

2327-4

Joint ICTP-IAEA Workshop on Fusion Plasma Modelling using Atomic and Molecular Data

23 - 27 January 2012

Atomic Processes Modeling in Plasmas Modeling Spectroscopic Observables from Plasmas

Hyun-Kyung CHUNG IAEA, Nuclear Data Section, Division of Physical & Chemical Sciences, P.O. Box 100, A-1400 Vienna AUSTRIA Atomic processes modeling in plasmas modeling spectroscopic observables from plasmas

H.-K. Chung Atomic and Molecular Data Unit Nuclear Data Section

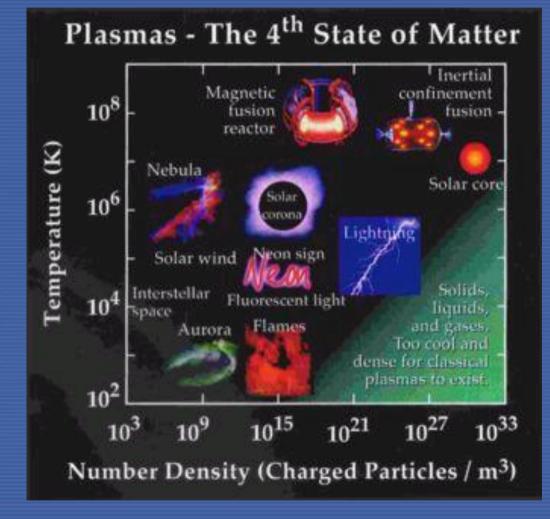
Joint ICTP-IAEA Workshop on Fusion Plasma Modelling Using Atomic and Molecular Data Trieste, Italy 23-27 January 2012

International Atomic Energy Agency

Modeling atoms and photons present in plasmas

THEORETICAL PLASMA SPECTROSCOPY

Plasmas occur over a vast range of conditions



Temperature

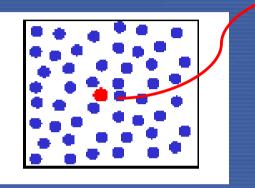
10⁻⁶K - 100 keV (10⁹K)

Density

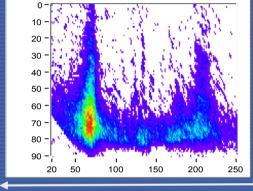
 $10^{5} - 10^{23} \text{ cm}^{-3}$

Astrophysical observations CHANDRA/XMM Plasma processing Fusion research ICF (Inertial confinement fusion) Laser-produced plasma Beam-produced plasma Z-pinch plasmas MCF (Magnetic confinement fusion) Tokamak plasma

Spectroscopic Observables: Photons carry information of plasma



Observed photons



- 885

429

energy

ime

Atoms respond to perturbations of the ensemble of surrounding particles and/or external fields

- Electronic transitions
- Photon-atom interactions
- Atomic level shifts and broadens

The microscopic response of the atom carried by photons provides information on the macroscopic environment

- T_e and n_e
- Electromagnetic fields
- Plasma wave modes

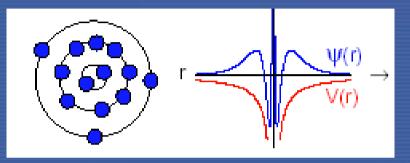
One can obtain plasma thermodynamic properties One can understand plasma collective behavior One can verify macroscopic fluid descriptions, e.g., hydrodynamics and particle theories, e.g., kinetic theory

Theoretical

spectroscopy

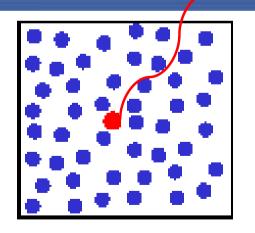
Plasma

Theoretical plasma spectroscopy is a highly interdisciplinary field



Quantum physics

- Atomic physics
- Collision physics
- Line shape theory



Classical physics

- Radiation transport
- Hydrodynamics
- Plasma kinetic theory

1) Atomic Data required

Energy levels of an atom Continuum A_3 **IPD** B_1 Ground state of ion Z+1 A_1 A_{2}

