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Abstract

These lectures give an introduction to some mathematics that is useful for various
problems of nonlinear dynamics for complex systems. In particular, applications are
given to networks of bistable units, discrete breathers and synchronisation. The main
mathematical tools used are the implicit function theorem, localisation bounds for
Green functions, and normal hyperbolicity theory.

1 Implicit Function Theorem

The implicit function theorem gives sufficient conditions under which a solution of a system
of equations persists as parameters are varied.

Examples of applications to nonlinear dynamics to be described include:

• an equilibrium of a vector field v(x) = 0

• a fixed point of a map f(x) = x

• a period-T orbit of a period-T vector field ẋ = v(x, t) = v(x, t+ T ), x(t+ T ) = x(t)

• a periodic orbit of an autonomous vector field ẋ = v(x), x(t+ T ) = x(t), period T

• an equilibrium of a network of bistable units, e.g. vs(xs) + y
∑

r∈S Csrxr = 0, s ∈ S

• a discrete breather: spatially localised time-periodic solution of a Hamiltonian system
of coupled oscillators

• response of an equilibrium to aperiodic forcing

• synchronisation of an oscillator to aperiodic forcing

Consider the general problem of finding solutions (x, y) of F (x, y) = z0 for a function
F : X × Y → Z, X,Y, Z manifolds, possibly infinite-dimensional, and some point z0 ∈ Z,
given a solution (x0, y0). We will look for the solutions near (x0, y0) so it is enough to
consider the case of X,Y, Z Banach spaces.

A Banach space is a complete normed vector space. Recall that a vector space is a set
V with an operation of addition making it into a commutative group, and an operation
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of multiplication by scalars (which we will take in the real numbers R), such that for all
u, v ∈ V, λ, μ ∈ R, then λ(μv) = (λμ)v, λ(u + v) = λu + λv, and (λ + μ)v = λv + μv. A
norm on a vector space V is a function ‖.‖ : V → R+ such that for all u, v ∈ V, λ ∈ R then
‖λv‖ = |λ|‖v‖, ‖u + v‖ ≤ ‖u‖ + ‖v‖, and ‖v‖ = 0 implies v = 0. A normed vector space
is complete if every Cauchy sequence converges. Recall that a sequence (vn)n∈N, vn ∈ V is
Cauchy if ∀ε > 0 ∃N ∈ N such that m,n ≥ N imply ‖vm − vn‖ ≤ ε; a sequence (vn)n∈N
converges if ∃v∞ ∈ V such that ∀ε > 0 ∃N ∈ N such that n ≥ N implies ‖vn − v∞‖ ≤ ε.

Examples of Banach space include R
n = {x = (x1, . . . xn) : xm ∈ R,m = 1, . . . n} with

Euclidean norm ‖x‖ =
√∑n

m=1 x
2
m, Rn with maximum norm ‖x‖ = max1≤m≤n |xm|, Rn

with sum-norm ‖x‖ =
∑n

m=1 |xm|. More generally, given a countable set S, which might
label sites in a network, and for each s ∈ S a Banach space Vs with norm |.|s, we can define
�∞((Vs)s∈S) = {v = (vs)s∈S : vs ∈ Vs, sups∈S |vs|s < ∞} and with norm ‖v‖ = sups∈S |vs|s
it is a Banach space. Given two Banach spaces X,Y , the product X × Y is defined to
be the set of pairs (x, y), x ∈ X, y ∈ Y , with the norm ‖(x, y)‖ = max(‖x‖X , ‖y‖Y ).
Another example is C0(R, V ), the set of bounded continuous functions v from R to a
Banach space V, |.|, when endowed with norm ‖v‖C0 = supt∈R |v(t)|. A last important
example is C1(R, V ), the set of differentiable functions v from R to V with bounded
continuous derivative v′, endowed with norm ‖v‖C1 = max(‖v‖C0 , τ‖v′‖C0), where τ > 0
is a timescale which should be chosen relevantly.

Let us state what it means for a map F : X → Z, from one Banach space to another,
to be continuous or differentiable. F is continuous at x ∈ X if ∀ε > 0 ∃δ > 0 such that
‖ξ‖X ≤ δ implies ‖F (x+ξ)−F (x)‖Z ≤ ε. F is differentiable at x ∈ X if there is a bounded
linear map DFx : X → Z such that

‖F (x+ ξ)− F (x)−DFxξ‖/‖ξ‖ → 0 as ξ → 0.

