Joint ICTP-IAEA Course on Science and Technology of Supercritical Water Cooled Reactors

27 June - 1 July, 2011

SCWR CORE DESIGN 2: LWR TYPE

Xiaojing LIU
Shanghai Jiao Tong University
School of Nuclear Science and Engineering
Dongchuan Road 800
Shanghai 200 240
PEOPLE'S REPUBLIC OF CHINA
SCWR Core Design 2: LWR Type

Xiaojing LIU
School of Nuclear Science and Engineering, Shanghai Jiao Tong University
Objectives

• Contrast and compare with existing LWR designs
• Introduce various SCWR designs based on LWR technology
• Compare a thermal-, fast-, and mixed-neutron spectra cores
Supercritical water character

Density (kg/m³)

Temperature (°C)

Specific heat (kJ/kg-°C)

p = 25 MPa

Specific heat (kJ/kg-°C)

Critical Point

25.0 MPa

15.0 MPa

7.0 MPa

SCWR

PWR

BWR

Critical Point

S

V

P (MPa)

T (°C)

280

285

320

374

450

T (°C)
Comparing to the current LWR

PWR

BWR/6

ABWR

SCWR

A boiling water reactor ...without the boiling.

ESBWR
Advantage: Lower Costs

Comparison of Containment Size

- same scale -

AP1000

- 1117 MW\(_e\)
- 83 m

BWR

- 1284 MW\(_e\)
- 49 m

SCWR

- 1000 MW\(_e\)
- 25 m
Comparing to the current LWR

- Simple & compact plant systems
- No water/steam separation
- Low flow rate (1/10), high enthalpy coolant
- High temperature & thermal efficiency (510°C, ~44%)
- Flexibility of the neutron spectrum, increase the utilization of the fuel
- Utilizations of current LWR and Supercritical FPP technologies
- Major components are used within the temperature range of past experiences
Comparing to the current LWR(FA)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Type</th>
<th>AP1000</th>
<th>EPR</th>
<th>ESBWR</th>
<th>SCWR*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fuel diameter (mm)</td>
<td></td>
<td>9.5</td>
<td>9.5</td>
<td>10.26</td>
<td>10.2</td>
</tr>
<tr>
<td>Pitch (mm)</td>
<td></td>
<td>10.8</td>
<td>12.6</td>
<td>12.95</td>
<td>11.2</td>
</tr>
<tr>
<td>Cladding thickness (mm)</td>
<td></td>
<td>0.57</td>
<td>0.625</td>
<td>3.2</td>
<td>0.63</td>
</tr>
<tr>
<td>Cladding material</td>
<td></td>
<td>ZIRLO™</td>
<td>Zircaloy</td>
<td>Zircaloy-2</td>
<td>Stainless Steel</td>
</tr>
<tr>
<td>Fuel arrangement</td>
<td></td>
<td>17\times17 square</td>
<td>17\times17 square</td>
<td>10\times10 square</td>
<td>25\times25 square</td>
</tr>
<tr>
<td>Fuel rod No./ FA</td>
<td></td>
<td>264</td>
<td>264</td>
<td>92</td>
<td>300</td>
</tr>
<tr>
<td>Average linear heat (w/cm)</td>
<td></td>
<td>188</td>
<td>154.9</td>
<td>151</td>
<td>180</td>
</tr>
<tr>
<td>FA assembly size (mm)</td>
<td></td>
<td>210</td>
<td>215.04</td>
<td>-</td>
<td>292.2</td>
</tr>
<tr>
<td>Fuel enrichment (%)</td>
<td></td>
<td>0.74-4.235</td>
<td>-5%:UO2</td>
<td>-5%:UO2</td>
<td>4.0-6.2</td>
</tr>
<tr>
<td>Active height (m)</td>
<td></td>
<td>4.27</td>
<td>4.2</td>
<td>3.0</td>
<td>4.2</td>
</tr>
</tbody>
</table>
Comparing to the current LWR (Core)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>AP1000</th>
<th>EPR</th>
<th>ESBWR</th>
<th>SCWR*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fuel bundle number</td>
<td>157</td>
<td>241</td>
<td>1132</td>
<td>121</td>
</tr>
<tr>
<td>Core diameter (m)</td>
<td>3.04</td>
<td>3.767</td>
<td>5.883</td>
<td>3.73</td>
</tr>
<tr>
<td>Thermal power (MW)</td>
<td>3400</td>
<td>4250</td>
<td>4500</td>
<td>2744</td>
</tr>
<tr>
<td>Electricity power (MW)</td>
<td>1090</td>
<td>1500</td>
<td>1600</td>
<td>1200</td>
</tr>
<tr>
<td>Pressure (MPa)</td>
<td>15.51</td>
<td>15.5</td>
<td>8.62</td>
<td>25</td>
</tr>
<tr>
<td>Coolant flow rate (t/h)</td>
<td>48488</td>
<td>75347</td>
<td>34453</td>
<td>5104.8</td>
</tr>
<tr>
<td>Coolant inlet temp. (C)</td>
<td>279.4</td>
<td>295.3</td>
<td>269-272</td>
<td>280</td>
</tr>
<tr>
<td>Coolant outlet temp. (C)</td>
<td>322.3</td>
<td>328.2</td>
<td>288</td>
<td>500</td>
</tr>
</tbody>
</table>