Ground state of ion Z

BOUND-BOUND TRANSITIONS

 $A_1 \rightarrow A_2 + hv_2$ Spontaneous emission $A_1 + hv_1 \leftrightarrow A_2 + hv_1 + hv_2$ Photo-absorption or emission $A_1 + e_1 \leftrightarrow A_2 + e_2$ Collisional excitation or deexcitation **BOUND-FREE TRANSITIONS** $B_1 + e \rightarrow A_2 + hv_3$ Radiative recombination $B_1 + e \leftrightarrow A_2 + hv_3$ Photoionization / stimulated recombination $B_1 + e_1 \leftrightarrow A_2 + e_2$ Collisional ionization / recombination $B_1 + e_1 \leftrightarrow A_3 \leftrightarrow A_2 + hv_3$ Dielectronic recombination (autoionization + electron capture)

2) Population Kinetics modeling required

$$\frac{dn_i}{dt} = -n_i \sum_{j \neq i}^{N \max} W_{ij} + \sum_{j \neq i}^{N \max} n_j W_{ji}$$

$$W_{ij} = B_{ij}\overline{J_{ij}} + n_e C_{ij} + \beta_{ij} + n_e \gamma_{ij} \qquad W_{ji} = A_{ij} + B_{ji}\overline{J_{ji}} + n_e D_{ji} + n_e (\alpha_{ji}^{RR} + \alpha_{ji}^{DR}) + n_e^2 \delta_{ij}$$

- A_{ij} Spontaneous emission B_{ij} Stimulated absorption or emission (I > j) C_{ij} Collisional excitation D_{ii} Collisional deexcitation
- $\alpha_{ij}^{\ \ DR}$ Dielectronic recombination $\alpha_{ij}^{\ RR}$ Radiative recombination $\beta_{ij}^{\ RR}$ Photoionization+stimulated recombination γ_{ij} Collisional ionization δ_{ii} Collisional recombination

The key is to figure out how to manage the infinite set of levels and transitions of atoms and ions into a model with a tractable set of levels and transitions that represents a physical reality!

3) Radiation transport required

 Radiation intensity *l(r,n,v,t)* is determined self-consistently from the coupled integro-differential radiation transport and population kinetic equations

$$[\mathcal{C}^{-1}(\partial/\partial t) + (\mathsf{n}\cdot\nabla)]/(\mathsf{r},\mathsf{n},\nu,t) = \eta(\mathsf{r},\mathsf{n},\nu,t) - \chi(\mathsf{r},\mathsf{n},\nu,t)/(\mathsf{r},\mathsf{n},\nu,t)$$

 Opacity χ(r,n,v,t) and emissivity η(r,n,v,t) are obtained with population densities and radiative transition probabilities

$$\chi_{\nu} = \sum_{i} \sum_{j>i} [n_{i} - (g_{i} / g_{j})n_{j}] \alpha_{ij}(\nu) + \sum_{i} (n_{i} - n_{i}^{*} \theta^{-h\nu/kT}) \alpha_{i\kappa}(\nu)$$
$$+ \sum_{\kappa} n_{\theta} n_{\kappa} \alpha_{\kappa\kappa}(\nu, T) (1 - \theta^{-h\nu/kT})$$

$$\eta_{\nu} = \left(2\hbar\nu^{3}/\mathcal{C}^{2}\right)\left[\sum_{i}\sum_{j>i}(g_{i}/g_{j})\eta_{j}\alpha_{ij}(\nu) + \sum_{i}\eta_{i}^{*}\theta^{-\hbar\nu/kT}\alpha_{i\kappa}(\nu) + \sum_{\kappa}\eta_{e}\eta_{\kappa}\alpha_{\kappa\kappa}(\nu,T)\theta^{-\hbar\nu/kT}\right]$$

Radiation field carries the information on atoms embedded in plasmas through population distributions

4) Line shape models required

- Line shape theory is a theoretically rich field incorporating quantum-mechanics and statistical mechanics
- Line shapes have provided successful diagnostics for a vast range of plasma conditions
 - Natural broadening (intrinsic)
 - Doppler broadening (T_i)
 - Stark broadening (N_e)
 - Opacity broadening
 - Resonance broadening (neutrals)

Ground state of ion Z

5) Hydrodynamics required

 Time scales are very different between atomic processes and classical particle motions : separation between QM processes and particle mechanics

Is this a valid assumption?

