal \times 3 poloidal array on outboard internal vessel wall
 - vertical stabilization coils upper & lower loops form a saddle coil

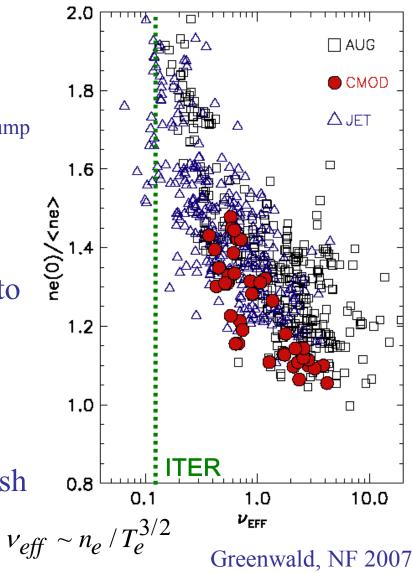

ELM coils (3 sets of 9 coils) 6 turns up to 90 kAturns

3) Plasma Kinetic Control

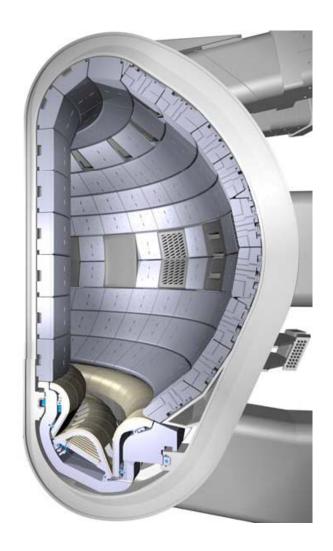
- ➤ Plasma kinetic control includes power and particle flux, fuelling, heating and current drive, plasma pressure and fusion burn control
- ➤ Power and particle flux control: first wall & divertor protection and MARFE (edge radiative instability)
- ➤ Fuelling control: main ion species mix, electron density, and injected impurity density
- ➤ Impurity density control: Ne/Ar and helium ash
- ➤ Heating & current drive power and deposition
- \triangleright Current density profile control for hybrid and long pulse steady-state scenarios for $q_{min} > 1$ or $q_{min} > 2$
- Recall from introductory lecture q is the safety factor: $q = \frac{d\Phi}{d\Psi}$

Gas and Pellet Injection from Multiple Ports

Fueling Actuators

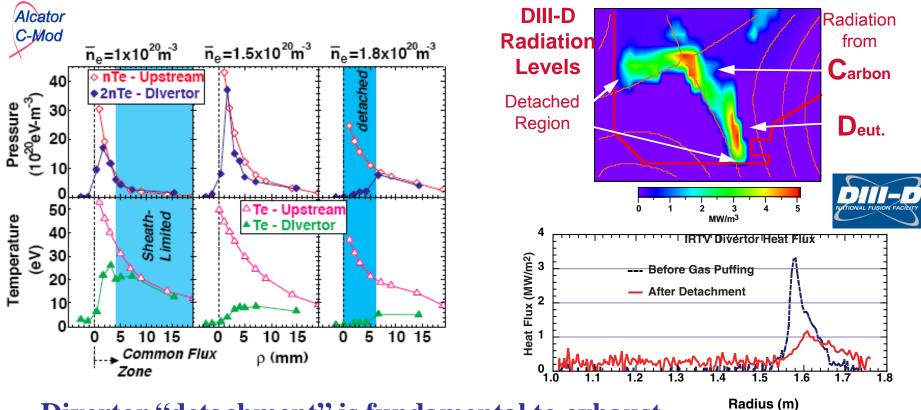


Baylor, NF 2007


- Gas fueling systems provide H, D, T, ⁴He up to 100 Pa m³/s except 10 Pa m³/s for T
- Gas impurity injection provide N, Ne, Ar, and ³He up to 10 Pa m³/s
- ➤ 10 gas valve boxes in 4 upper and 6 lower ports each provide maximum throughput with a response time from < 1 3 s
- Frozen H, D, T, N, Ne, and Ar pellets provided from 3 lower ports with both high and low field side launch at up to 16 Hz
- ➤ ELM pellet pacemaking up to 48 Hz from 3 staggered low field side injectors
- Max throughput 120 Pa m³/s for H, D, 111 Pa m³/s for T, and 10 Pa m³/s for impurities

What Will Core Fuelling be Like in ITER?

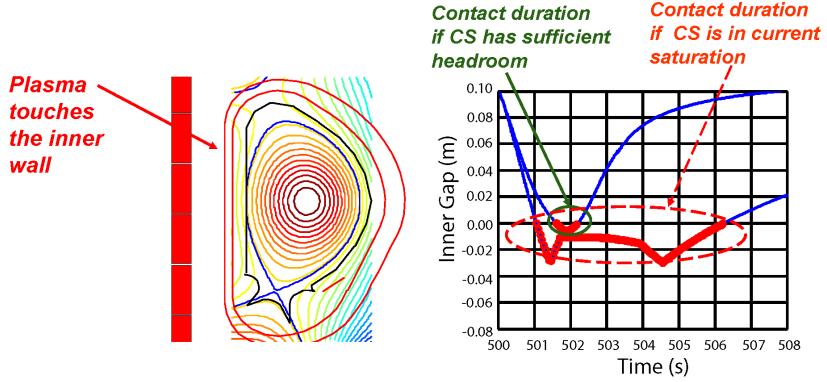
- Present cryopump design limit: $\Gamma_{\text{pump}} = 200 \text{ Pa-m}^3/\text{s}$
- \triangleright Expected recycling flux:100 \times Γ_{pump}
- > Expect low central gas fuelling
 - → flat density profiles
- Inward pinch at low ν* may lead to density peaking in ITER
- > Could increase fusion reactivity
- ➤ But profile peakedness must be carefully controlled to avoid He ash and other impurity peaking