Recall that a map A : X → Z is linear if ∀ξ, η ∈ X,λ, μ ∈ R then A(λξ+μη) = λAξ+μAη.
It is bounded if ∃K such that ∀ξ ∈ X then ‖Aξ‖Z ≤ K‖ξ‖X . The infimum of such K is
called the operator norm ‖A‖X→Z of A and makes the space L(X,Z) of bounded linear
maps from X to Z into a Banach space. Finally, F is C1 (continuously differentiable) if it
is differentiable and the derivative DF is continuous as a map from X to L(X,Z).

Now we are almost ready to state the implicit function theorem. By shifting the origins,
we take x0, y0, z0 = 0. Note that for a differentiable map F : X × Y → Z, the derivative
can be written as a pair of partial derivatives DF = (DXF,DY F ). For ε > 0 we define the
ball Bε(X) in a Banach space X to be {x ∈ X : ‖x‖ ≤ ε}.

Theorem (IFT): If F : X × Y → Z is C1, F (0, 0) = 0 and DXF0,0 is invertible
then ∃ε, δ > 0 such that ∀y ∈ Bε(Y ) there exists a unique x̄(y) ∈ Bδ(X) such that
F (x̄(y), y) = 0.

The function x̄ : Bε(Y ) → Bδ(X) is called the implicit function. Various remarks are
useful before we go on to applications.
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Firstly, given explicit information about the norm of DXF−1 (note that the inverse
of an invertible bounded linear map between Banach spaces is always bounded) and how
continuous is DF , one can obtain explicit numbers ε, δ and a function δ̄ : [0, ε] → R such
that ‖x̄(y)‖ ≤ δ̄(‖y‖). The case of Lipschitz-continuous DF is treated in Appendix A.

Secondly, the implicit function x̄ is C1, with

DY x̄(y) = −(DXF )−1DY F, (1)

evaluated at (x̄(y), y). Note that DXF remains invertible for y ∈ Bε(Y ). One can use the
following geometric series for the inverse; denoting A = DXF (x, y), A0 = DXF (0, 0), and
Δ = A0 −A, for ‖Δ‖ < ‖A−1

0 ‖−1 then

A−1 = A−1
0 +A−1

0 ΔA−1
0 +A−1

0 ΔA−1
0 ΔA−1

0 + . . .

This also shows that ‖A−1‖ ≤ 1/(‖A−1
0 ‖−1 − ‖Δ‖).

Now we treat the examples listed in the introduction.
Let v : X × Y → X be a vector field on a Banach space X depending on parameters

in a Banach space Y . It is simplest to think of the finite-dimensional case. The equation
for an equilibrium x (stationary point) of v at parameter point y is v(x, y) = 0. If x0
is an equilibrium for y0, v is C1 and the derivative DXv is invertible at (x0, y0) then
the IFT can be applied to deduce that for all y near enough to y0 there is a locally
unique equilibrium x̄(y) and it varies C1 with y. For finite-dimensional X the invertibility
condition is equivalent to 0 not being an eigenvalue of DXv. An equilibrium at which DXv
is invertible is called non-degenerate.

Let f : X × Y → X be a C1 map on X depending on parameters in Y . The equation
for a fixed point x is f(x, y) = x. Define F (x, y) = x − f(x, y). Then fixed points of f
correspond to zeroes of F . If x0 is a fixed point for y0 and I−DXf is invertible there then
the IFT can be applied to deduce that for all near enough y there is a locally unique fixed
point x̄(y) and it varies C1 with y. For finite-dimensional X the invertibility condition
is equivalent to +1 not being an eigenvalue of DXf . A fixed point at which I − DXf is
invertible is called non-degenerate.