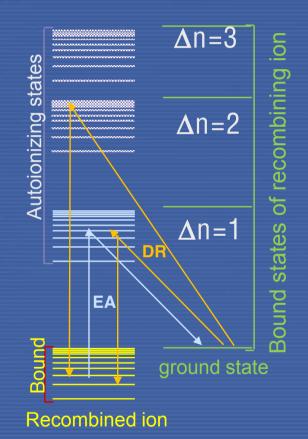
- Hydrodynamics simulations
 - Fluid treatment of plasma physics
 - Mass, momentum and energy equations solved
 - Plasma thermodynamic properties
 - LTE (Local Thermodynamic Equilibrium) (assumed)
- PIC (Particle-In-Cell) simulations
 - Particle treatment of plasma physics
 - Boltzmann transport and Maxwell equations solved
 - Electron energy distribution function
 - Simple ionization model (assumed)

Level population distribution determined by rate equations for nonlocal thermodynamic equilibrium (NLTE) state plasmas

COLLISIONAL-RADIATIVE POPULATION KINETIC MODELS

Population Kinetics Models

Mean ionization states, Charge state distributions, Spectral intensity, Emissivity, Opacity, Equation of state, Electrical conductivity require population distributions of ions in the plasma.



<u>Coronal plasmas (low N_e) \Rightarrow Rate formalism</u>

Charage state distributions are determined by rates of *collisional ionization and excitation-autoionization (EA)* & *radiative recombination and dielectronic recombination (DR) originating from the ground states*

<u>LTE plasmas (high N_e) \Rightarrow Statistical distributions</u>

Collisional processes are dominant and the population distribution is governed by *Boltzmann relations and Saha equation*.

<u>Collisional-radiative plasmas (intermediate $N_{\underline{e}}$) \Rightarrow <u>Rate</u> <u>equation model</u></u>

A population distribution is determined by *rate equations considering collisional and radiative processes* at a given temperature and density. The results should converge to coronal or the LTE limit at low and high N_e limits, respectively.

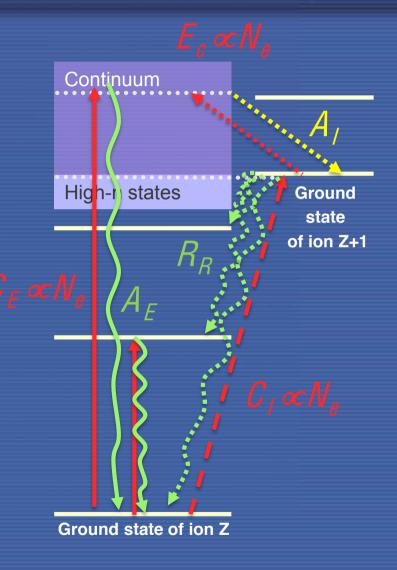
Coronal Limits (low densities)

 At low densities, excited state population densities are so low that they are assumed to be populated from the ground state by collisional excitation *C_E* and depopulated by spontaneous emission *A_E*. Therefore the excited population density is *proportional to N_e*

Charge state distribution is <u>independent of N_e</u>

$$n_z(C_I + E_A) = n_{z+1}(R_R + D_R)$$

$$E_{A} = \sum_{i}^{\infty} C_{E}^{i} B_{z+1}^{i,a} \quad B_{z+1}^{i,a} = \frac{\sum_{k>Z} A_{E}^{ik} B_{z+1}^{i,a} + \sum_{l \in Z+1} A_{I}^{il}}{\sum_{j \in Z}^{\infty} A_{E}^{ij} + \sum_{k>Z} A_{E}^{ik} + \sum_{l \in Z+1} A_{I}^{il}}$$
$$D_{R} = \sum_{i}^{\infty} E_{C}^{i} B_{Z}^{i,d} \quad B_{Z}^{i,d} = \frac{\sum_{j \in Z}^{\infty} A_{E}^{ij} + \sum_{k>Z} A_{E}^{ik} B_{Z}^{i,d}}{\sum_{j \in Z}^{\infty} A_{E}^{ij} + \sum_{k>Z} A_{E}^{ik} + \sum_{l \in Z+1} A_{I}^{il}}$$