Power and Particle Flux Control is Essential

- > Power and particle flux control to the first wall and divertor is essential to avoid damage and excessive impurity influxes
- \triangleright Divertor melting can occur quickly (~1 s) at full performance
- ➤ Divertor detachment control with Ne/Ar puffing avoids excessive divertor heat load
- ➤ MARFE control will be required at high density to maintain good confinement
- ➤ Unmitigated ELM and disruption heat loads will severely limit the divertor lifetime
- > Fusion performance requires core helium ash control with divertor cryopumping, strikepoint position, and H&CD profile control

Power Exhaust Control Through Divertor Detachment

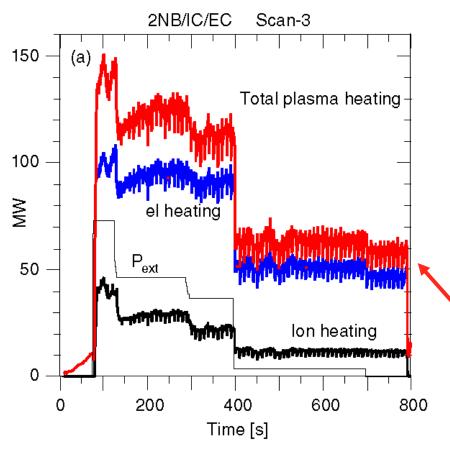


Divertor "detachment" is fundamental to exhaust power in a burning plasma environment:

- large pressure gradient develops along field lines into the divertor
- at high density, divertor plasma temperature falls to a few eV
- large fraction of plasma exhaust power is redistributed by radiation from impurities injected into the divertor and ion-neutral collisions

ITER PCS is Critical to Avoid Melting First Wall

Modeling of an H-mode to L-mode Transition at Q=10 with 15 MA


- \triangleright Radial inward displacement can be ≥ 10 cm \rightarrow contact with the inner wall
- > Duration of inner wall contact depends on the central solenoid saturation state
- \triangleright Peak engineering heat loads of $\sim 40 \text{MW/m}^2 \rightarrow$ Be tiles would melt in $\sim 0.3 \text{ s!}$
- > PCS must maintain large enough gaps or trigger the disruption mitigation system

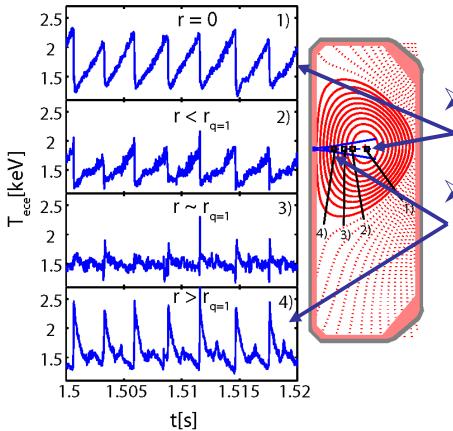
ITER Will Enter New Fusion Burn Control Regime

- Novel aspects of burning plasma physics are key to the ITER research program
- \triangleright α -particle/energetic particle physics:
 - energetic particle confinement at low $\rho^* (= r_I/a \sim (T^{1/2}/B)/a)$, influence of self-heating
 - nonlinearly coupled MHD with Alfvén eigenmodes (AEs)
 - enhanced heat loads with high fusion power
- > Burning plasma control scenarios:
 - burn control through D/T mix profile control
 - dominant core pellet fuelling is also a new regime
 - transport barriers and their control (isotope effects in DT?)
 - non-linear interactions between α and auxiliary heating, plasma pressure, rotation and current density profiles
 - can Alfvén eigenmode stability be used for burn control?

Simulations Show Fusion Burn is Stable in ITER

Simulated Burn Control in ITER

Budny, NF 2009

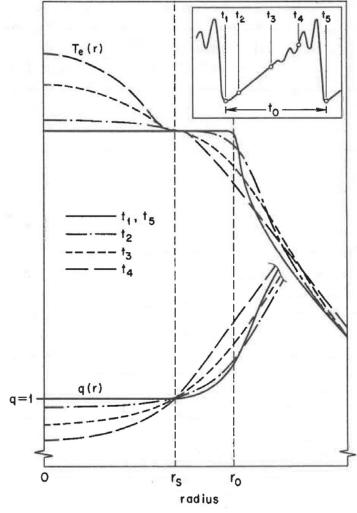

- Dominant α-particle heating at Q=10 requires reliable fusion burn control schemes controlling the core D/T mix with pellet injection, helium ash, and other core impurities
- Auxiliary heating power may also be used for secondary fusion burn control
- ➤ Simulations show that the fusion burn is stable in a 15 MA Q=10 DT ITER plasma