Let v : X × R/TZ × Y → X be a C1 time-periodic vector field on X of period T > 0
depending on parameters in Y (there is a slight loss of generality here in taking X to be
a Banach space, but for simplicity the case of a general manifold will not be explored).
By scaling time, let us take T = 1. Suppose x : R → X is a solution of period 1 for y0,
i.e. ẋ = v(x(t), t, y0), x(t + 1) = x(t). Define F : X1 × Y → X0 with X1 = C1(R/Z, X),
X0 = C0(R/Z, X) by F y[x](t) = ẋ(t) − v(x(t), t, y) (square brackets are used to indicate
that the argument is a function, not just a point of X, and the parameter dependence
is indicated here by a superscript). Then period-1 orbits of v correspond to zeroes of F .
So the IFT shows that a period-1 orbit at which DX1F is invertible persists to a locally
unique period-1 orbit for all nearby parameters. It can be checked that DX1F is invertible
iff x(0) is a non-degenerate fixed point of the Poincaré map f : X × Y → X defined by
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integrating the differential equation ẋ = v(x, t, y) from t = 0 to t = 1. One may ask why
we did not solve this problem by first defining the Poincaré map and then applying the
result of the previous paragraph. That is a feasible approach, but requires proving that the
Poincaré map is defined and C1. Also if X is a product over sites in a network S and one
wishes to deduce localisation results for the resulting period-1 orbits then one would need
to first deduce localisation results for the Poincaré map, which again is feasible, but adds
an additional step. Finally, this treatment extends easily to problems of aperiodic forcing
where an approach via Poincaré maps would require constructing a sequence of maps from
times tn to tn+1 for some sequence (tn)n∈Z going from −∞ to +∞.

Let S be a countable set, representing sites in a network, and for each site suppose
we have a vector field vs on a finite-dimensional Banach space Xs, |.|s such that each vs
has two equilibria x−s , x+s . For every configuration of {−,+} on S there is an attracting
equilibrium. Then couple the units together, for example via coupling of the form

ẋs = vs(xs) + y
∑

r∈S
Csrxr

for some matrix C and parameter y. Define X = �∞((Xs)s∈S) and F : X×R → X by setting
F ((xs)s∈S , y) to the right hand side of the equations for ẋs. For this to really map into X
we have to require sups∈S |vs(xs)|s < ∞ for x = (xs)s∈S ∈ X , and sups∈S

∑
r∈S |Csr| < ∞

(the latter is the �∞-operator norm of C). Actually, we are interested inly in solutions
in some bounded region of X so it would be enough to require the bound on v in such a
region. To be sure that F is C1 we furthermore require that sups∈S |Dvs(xs)| < ∞ for
x ∈ X and the derivatives to have a common module of continuity. DXF is invertible at a
configuration x if ∃δ > 0 such that none of the Dvs have eigenvalues in |λ| < δ. Suppose
there is a δ for which this holds for both equilibria of every uncoupled unit. Then there
is ε > 0 such that the equilibria for all configurations of {−,+} persist for |y| ≤ ε. If the
uncoupled equilibria are all attracting then one can prove that there is a possibly smaller
ε′ > 0 for which all the continuations of the equilibria remain attracting (a similar remark
applies to all the other problems) [MS95].

Let v : X×Y → X be an autonomous C1 vector field (i.e. no explicit time-dependence)
and x : R → X be a periodic orbit of ẋ = v(x, y) for some parameter value y0, say 0,
i.e. x(t+ T0) = x(t) for some T0 > 0 but x not constant (which would be an equilibrium).
There are two obstacles to using the IFT to give conditions under which it persists to
nearby y. The first is that if x is a period-T orbit of an autonomous system then so is xτ

defined by xτ (t) = x(t+ τ) for any τ ∈ R, so the orbit is not locally unique (take τ small),
contradicting the IFT which would give a locally unique solution (including for y = 0). The
second obstacle is that we do not expect the period T to remain constant as parameters
y are varied. A strategy to solve the first is to impose that some C1 function φ : X → R

is zero at x(0); to work, this requires also that Dφ v 
= 0 at x(0). A strategy to solve the
second is to search for the period as well as the orbit. One way to do this is to formulate the
equations in a time scaled to a putative period T , i.e. write t = Ts and then the equations
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are x′(s) = Tv(x(s), y), x(1) = x(0), φ(x(0)) = 0. So for r = 0, 1 let Xr = Cr(R/Z, X)
and define F : X1 × R × Y → X0 × R by F (x, T, y)(s) = (x′(s) − Tv(x(s), y), φ(x(0))).
Zeroes of F correspond to periodic orbits, given by scaling s by the obtained number T .
The invertibility condition in the IFT is that the derivative of F with respect to the pair
(x, T ) is invertible. It turns out to be equivalent to x(0) being a non-degenerate fixed point
of the Poincaré map from φ = 0 to φ = 0 (taking time in a neighbourhood of T0). Again,
using the Poincaré map might be considered a simpler approach, but requires using the
IFT to prove it is well defined and C1, and the above approach has the same advantages
as before.