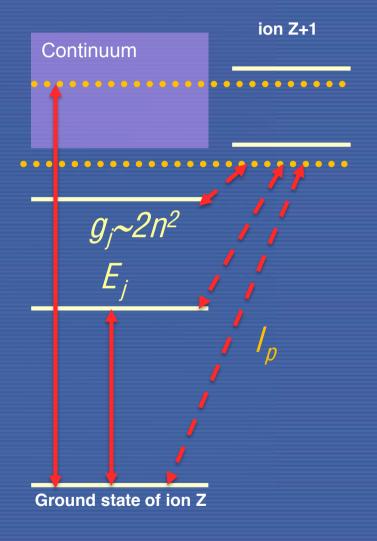


Coronal Model

LTE Limits (high densities)

- Population/depopulation processes are totally dominated by collisions and therefore rates should be in detailed balance.
- The 3-body recombination process dominates and hence the high-lying states are important for charge state balance.
- A population distribution is an explicit function of "local" plasma conditions, governed by Boltzmann statistics and Saha equations.

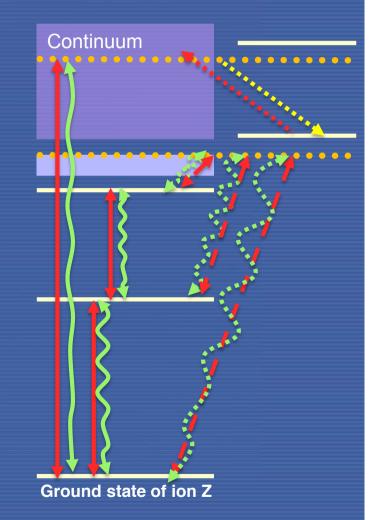
$$n_{j} = \frac{N_{i}}{Z_{i}(T)} g_{j} e^{-E_{j}/kT} \qquad Z_{i}(T) = \sum_{j \in i}^{J_{max}} g_{j} e^{-E_{j}/k}$$
$$\frac{N_{e} n_{i+1}}{n_{i}} = \frac{2(2\pi m k_{B}T)^{3/2}}{h^{3}} \frac{Z_{i+1}(T)}{Z_{i}(T)} e^{-I_{p}/kT}$$



LTE Model

Collisional-Radiative Regime

- Population distribution is obtained by rate equations considering collisional and radiative processes, along with plasma effects
- <u>Excited states</u> are substantially populated and <u>increase the total ionization</u> by step-wise ionization processes while the 3-body recombination to these states is proportional to n³ and hence they significantly <u>enhance the total</u> <u>recombination</u>.
- Plasma effects such as non-local radiation transport, fast particle collisions and density effects should be included in the model.
- For optically thick lines, the self-absorption should be included to reduce the radiative processes.