4) Non-Axisymmetric Mode Control

- Non-axisymmetric control includes sawtooth, neoclassical tearing mode (NTM), edge localized mode (ELM), Alfvén eigenmode (AE), error field and resistive wall mode (RWM) control
- > Sawtooth and NTM control are required at high performance with ion cyclotron range of frequency (ICRF) and localized and steerable electron cyclotron current drive (ECCD)
- > ELM control critical to reduce divertor erosion with pellet pacing (30-50 Hz repetition rate) and in-vessel ELM coils
- Alfvén eigenmode control may be required at high performance for burn control and to avoid enhanced localized fast particle losses
- Error field control is required to avoid locked modes and RWMs
- \triangleright RWM control upgrade may be required at high β using ELM coils

What are Sawteeth?

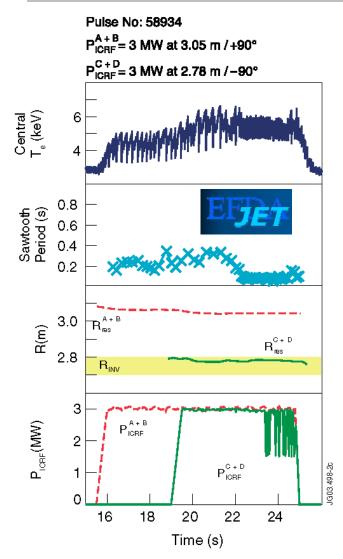
T_e at Four Radial Locations in TCV



- Sawteeth are periodic oscillations in the plasma temperature with a characteristic sawtooth shape
- Slow rise in the core temperaturefollowed by a rapid crash
- Outside the q=1 ($q\sim rB_T/(RB_\theta)$) 'sawtooth inversion' radius, the temperature rises rapidly and then falls slowly

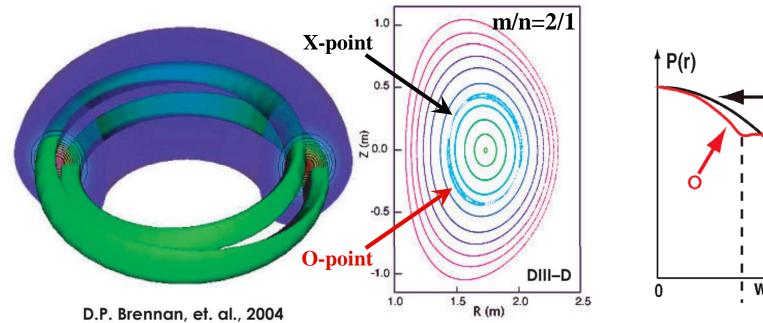
P Blanchard, PhD thesis, EPFL (2002)

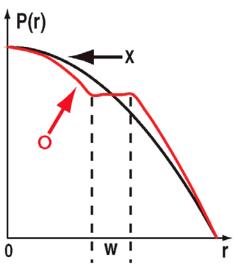
What are Sawteeth?


Model T_e and q Profiles During a Sawtooth

Jahns, et al., NF 18 (1978) 735

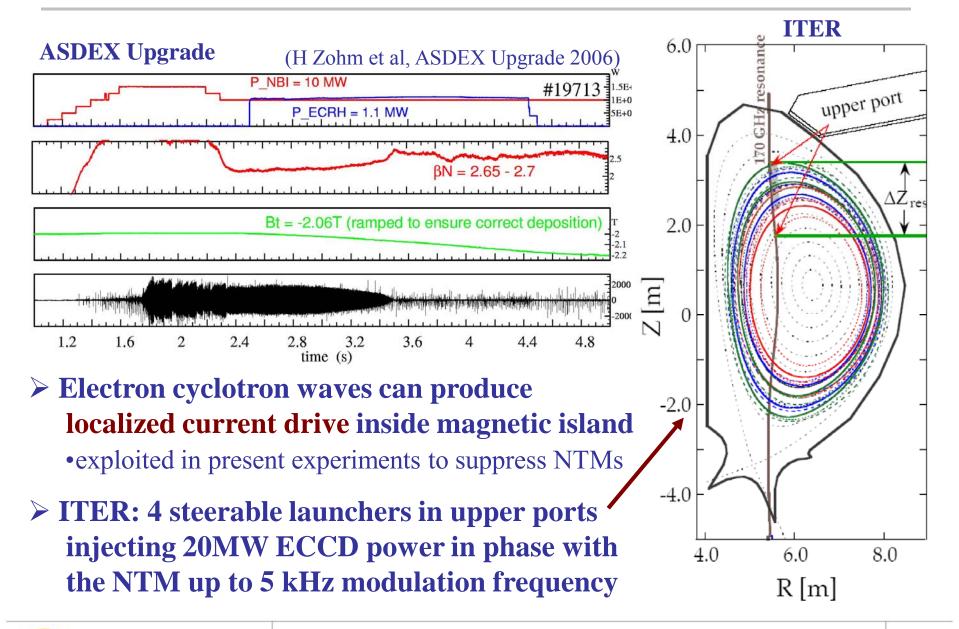
- Sawteeth are periodic oscillations in the plasma temperature with a characteristic sawtooth shape
- ➤ Slow rise in the core temperature followed by a rapid crash
- ➤ Outside the q=1 ($q\sim rB_T/(RB_\theta)$) 'sawtooth inversion' radius, the temperature rises rapidly and then falls slowly
- ➤ Model shows how T_e and q profiles change during a sawtooth
- Large sawteeth provide seed islands that could lead to unstable NTMs and reduced confinement