Let v : X × Y → X be an autonomous C1 vector field with parameters in Y and con-
serving a C1 function H : X×Y → R that we will call energy, for example an autonomous
Hamiltonian system, and let x : R → X be a periodic orbit for y = 0 with period T0.
The above strategy for continuation of the periodic orbit fails in general because DXHξ
is constant along every tangent orbit ξ (i.e. solution of the linearised equations about
the orbit x) and thus DXH is an eigenform (left eigenvector) of the linearised Poincaré
map with eigenvalue +1. The reason is that in general the periodic orbit belongs to a
smooth one-parameter family of periodic orbits for the same value of y; one can often
parametrise the family by the period T or energy or other quantities (in the Hamiltonian
context it can be natural to use the action integral). This observation suggests its own
solution. One can continue at fixed period T by considering F : X1 × Y → X0 × R

(with time scaled to the chosen period, or redefining Xr = Cr(R/TZ, X)) defined by
F (x, y)(t) = (ẋ(t) − v(x(t), t, y), φ(x(0))), provided the eigenspace of the time-T map
at the fixed point x(0) with eigenvalue +1 is spanned by v(x(0), 0) (the eigenvalue has
multiplicity at least two, and this condition corresponds to non-isochronicity). One can
continue at fixed energy E by considering F : X1 × R × Y → X0 × R × R defined
by F (x, T, y)(s) = (x′(s) − Tv(x(s), y), φ(x(0)), H(x(0)) − E), provided x(0) is a non-
degenerate fixed point of the Poincaré map on φ = 0. These strategies can be used to
prove persistence of time-periodic solutions for Hamiltonian systems of coupled oscilla-
tors under suitable conditions, including discrete breathers (spatially localised solutions)
though the spatial localisation requires also the techniques of Section 2 [SM97].

Another class of autonomous vector field that can be relevant is the reversible ones.
These are C1 vector fields v : X → X such that there is a C1 map S : X → X such that
S2 = I and ∀x ∈ X, v(Sx) = −DSxv(x). Such an S is called a reversing symmetry for
v. A periodic orbit x : R → X is called symmetric if there is an origin of time τ ∈ R

such that ∀t ∈ R, x(τ − t) = S(x(τ + t)). Symmetric periodic orbits are quite common
for reversible systems: if x(0) and x(u) ∈ Fix(S) (the set of fixed points for S) for some
u > 0 then x(−u) = x(u) so x is periodic with period T = 2u and it is symmetric
(with τ = 0). It is common that Fix(S) has dimension half that of X and so there is
in general a one-dimensional subset of Fix(S) whose orbits hit Fix(S) sometime in the
future, and each point of this subset give a symmetric periodic orbit. If we allow v and
S to depend on parameters y ∈ Y then we can continue symmetric periodic orbits of
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given period T by applying the IFT to F : X1×Y → X0×X ×X defined by F (x, y)(t) =
(ẋ(t)−v(x(t), y), S(x(0), y)−x(0), S(x(T/2), y)−x(T/2)). One can add T to the parameter
space if desired to capture the continuation with respect to period simultaneously. This
approach fails in the isochronous case, however: then it is better to use the vector field in
a scaled time s = t/T , choose a function φ : X → R which has non-zero derivative along
the anticipated curve on Fix(S) and is zero at the initial x(0, and solve for the pair (x, T )
that satisfies the scaled equations of motion, the conditions at s = 0, 12 , and φ(x(0)) = Φ
(adding the number Φ to the parameter space).