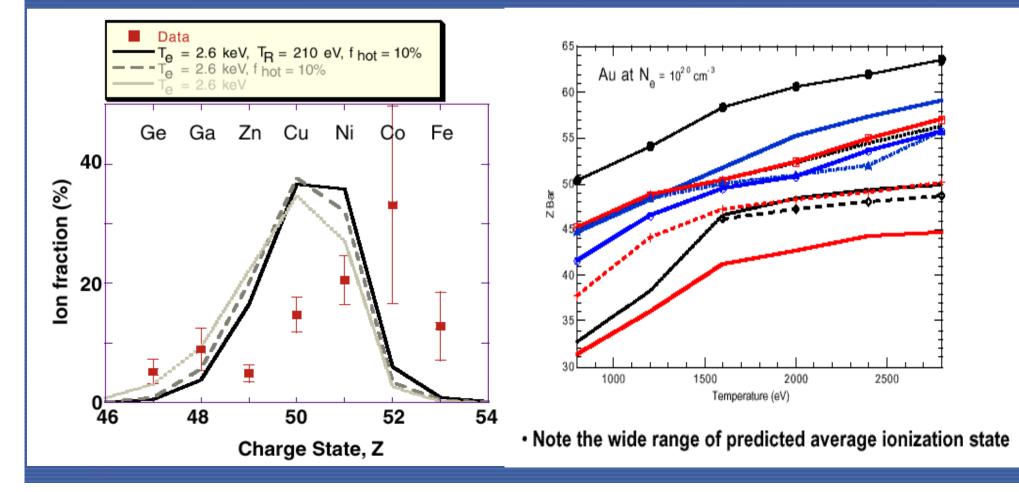


Collisional-Radiative Model

ion Z+1

Non-LTE plasmas have well documented problems for experiment and theory

Au M-shell emission Glenzer et al. PRL (2001) 1st Non-LTE workshop (1996) documented large differences between codes for Au

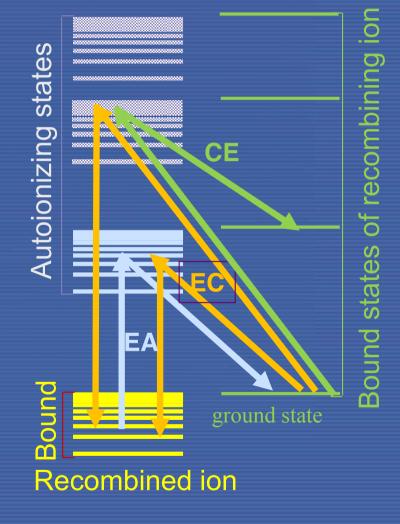


DR and EA Processes

LOW DENSITY LIMITS

Processes of dielectronic recombination (DR) and excitation autoionization (EA)

- DR is a two-step process where an electron is captured leaving the recombined ion at autoionizing (Ai) states.
- Subsequently, the states stabilize either to the bound states making the recombination process complete or back to the ion by Auger process
- The electron capture (EC) can enhance resonant collisional excitation (CE) when the state autoionizes to the excited state of the recombining ion
- EA process is a reverse process to DR and an electron is excited to Ai states which subsequently ionize by Auger processes



Detailed atomic data are obtained using the HULLAC code

- Used to compute energy levels, oscillator strengths, collisional excitation and ionization cross-sections, photoionization cross-sections and autoionization rates
 - For atomic structure, Dirac equations are solved for multiconfiguration, intermediate-coupling energy eigenvalues for fine structure levels using a parametric potential
 - Autoionization rates and radiative rates are computed using the multiconfiguration wave functions from Dirac equations
 - Collisional cross-sections are computed in the distorted wave approximation

Many levels and configurations are required for DR/EA modeling

lso	HULLAC	model	DR channels
H-like	58	58	NA
He-like	636	320	2Inl' 3Inl'
Li-like	1676	454	1s2Inl' 1s3Inl' 1s4Inl'
Be-like	2425	837	3lnl' 1s2l ² nl'
B-like	4710	1510	2l3l'nl" 1s2s ² 2pnl' 1s2p ³ nl'
C-like	8070	2544	2s2p3lnl' 2s ² 3lnl' 2p ² 3lnl' 1s2s ² 2p ² nl'
N-like	16437	3775	2s ² 2p3lnl' 2s2p ² 3lnl' 2p ³ 3lnl' 1s2s ² 2p ³ nl'
O-like	14680	3881	2s ² 2p ² 3lnl' 2s2p ³ 3lnl' 2p ⁴ 3lnl' 1s2s ² 2p ⁴ nl'
F-like	12559	2773	2s ² 2p ³ 3lnl' 2s2p ⁴ 3lnl' 2p ⁵ 3lnl' 1s2s ² 2p ⁵ nl'
Ne-like	7021	1549	2s ² 2p ⁴ 3lnl' 2s2p ⁵ 3lnl' 2p ⁶ 3lnl' 1s2s ² 2p ⁶ nl'
Na-like	3600	693	2s ² 2p ⁵ 3lnl' 2s2p ⁶ 3lnl'
Mg-like	13521	1878	2s ² 2p ⁵ 3l ² nl' 2s2p ⁶ 3l3l'nl" 2s2p ⁶ (3l) ² nl'
Al-like	4087	2457	2s ² 2p ⁵ 3s ² 3lnl' 2s2p ⁶ 3s ² 3lnl'
Si-like	9052	2119	2s ² 2p ⁵ 3s ² 3l ² nl' 2s2p ⁶ 3s ² 3l ² nl'