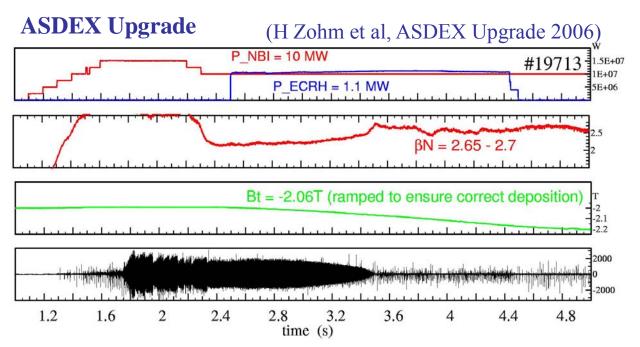

Sawtooth Control Has Been Demonstrated



Pamela, et al., NF 45 (2005) S63

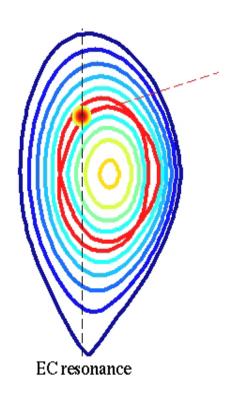
- ➤ Sawtooth control was demonstrated on JET with +90° ICRF phasing to create fast ions to partially stabilize sawteeth
 - 'monster' sawteeth
- Then -90° ICRF phasing was added to destabilize sawteeth reducing the sawtooth period and amplitude
- ➤ ITER actuators for sawtooth control include ICRF and localized ECCD near the q=1 surface
- Current drive techniques will also be used to maintain q > 1 for long pulse scenarios to avoid sawteeth


What are Neoclassical Tearing Modes?



- Finite plasma resistivity allows toroidally non-axisymmetric helical currents to break or tear magnetic field lines at rational surfaces q = m/n (\Rightarrow a tearing mode)
- Field line reconnection creates magnetic islands and rapid energy transport along the field line flattens the pressure profile across the island width W 1
- Toroidal effects produce a pressure gradient driven bootstrap current $j_{bs} \sim -\frac{\varepsilon^2}{B_{\theta}} \frac{dp}{dr}$
- Reduced gradients in the island produce a helically perturbed bootstrap current
- Neoclassical Tearing Modes (NTMs) are excited by seed islands above a critical β

Localized ECCD Controls NTMs

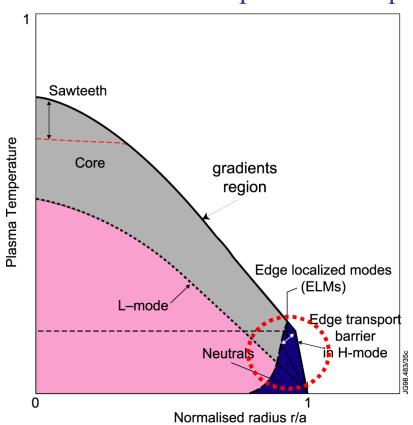


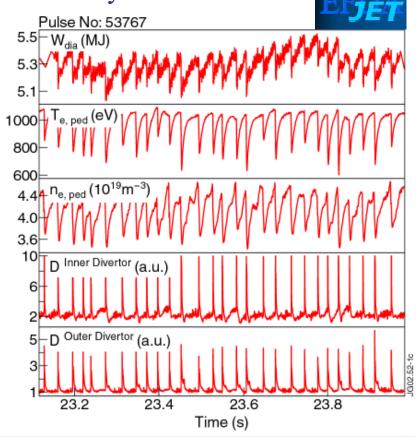
Localized ECCD Controls NTMs

- **Electron cyclotron waves can produce** localized current drive inside magnetic island •exploited in present experiments to suppress NTMs
- > ITER: 4 steerable launchers in upper ports injecting 20MW ECCD power in phase with the NTM up to 5 kHz modulation frequency

ITER

R LaHaye, APS 2005

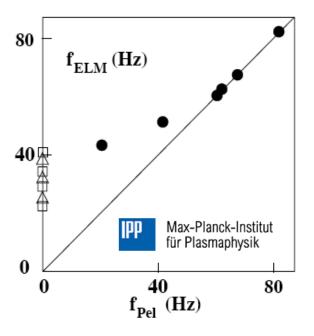

Page 39


What are Edge Localized Modes (ELMs)?