*Japan thermal design Kamei, et al., ICAPP’05, Paper 5527
Challenges of SCWR

- Extreme operating conditions
 - High pressure
 - High temperature
 - High heat flux
 - Neutron irradiation

- Challenges in core/fuel assembly design
 - Large property variation
 - Non-uniformity of moderation
 - Sensitive to hot channel factor
 - Non-uniformity of local heat transfer
 - Upper limit of cladding temperature

Large number of FA and Core designs
FA design summary

We discuss in this lecture
SCWR FA design examples

Thermal design

Fast design
SCWR core design examples FA design

<table>
<thead>
<tr>
<th>Design requirements</th>
<th>Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low flow rate per unit power (< 1/8 of LWR) due to large ΔT of once-through system</td>
<td>Narrow gap between fuel rods to keep high mass flux</td>
</tr>
<tr>
<td>Thermal spectrum core</td>
<td>Many/Large water rods</td>
</tr>
<tr>
<td>Moderator temperature below pseudo-critical</td>
<td>Insulation of water rod wall</td>
</tr>
<tr>
<td>Reduction of thermal stress in water rod wall</td>
<td>Uniform fuel rod arrangement</td>
</tr>
<tr>
<td>Uniform moderation</td>
<td></td>
</tr>
</tbody>
</table>

- **Control rod guide tube**
- **UO$_2$ fuel rod**
- **UO$_2$ + Gd$_2$O$_3$ fuel rod**
- **Water rod**
- **ZrO$_2$**
- **Stainless Steel**
SCWR core design examples Coolant flow scheme

Flow directions

<table>
<thead>
<tr>
<th></th>
<th>Coolant</th>
<th>Moderator</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inner FA</td>
<td>Upward</td>
<td>Downward</td>
</tr>
<tr>
<td>Outer FA</td>
<td>Downward</td>
<td>Downward</td>
</tr>
</tbody>
</table>

To keep high average coolant outlet temperature
SCWR core design examples

SCWR Design Concepts in Europe:

The High Performance Light Water Reactor (HPLWR)

Assembly design

- Thermal neutron spectrum
- Three heat-up steps
Coupled neutronic / thermal-hydraulic analyses of
- Core power distribution
- Burn-up analyses
- Optimization of fuel shuffling
- Effect of control rods and burnable poisons
- Coolant mixing inside assemblies
- Uncertainties
- Single fuel rod predictions

Rel. power in ¼ core at beginning of an equilibrium cycle

C. Maráczy, KFKI
Analyses of Coolant and Moderator Flow

Twisted streamlines caused by wire wrap spacers

CFD-Analysis

CFD and system code analyses of

- Heat transfer and flow inside assemblies
- Mixing in plenums above and below the core
- Feedwater flow and heat transfer inside the pressure vessel
SCWR Core Design Concepts: The Super Fast Reactor, Japan

- Two heat-up steps
- Fast neutron spectrum

Y. Oka and Y. Ishiwatari
Reduce void reactivity and the local power peaking
Proposal of SCWR-M Core

<table>
<thead>
<tr>
<th></th>
<th>Thermal core</th>
<th>Fast core</th>
</tr>
</thead>
<tbody>
<tr>
<td>Core & FA design (mechanical)</td>
<td>X</td>
<td>√</td>
</tr>
<tr>
<td>Cladding temperature</td>
<td>X</td>
<td>√</td>
</tr>
<tr>
<td>Heterogeneity (hot channel factor)</td>
<td>X</td>
<td>√</td>
</tr>
<tr>
<td>Void reactivity feedback (safety)</td>
<td>√</td>
<td>X</td>
</tr>
<tr>
<td>Water storage in RPV (safety)</td>
<td>√</td>
<td>X</td>
</tr>
<tr>
<td>Enrichment</td>
<td>√</td>
<td>X</td>
</tr>
<tr>
<td>Conversion ratio (sustainability)</td>
<td>X</td>
<td>√</td>
</tr>
<tr>
<td>Power density</td>
<td>X</td>
<td>√</td>
</tr>
</tbody>
</table>

Mixed core
SCWR-M Core Structures (SJTU)
FA optimization

- P/d
- Diameter
- Wall clearance

- Thermal FA two-row fuel assembly design (uniform moderation)
- Axial multilayer fuel assembly to flat the power profile and increase the conversion ratio
FA Structures

