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Quantum dots: from simple to complex 

D.Goldhaber-Gordon et al (1998) 

L.W.Molenkamp et al (1995) 

C.Marcus  et al (2003) 

J.P.Kotthaus (1995) 

A.Holleitner et al (2002) 

H.Jeong et al (2001) 
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! Tune: gate potentials, temperature, field… 

! Measure: I-V curves, conductance G… 

! Aharonov-Bohm interferometry, 
dephasing, coherent state manipulation… 
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Thermoelectric transport through nanostructures 
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Thermoelectric transport: FL description 

strong electron-electron interaction 
resonance scattering effects Example: Kondo effect 
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Bulk metals (Fermi Liquid Theory): 
strongly correlated metals 



Single orbital level coupled to two leads 

Tunneling width 



Kondo Effect in Quantum Dots 



Universal Scaling 



Realization of Kondo-effect in nanostructures I 

D.Goldhaber-Gordon et al, Nature, 1998 

R.M. Potok et al, Nature, 2007 

1CK 

2CK 



Realization of Kondo-effect in nanostructures II 

S.Amasha et al, arXiv: 1009.5348 



Q: How do the effects of strong electron correlations  
manifest themselves in the thermoelectric transport  
through the nanostructures? 

Q: What are possible mechanisms for enhancement of  
the thermoelectric power? 

Q: Is the thermo-transport through nanostructures  
always characterized by the Fermi-Liquid concept? 



Sequential tunneling at Coulomb blockade 

Beenakker & Staring 1992 

For a bulk metal 
eS~T/EF<<1 

Too 
large?? 

Mott’s rule would give for 
sequential tunneling  

eS~1 

1 2 



Effect of co-tunneling at weak coupling 

Weak coupling 

Turek & Matveev, 2002 

 Sequential 
close to 

degeneracy 
point 

Smax is much smaller than 
Beenakker&Staring estimation, 

more consistent with the Mott’s rule 
result eS~1 but enhanced 

compared to bulk eS~T/EF<<1 

Co-tunneling 
far from the 
degeneracy 

point 

N=1/2 

No Coulomb energy is payed 



Conductance 
Thermovoltage 

Weak coupling 

Strong coupling 

From weak to strong coupling 

Molenkamp et al, 2005 

Mott law is obeyed 

Mott law is violated 



Q1: How does the Kondo effect influence  a thermoelectric  
transport through nano-structures? 

Q2: What are the manifestations of Kondo effect in  
the thermoelectric transport through nanostructures? 

Q3: Is there a room for NFL enhancement of thermopower  
in nanostructures? 



Matveev’s suggestion for realization of  Kondo effect 

Matveev 1995, Furusaki, Matveev 1996 

QPC 

1CK – 2CK 



Model 

Metallic regime 

Assumptions: 

Strong coupling regime 

Weak Coulomb Blockade 



Strong coupling and the Kondo physics 
(Matveev & Andreev, 2002) 

Ordinary (one-
channel) Kondo 

N-channel Kondo: 
spin-1/2 impurity 

+N orbital channels 
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QPC is a quasi-spin-1/2 orbital “impurity” + 
two spin     and     channels:                      

2-channel Kondo. Symmetry of channels is 
protected by TRS 

L
R 

Reflection plays 
a role of spin-

flip 



FL and non-FL behavior 
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Kondo screening 
of the impurity 

spin 

Complete 
screening 
below Tk 

overscreening 

Magnetic susceptibility 
"=const as T->0 

Magnetic susceptibility 
"~ ln(Tk/T) 

Fermi-liquid 
behavior 

Non-Fermi-liquid 
behavior 

eS~T/Tk eS~(T/Tk)    ln(Tk/T) 1/2 

Matveev&Andreev, 2002 



Two Kondo regimes 

Spinless fermions:  
QPC is fully spin-polarized: 1CK 
Fermi liquid behavior: 

Spinful fermions:  
QPC is non-polarized: 
 isotropic 2CK 
Non Fermi liquid behavior: 

Q1: How does one regime crossover to another one?  
Enhancement by non-Fermi-liquid effects 

Enhancement of thermopower by electron-electron interaction !  

Matveev, Andreev, 2001-2002 



Quantum 
dot 

QPC 

Reflection plays 
a role of spin-
flip in Kondo 

problem 

EF 

B=0 

Zeeman 
splitting 

How does magnetic field influence two Kondo regimes? 

Parallel to the plane magnetic field 





Characteristic scales of magnetic field 

Field of full polarization BC 

Field B*< BC  where spin-down 
electron is fully reflected     

(model dependent) 



Instability of non-FL fixed point 
J1 

J2 

The symmetric state J1=J2  
and the non-FL fixed point 
is only stable if protected 
by the basic symmetry 

(Time Reversal Symmetry) 

Magnetic field breaks TRS and drives 
system  to the 1-channel Kondo with 

decreasing the temperature T 

Suppression of thermopower by 
magnetic field  

Non FL 
fixed point 

B=0 



The main result: B<<B* 

G(N)!

N 

Coulomb blockade 
peak (degeneracy) 

point 

At a finite B  a gap in G(N) opens up at 

the degeneracy point N=1/2 

Effect of 
B 



Theoretical predictions: gate voltage dependence 



Theoretical predictions: B and T -dependences 



Giant Fermi-liquid behavior in magnetic field  

For  

Effects of magnetic field on thermopower 

“Giant 
Fermi 
energy” 



Theoretical predictions: derivatives 

B=0: Smax/T diverges at T = 0; 
Finite B: Smax/T saturates below Tmin  

Existence of maximum in dS/dB 



Message to take home 
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Non-perturbative, 
strong NFL, 2CK 

Perturbative CB, 
weak NFL, 2CK 
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T.K.T. Nguyen, MK and V.E. Kravtsov, PRB 82, (2010) 



Perspectives: 

•  Multi-channel Kondo effect 

•  Influence of noise 

•  Influence of spin-orbit 

•  Influence of finite s-d voltage 

•  Quenches with the gate and s-d voltage 

•  Quench with magnetic field 

•  Multy-dot setup: Bell inequalities? 



Conclusions 

• Thermopower of a quantum dot can be much larger than  in the 
bulk eSBULK ~T/EF 

• For closed dot (g<<1) the maximum thermopower eS~ln(1/g)>1; for 
open dot the maximum thermopower eS~r <1. 

•  Kondo physics in thermopower of an open dot; magnetic field leads 
to crossover from 2CK to 1CK 

• Magnetic field suppresses thermopower and restores (non-
perturbative) FL behavior at T<EC |r|  (B/B)  with “EF” ~EC (B/BC) 