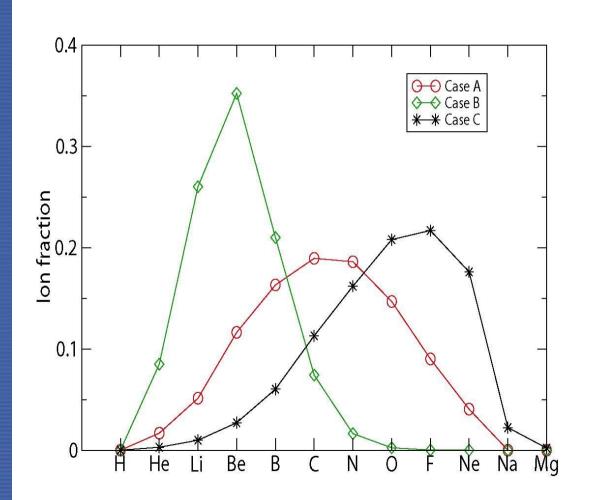
Model assumptions

- Charge states from bare nuclei to Si-like Kr are considered when their abundances are greater than 0.01%
- The maximum principal quantum numbers for levels included are 8 and 6 for bound and autoionizing levels, respectively, and the maximum angular momentum quantum number of up to 5 is used
- The high-n state of autoionizing levels included in the model are limited to those which contribute more than 70% of the full-scale DR calculations at the coronal limit
- Ionization potential depression (IPD) model of Stewart and Pyatt is used to suppress bound states due to continuum lowering
- Partial LTE approximation is applied to use configuration-average model for high-lying configurations which brings about max. 6% uncertainty in charge state balance at the coronal limit

Selecting DR channels affect charge state distribution: *big time*

- A. Complete model with *LLn/LMn/KLn* DR channels with n <7
- B. Complete model with *KLn* DR channels
- C. Coronal model with LLn/LMn/KLn DR channels with n ~ ∞
- ⇒Our model will be valid at Ne~10²⁰ cm⁻³

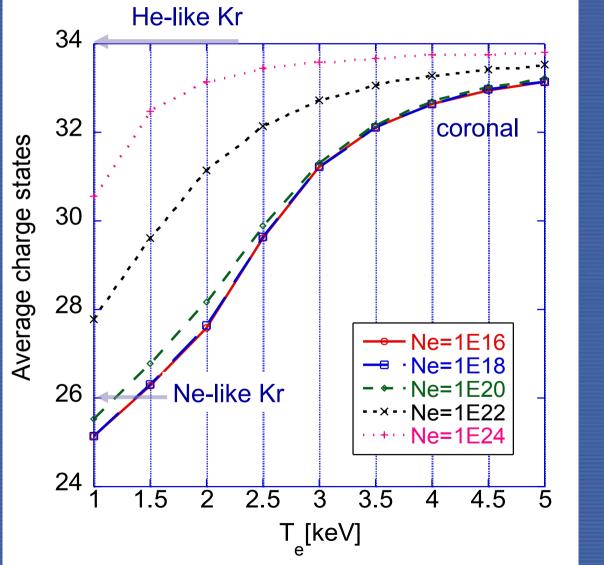
Krypton Charge states $T_e=2500 \text{ eV/N}_e=10^{14} \text{ cm}^{-3}$