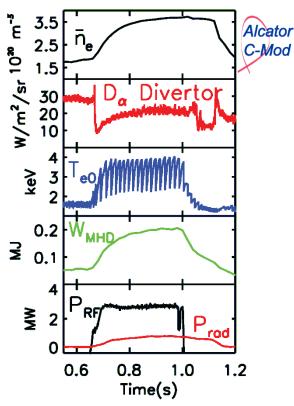
ELMs are rapid disturbances of the edge temperature and density

- destabilized when the edge pressure gradient becomes too steep
- yield very high transient heat and particle flux on wall and divertor

maintain the plasma in a quasi-stationary state

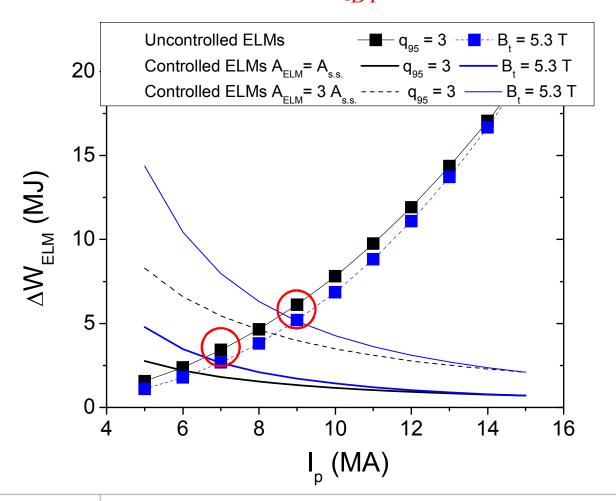


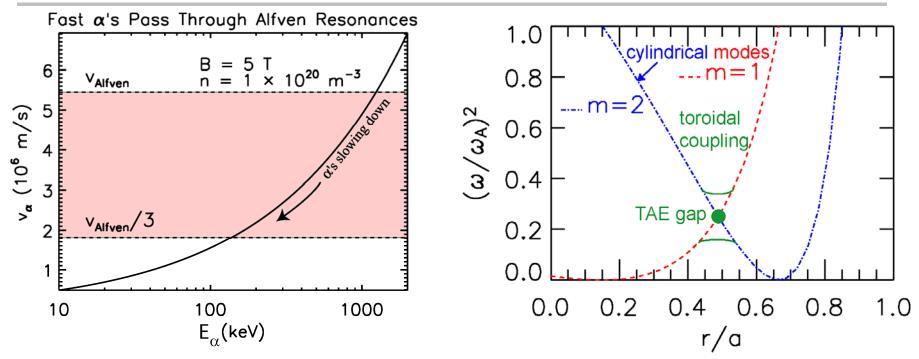
First Wall Heat Load: ELM Control/ Mitigation is Critical


DIII-D Magnetic Control

1.0 lower div. D_{α} (a.u.) lTER Shape lower div. Low δ Shape loss $\delta = 0.53$ lower div. Low δ Shape loss $\delta = 0.53$ lower div. Low $\delta = 0.53$ lower div. Lower div. Low $\delta = 0.53$ lower div. Low

AUG Pellet Pacemaking


C-Mod EDA H-mode

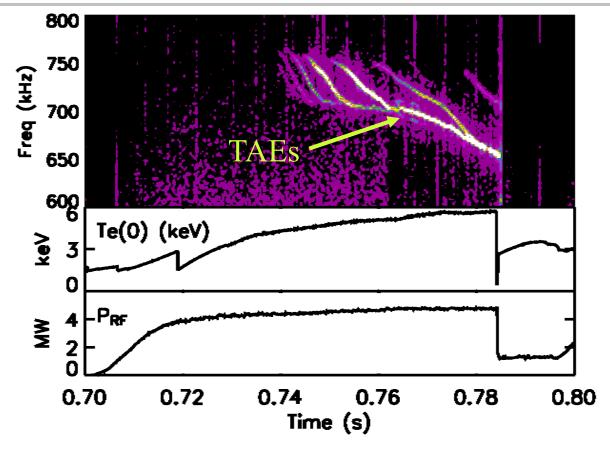

- ➤ ELM control is needed to substantially reduce divertor heat loads to enhance the divertor lifetime
- > ITER will use in-vessel ELM coils and pellet pacing for ELM control
- > Steady-state ELM-free regimes may also be found on ITER

ELM Control Required for High Current Operation

➤ Operation with uncontrolled ELMs is possible in ITER for $I_p < 9$ MA → ELM control required from H-mode transition (in I_p ramp) through burn and H-L transition for 15 MA $Q_{DT} = 10$

What are Alfvén Eigenmodes?

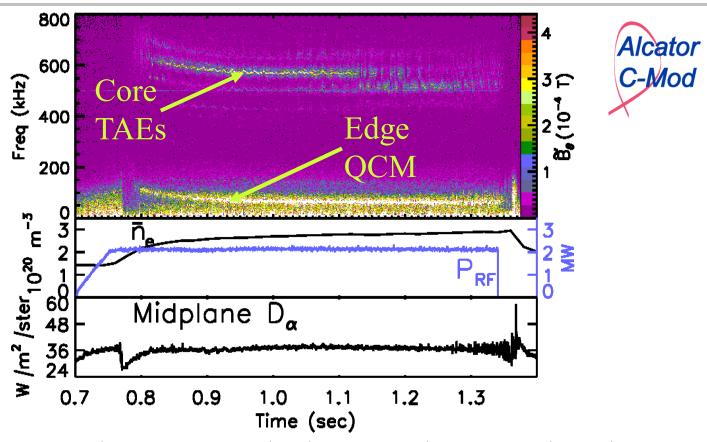
Energetic particles with specific resonances (e.g., v_A , v_A /3) e.g., α particles slowing down excite Alfvén modes in gaps in the continuum spectrum where damping is weaker