Multilayer FA (thermal) Multilayer FA (fast)
FA Parameters

<table>
<thead>
<tr>
<th>Design parameter</th>
<th>Thermal FA</th>
<th>Fast FA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diameter of fuel pins, mm</td>
<td>8.0</td>
<td>8.0</td>
</tr>
<tr>
<td>Pitch-to-diameter ratio, -</td>
<td>1.20</td>
<td>1.20</td>
</tr>
<tr>
<td>Assembly side, mm</td>
<td>177.2</td>
<td>177.2</td>
</tr>
<tr>
<td>Fuel composition, -</td>
<td>UO_2</td>
<td>MOX</td>
</tr>
<tr>
<td>Fuel enrichment, %</td>
<td>5.0; 6.0; 7.0</td>
<td>24.0</td>
</tr>
<tr>
<td>Conversion ratio, -</td>
<td>0.6</td>
<td>1.01</td>
</tr>
<tr>
<td>Fuel temperature reactivity coefficient, $10^{-5}/\text{K}$</td>
<td>-1.72</td>
<td>-2.65</td>
</tr>
<tr>
<td>Coolant reactivity coefficient*, $10^{-5}/\text{K}$</td>
<td>-27.9</td>
<td>-5.20</td>
</tr>
<tr>
<td>Moderator reactivity coefficient, $10^{-5}/\text{K}$</td>
<td>-100.0</td>
<td>--</td>
</tr>
</tbody>
</table>

* Change the water temperature in the coolant and moderator channel respectively to get the reactivity coefficient.
SCWR-M Core Parameters

<table>
<thead>
<tr>
<th>Design parameter</th>
<th>Thermal</th>
<th>Fast</th>
<th>Whole core</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thermal power (MW)</td>
<td>2400.0</td>
<td>1400.0</td>
<td>3800.0</td>
</tr>
<tr>
<td>Electrical power (MW)</td>
<td>—</td>
<td>—</td>
<td>1650.0</td>
</tr>
<tr>
<td>Core height (m)</td>
<td>4.5</td>
<td>2</td>
<td>—</td>
</tr>
<tr>
<td>Equivalent diameter (m)</td>
<td>3.4</td>
<td>2.14</td>
<td>3.4</td>
</tr>
<tr>
<td>No. of fuel assembly (-)</td>
<td>164</td>
<td>120</td>
<td>284</td>
</tr>
<tr>
<td>Power density (MW/m3)</td>
<td>100.89</td>
<td>75.74</td>
<td>90.26</td>
</tr>
<tr>
<td>Moderator fraction (%)</td>
<td>20.0</td>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>
Coupling Analysis Method

- Set of design parameters
- New burn-up distribution
 - Core calculation
 - Pin power construction
 - Sub-channel analysis
 - Burn-up calculation
 - EOC?
 - Y: Design criteria meet?
 - Y: End
 - N: Design criteria meet?
 - N: TH-N coupling
 - SKETCH-N
 - Power distribution
 - COBRA-SC
 - TH distribution
 - Converged?
 - N: Feedback of macro cross-section
 - Y: End
Measures to improve the SCWR-M

- The fast and thermal zones are divided into 2 parts with different enrichment.
- Increase the mass flow rate in the fuel assemblies, which have higher power density and non-uniform pin-power distributions.
- Reduce the moderator mass fraction from 25% to 20%, to provide a higher coolant mass flux to reduce the peak cladding temperature.
- Enlarge the clearance of the peripheral fuel rod to 1.5mm, to provide a better coolability of the fuel rods near the assembly wall.
SCWR-M Core Optimization Results

radial distribution

axial distribution
FA Power and Flow Distribution

Power distribution

Flow distribution
Sub channel scale results

<table>
<thead>
<tr>
<th>Results</th>
<th>Thernal (FA56)</th>
<th>Fast (FA32)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Max. linear heat rate (kW/m)</td>
<td>36.18</td>
<td>42.09</td>
</tr>
<tr>
<td>Max. coolant temperature (°C)</td>
<td>614.43</td>
<td>542.44</td>
</tr>
<tr>
<td>Hot channel factor (-)</td>
<td>1.264</td>
<td>1.563</td>
</tr>
<tr>
<td>Max. moderator temperature (°C)</td>
<td>368.10</td>
<td>—</td>
</tr>
<tr>
<td>Max. cladding temperature (°C)</td>
<td>725.12</td>
<td>708.90</td>
</tr>
<tr>
<td>Max. fuel temperature (°C)</td>
<td>1688.08</td>
<td>2089.93</td>
</tr>
</tbody>
</table>
Conclusions

• Big potential advantage of SCWR comparing to LWR

• A technical review of the LWR-SCWR: Japan and Europe, Thermal and fast spectrum

• The development and character of the SCWR-M
References

9. AP1000 Design Control Document
...Thank you for your attention!

email: xiaojingliu@sjtu.edu.cn