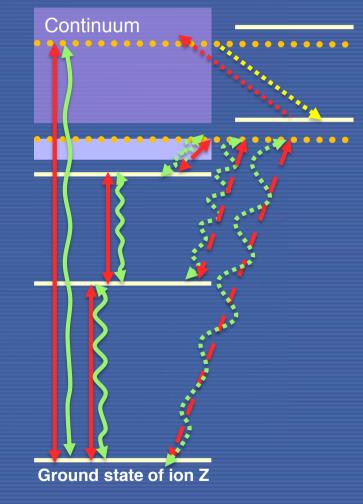


Step-wise excitation

INTERMEDIATE DENSITIES

Excited states contribute to ionization and recombination processes





Excited level population densities and radiative loss rates are *not linear* with N_e

Calculated Kr radiative cooling rates per N_e [eV/s/atom/cm⁻³]

 $4x10^{-7}$ Ne=1F18 Ne=1E20 Ne=1E22 3x10⁻ Ne=1E24 2x10⁻⁷ coronal 1×10^{-7} 01 1.5 2 2.5 3 3.5 4.5 5 4 T_(keV)

of radiative transitions using HULK code

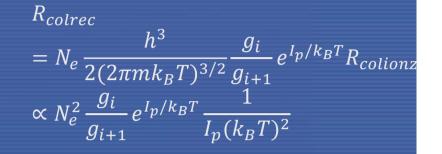
lon	HULLAC+DHS
1	3049
2	27095
3	30078
4	404328
5	3058002
6	5882192
7	7808014
8	6202123
9	5544814
10	1050919
11	841094
Sum	30,851,708

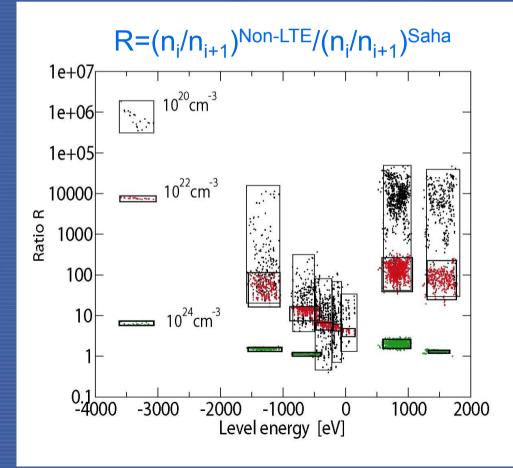
Ionization potential depression

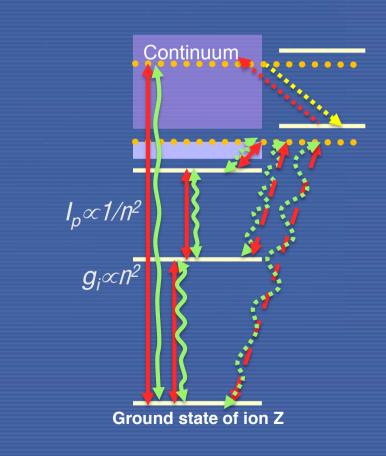
HIGH DENSITY LIMITS

Highly excited states are in Saha equilibrium with the continuum at high densities

- For Maxwellian electrons, the collisional recombination rate coefficient is given by the detailed balance with collisional ionization rate coefficient
- Recombination rates to high lying hydrogenic levels are proportional to n⁴ and <u>inversely proportional to T²</u>.