$$\omega^{2}(r) = k_{\parallel}^{2}(r) v_{A}^{2}(r)$$

$$\omega_{A} = v_{A}(0) / (q_{a}R_{0})$$

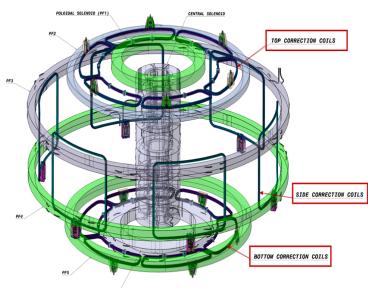
$$\propto B_{T} / (q_{a}R_{0}\sqrt{n_{i}m_{i}})$$

- > Toroidal Alfvén Eigenmodes (TAEs), Elliptical AEs (EAEs), etc
- \triangleright Overlap of multiple AEs may enhance α particle loss before thermalizing


How Will Fast α-particles Affect Sawtooth Stability?

- \triangleright Energetic α -particles are expected to stabilize sawteeth
- \triangleright α -driven TAEs may redistribute the fast ions \rightarrow 'monster' sawteeth
- > RF H&CD will be used to control such 'monster' sawteeth

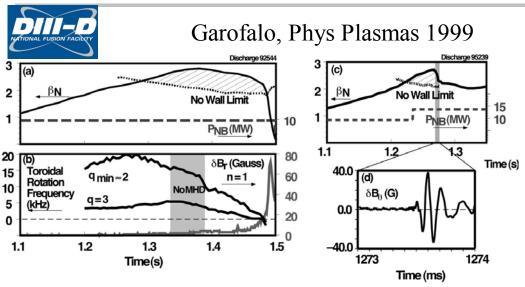
Will Fast α's Strongly Couple Modes Nonlinearly?

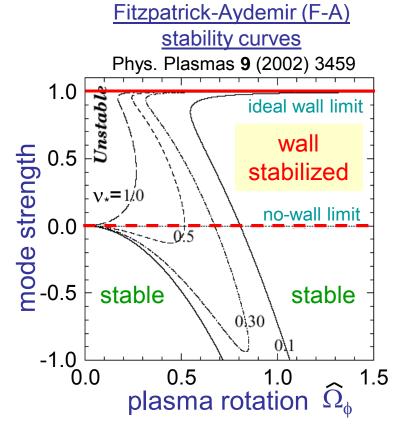


- > Alfven eigenmodes may couple the core plasma to the edge
- ➤ Will nonlinear mode coupling then greatly enhance transport?
- > What new nonlinear control schemes will be required?

Page 45

Error Field Control with External Correction Coils

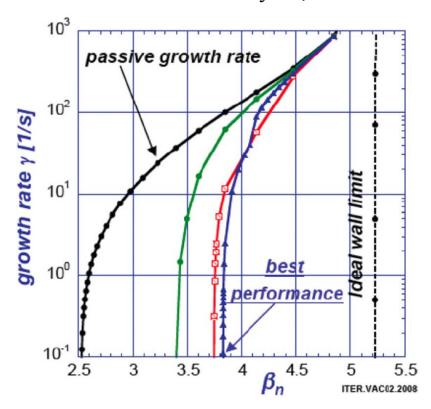

- Error fields come from CS, PF, and TF coil misalignments and feeds
- > Error fields also from ferromagnetic materials especially Test Blanket Modules (TBMs)
- > Error fields induce a torque slowing down the plasma toroidal rotation



External Correction Coils

- Reduced rotation can lead to more locked modes and disruptions
- \triangleright Error fields also enhance resistive wall modes (RWMs) at high β
- > Three sets of 6 top, bottom, and side external correction coils will be used within the 320 kAt top & bottom and 200 kAt side current limits together with in-vessel ELM coils to correct a broad error field spectrum

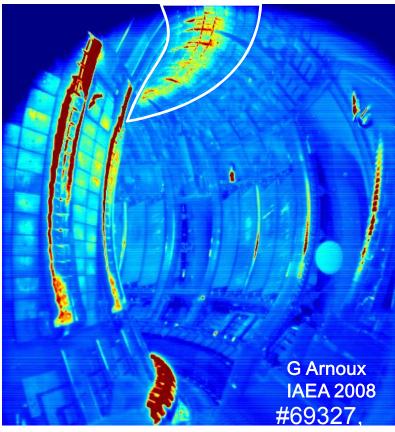
What are Resistive Wall Modes?