Let us now consider the response of an equilibrium to aperiodic forcing, e.g. ẋ =
v(x) + yf(x, t) on X, with v, f C1. For r = 0, 1 now let Xr = Cr(R, X) and define
F : X1 × R → X0 by F (x, y)(t) = ẋ(t) − v(x(t)) − yf(x(t), t). For y = 0, if x0 is an
equilibrium of v then the constant function x(t) = x0 is a zero of F . DX1F is invertible
there iff x0 has no spectrum on the imaginary axis (i.e. iωI −Dv invertible for all ω ∈ R).
So there is a locally unique response x : R → X for all small enough y [BM03].

Finally, consider the robustness of synchronisation of a limit cycle oscillator to forc-
ing. It is standard that a limit cycle oscillator may synchronise to periodic forcing if the
frequency difference is smaller than the forcing strength in a suitable dimensionless sense
(though to treat this in general requires the normal hyperbolicity theory of Section 3).
By this I mean that the oscillator performs a periodic motion of the same period as the
forcing, with a definite phase relation. Let us write the system forced at period T as
ẋ = v(x, t) for a C1 vector field on X with period T in t, and the synchronised solution as
x : R → X. Then we ask what happens if v is modified to an aperiodic function ṽ(x, t, y)
of t with parameters y. If ṽ is uniformly close to v in C1 then the IFT gives a locally
unique continuation under the condition that the initial periodic orbit has no spectrum on
the unit circle. A much more general result is possible, however: we may consider forcing
functions that are not uniformly close to v but such that there is a new time variable s
with dt/ds = ω(s, y) near 1 so that dx/ds = ω(s, y)ṽ(x, t(s), y) is uniformly close to v(x, s).
Think of s as a variable measuring the phase of the forcing. Then the IFT applied to this
new equation gives persistence of the synchronised response for all small enough y under
the same condition, and this can be converted back into the original time t at the end.
This is the principle of phase-locked loops.

It is worth adding that the approach of applying the IFT to a map from X1 to X0 also
extends to differential-delay equations, either with discrete delays or more general delay
kernels.

2 Localisation Bounds for Green functions

In many circumstances, we wish to show that the continuation of some solution is expo-
nentially localised in some sense. For example, we wish to show that discrete breathers
are exponentially localised in space or that the response of an equilibrium to temporally

6



localised forcing is localised in time.
The strategy is to prove localisation bounds for the linearised problem and then use

(1) to extend them to the nonlinear problem.
For a linear problem, the basic player is the Green function. This is the response to a

point source. We consider two contexts. The first is a network S of units with a metric
d specifying a notion of distance between them. The second is differential equations in
continuous time.

2.1 Networks

Let (S, d) we a countable metric space, and for each s ∈ S let Xs, Zs be Banach spaces, with
norms denoted by |.|, for the state of unit s and the deviation at s from being a solution.
Let X = �∞((Xs)s∈S) and Z similarly. Let L : X → Z by a bounded linear operator of
matrix type, meaning that for x = (xs)s∈S , (Lx)r =

∑
s∈S Lrsxs for some bounded linear

maps Lrs : Xr → Zs. L is bounded iff supr∈S
∑

s∈S |Lrs| < ∞.
The Green function for L of the above form is the matrix elements of L−1. Specifically,

if z ∈ Z has zu = 0 for all u ∈ S \ {s} then the bounded solution of Lx = z can be written
as xr = Grszs for some bounded linear maps Grs : Zs → Xr. By linearity, it gives the
matrix expression for L−1: (L−1z)r =

∑
s∈S Grszs.

Suppose that L is a local operator in the sense that |Lrs| decays as d(r, s) grows.
Specifically, say L is exponentially local if ∃W > 1 such that for 1 ≤ w < W then L̃rs =
Lrsw

d(r,s) still defines a bounded operator. A special case is coupling of bounded range
(∃D > 0 such that Lrs = 0 for d(r, s) > D).

Say that z ∈ Z is exponentially localised about some site o ∈ S if there is C > 0, μ <
1 such that ∀s ∈ S then |zs| ≤ Cμd(s,o). Then one can prove that x = L−1z is also
exponentially localised about o ∈ S, but in general with different C and μ, which depend
on ‖L−1‖, ‖L̃‖, C and μ [BM97].