- > Image currents in a conducting wall tend to stabilize external kink modes
- > Image currents decay on a resistive eddy current decay time ($\tau_{\rm W} \sim 200 \text{ ms in ITER}$)
- \triangleright At high β_N , RWMs leak through wall with exponential growth time $\sim \tau_W$
- \triangleright RWMs grow in gap between no-wall and superconducting wall β limit
- > Plasma rotation helps stabilize RWMs by maintaining image currents

Page 47

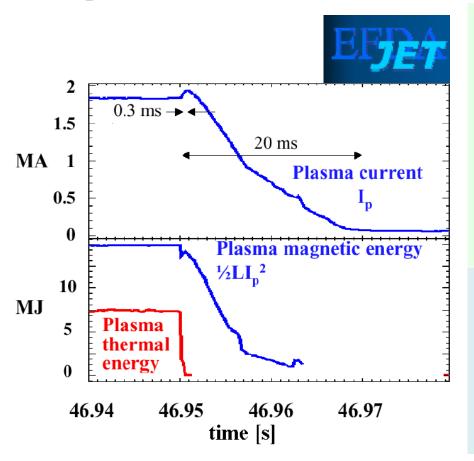
Resistive Wall Mode Control Allows High β Operation


RWM Control: Hawryluk, NF 2009

- RWM control may be required as an upgrade at high β using internal ELM coils to reduce RWMs and external correction coils + ELM coils to reduce error fields
- ► VALEN code calculations indicate that the ELM coils can stabilize RWMs for $\beta_N < 3.7 3.8$ in ITER
- The ELM coils will be phased with the slow rotation of the RWM
- ➤ Power supply characteristics will be defined after initial ITER operation

Event Handling

Real-time Hot Spot Detection Infrared View of JET Plasma

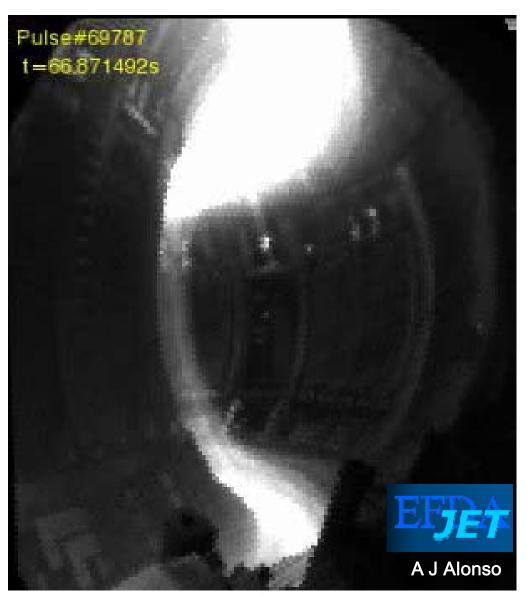


- > Crucial for machine protection
 - PCS is first line of defense to avoid triggering central interlock system
 - to save valuable plasma time
 - e.g., hot spot detection
- ➤ Adaptive control in real-time
 - change algorithm to maintain performance or for machine protection
 - bridge segments automatically switch to alternate control segments if the initial objective cannot be met
- ➤ Implement real-time forecasts
 - real-time modeling of performance
 - predict plasma regime changes
 - predict and avoid MHD instabilities
 - predict, avoid, and mitigate disruptions

What are Disruptions?

Disruptions occur in tokamak plasmas when unstable p(r),j(r) develop

- ⇒ unstable MHD modes grow
- ⇒ plasma confinement is destroyed (thermal quench)
- ⇒ plasma current vanishes (current quench)


Typical JET timescales

- Thermal quench $< 1 \text{ms} \Rightarrow \text{deposits}$ plasma thermal energy on plasma facing components (PFCs)
- Current quench $> 10 \text{ ms} \Rightarrow \text{deposits}$ plasma magnetic energy by radiation on PFCs & runaway electrons

Expected values for ITER

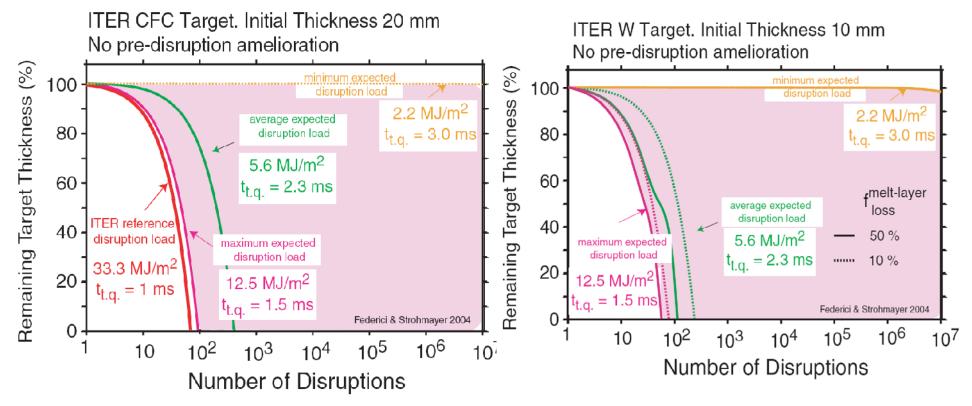
- Thermal energy ~ 300 MJ
- Magnetic energy ~ 600 MJ
- Thermal quench time ~ 1.5 3 ms
- Current quench time ~ 20 40 ms

Disruptions Produce High Thermal and Mechanical Loads

Fast video taken in the visible at 250 kHz frame rate for 50 msec for a planned high performance density limit disruption in JET

Thermal quench:

High concentrated heat loads on plasma facing components


Current quench:

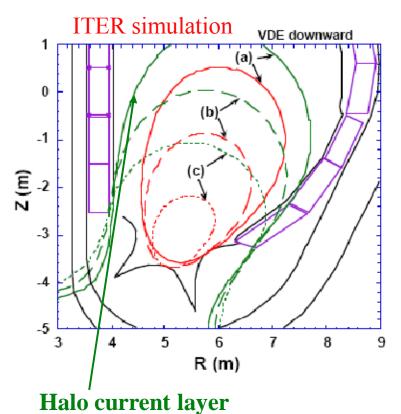
Large electromagnetic forces on the vacuum vessel and in-vessel components

Disruption forces shake the camera support several cm!

Disruptions Limit the Divertor Lifetime in ITER

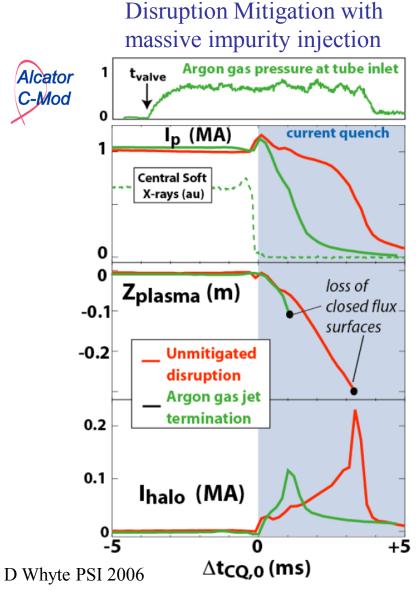
- Expected energy loads on the divertor and first wall in ITER may exceed material limits (sublimation + melting)
- > Dynamics of plasma and materials in these conditions is very complex
 - → major uncertainties in consequences of disruptions for PFCs in ITER

> The divertor may only withstand a (few) hundred Q=10 disruptions!


Page 52

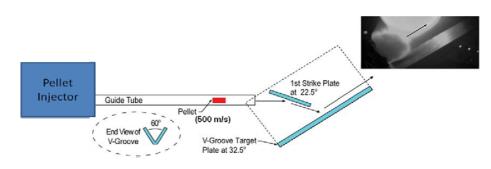
What are Vertical Displacement Events – VDEs?

When a loss of vertical position control takes place:


- ⇒ plasma impacts wall with full plasma energy
- ⇒ high localized heating
- ⇒ mitigation required

Control issues

- Detection of loss of vertical position control
- Fast stop of plasma by massive gas injection, killer pellets, etc.
- Effectiveness, reliability of mitigation
- Runaway electron plasma must be controlled and safely eliminated to avoid localized wall damage
- Need R&D in existing experiments

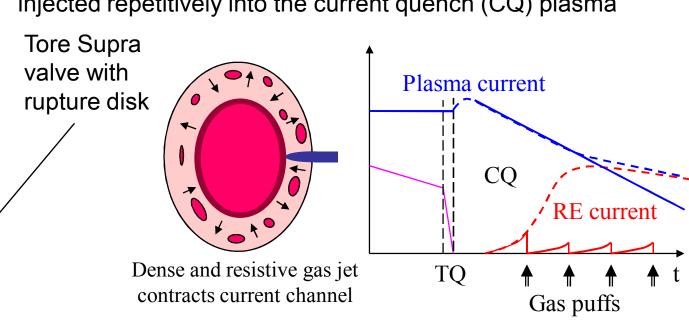

How Can Disruption/VDE/Runaways be Mitigated?

High pressure impurity gas or pellet injection looks promising for disruption/ VDE mitigation:

- ➤ efficient radiative redistribution of plasma energy reduced heat loads
- reduction of plasma energy and current before VDE can occur
- > substantial reduction in halo currents (~50%) and toroidal asymmetries
- ➤ Separate disruption and runaway mitigation systems may be necessary
- ➤ Multiple high pressure gas injection may shrink runaway current channel

Pellet Injector Design for Disruption Mitigation

Pipe-gun concept with shattered pellets



CAD model of top port multi-barrel injector

- ➤ Injector of large Ne or Ar cryogenic pellets is under development at ORNL
- Pellets injected in prethermal quench plasmas to mitigate energy loads
- Pellets shattered upon entry to vacuum vessel to improve impurity distribution
- ➤ The concept has been successfully tested on DIII-D

Suppression of RE electrons by repetitive gas injection

Large magnetic perturbations can be produced by dense gas jets injected repetitively into the current quench (CQ) plasma

- ➤ Required gas pressure > 1 atm, gas amount ~1 kPa*m³,
 5-6 jets during CQ (staggered in time by 5 10 ms)
- Based on estimates the total amount of gas can be 10 times less than for collisional damping!
- Experiments are planned to test this scheme in Tore-Supra, ASDEX-Upgrade, and T-10

Conclusions

- > ITER plasma operation will be based on present tokamaks but:
 - must be very reliable including pre-pulse validation with simulations
 - also requires divertor power exhaust and fusion burn control
 - requires effective multiple parameter control with shared actuators
 - will develop adaptive control based on previous conditions and real-time plasma modeling simulations
 - needs a sophisticated event handling system for machine protection
- ➤ Substantial R&D on existing machines is required to establish effective plasma control techniques for ITER
- ➤ MHD control in ITER must be very flexible to control the expected modes found in existing devices and unexpected modes discovered in new high performance burning plasma regimes
- ➤ DT in ITER will be ~ 2027 → today's students will make Q=10 and long pulse steady-state fusion regimes a reality