In particular, for L exponentially local, the Green function is exponentially local in the
sense that there is D > 0, ν < 1 such that |Grs| ≤ Dνd(r,s).

Let us treat some examples.
For the network of bistable units let us suppose the operator C is exponentially localised,

and two equilibria which differ only by the sign {−,+} at one unit o ∈ S. Then by
integrating (1) from y = 0 and using the above exponential localisation result we obtain
that the difference between the two equilibria decays exponentially with distance from o
[MS95]. The same holds if {o} is generalised to any bounded subset of S.

Similarly, for a Hamiltonian system of coupled oscillators, if the coupling is exponen-
tially localised then the time-periodic solutions obtained in section 1 by starting with one
excited site in the uncoupled case have amplitude decaying exponentially from that site
[SM97].

As a final example, consider C1 discrete-time dynamics xt+1 = f(xt), t ∈ Z, on a
Banach space V (we can also allow the map f to depend on t). The linearised dynamics

7



about an orbit is ξt+1 = f ′
tξt, where f ′

t = f ′(xt), which we suppose to be bounded. Let
X = �∞(V,Z) meaning the bounded doubly infinite sequences in V , with sup-norm. Then
define L : X → X by (Lξ)t = ξt − f ′

t−1ξt−1. Lξ = 0 iff ξ is a bounded tangent orbit. This
example is a special case of the network setting, in which S = Z and the coupling is only
with the immediate left neighbour. If L is invertible then the unique bounded solution ξ
of Lξ = φ for a bounded forcing sequence φ ∈ X can be written as φt =

∑
s∈ZGtsφs, and

the above theory shows that |Gts| ≤ Cμ|t − s| for some C > 0, μ < 1. This exponential
decay property is called uniform hyperbolicity of the trajectory x.

2.2 Differential equations in continuous time

For a system of linear ordinary differential equations in continuous time ẋ(t) = A(t)x(t) on
a Banach spaceX, define the linear map L : X1 → X0 as before by L[x](t) = ẋ(t)−A(t)x(t).
If L is invertible then the bounded solution of Lx = z for bounded forcing function z ∈ X0

can be written as x(t) =
∫ +∞
−∞ G(t, s)y(s) ds, where the operator-valued function G(t, s) :

X → X is called the Green function. It can be thought of as the response to the operator-
valued delta-function Iδ(t− s).

Again, it can be proved that the Green function decays exponentially |G(t, s)| ≤
Ce−μ|t−s| for some C > 0, μ > 0 (see for example, the lecture notes [M11]).

The basic case of such a linear system is the linearisation of a possibly time-dependent
vector field ẋ = v(x, t) about a trajectory x, in which case A(t) = vx(x(t), t) and the
trajectory is called non-autonomous uniformly hyperbolic if L is invertible. Note that
for an autonomous vector field, the only trajectories that can possibly satisfy this are
the equilibria, because time-shift of a trajectory produces a vector in the kernel of L, so a
modified notion of uniform hyperbolicity has to be formulated for autonomous vector fields
but we shall not go into that here.

A consequence of the exponential decay of the Green function is a splitting of the
tangent space at each time into the direct sum of backward and forward exponentially
contracting subspaces.

For many applications, the backward contracting subspace is trivial because the tra-
jectory is attracting. In this case the Green function is causal: G(t, s) = 0 for t < s.

3 Normal Hyperbolicity Theory

An introduction to this is given in [M11].
To be continued
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Appendix A: Explicit IFT estimates for Lipschitz derivative

Let F : X × Y → Z be a C1 map between Banach spaces, with DXF , DY F Lipschitz-
continuous. Explicitly, suppose ‖DXF (x, y) − DXF (x′, y′)‖ ≤ a‖x − x′‖ + b‖y − y′‖,
‖DY F (x, y) − DY F (x′, y′)‖ ≤ c‖x − x′‖ + d‖y − y′‖. Actually, I will use only the case
(x′, y′) equal to the solution of the unperturbed problem, which we can take to be (0, 0).
To simplify the analysis, take b = c (one can just substitute max(b, c)); this is quite natural
because if F is in fact C2 then the best choice for both b and c is sup ‖D2

XY ‖ over some
neighbourhood of (0, 0).

To be completed.
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