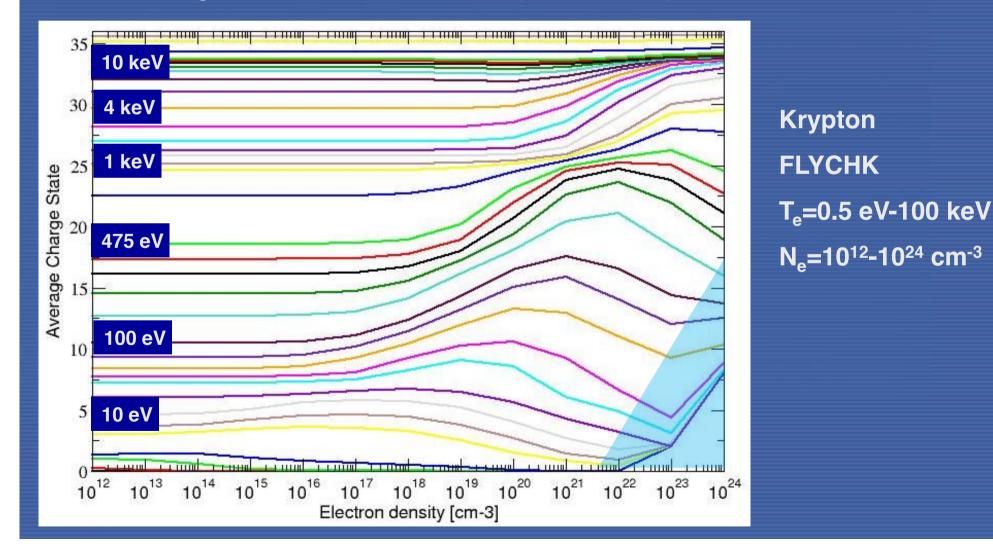






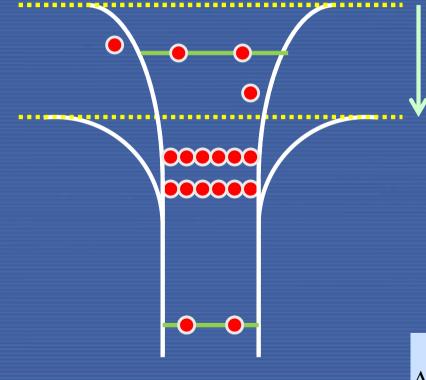
Average charge states are sensitive to the treatment of high-lying states

 Due to the 3-body recombination processes, the average charge state <u>decreases after</u> reaching the maximum value as N_e increases, then <u>increases again</u> due to the ionization potential depression.



Plasma effects: Ionization potential depression & Rate changes

- High-lying states are no longer bound due to interactions with neighbouring atoms and ions. (pressure ionization)
- Ionization potentials are a function of plasma conditions



Isolated atom continuum *Ionization potential depression (IPD)* Embedded atom continuum

For a given n_e, T_e, the IPD Δχ, is calculated using a <u>Stewart-Pyatt</u> type model
 Where r_i and r_d are the ion sphere and Debye radii

$$\Delta \chi = 2.16 \times 10^{-7} \frac{z}{r_i} \left(\left(1 + \left(\frac{r_d}{r_i} \right)^3 \right)^{2/3} - \left(\frac{r_d}{r_i} \right)^2 \right) \quad (eV)$$

Opacity effects and opacity broadening

Escape probability: Modified radiative rates due to optical depth effects

τ(

 J_{Z}

Escape probability Λ reduces the total A rate

$$R_{ij} = n_i (A_{ij} + B_{ij}\overline{J_{ij}}) - n_j B_{ji}\overline{J_{ij}} \equiv n_i A_{ij} \Lambda(n_i, n_j)$$

$$\overline{J}_{ij} = \int \phi(\mathbf{v}) d\mathbf{v} \frac{1}{4\pi} \oint I(\mathbf{v}) d\omega$$

$$\mu \frac{\partial I(\nu)}{\partial \tau(\nu)} = I(\nu) - \frac{\eta(\nu)}{\chi(\nu)}$$

Frequency-averaged escape probabilities

$$P_{e}(\tau) = \int_{0}^{\infty} d\nu \, \phi(\nu) e^{-\tau \phi(\nu)/\mu \phi(\nu=0)}$$
$$\overline{P_{e}(\tau)} = \int_{0}^{1} P_{e}\left(\frac{\tau}{\mu}\right) d\mu$$
$$integrad in the equation of the equation o$$

$$\eta(v) \xrightarrow{}_{A_{ij}\Lambda} \qquad B_{ji}$$

$$\chi(v) \xrightarrow{}_{V_{jj}} \qquad V$$

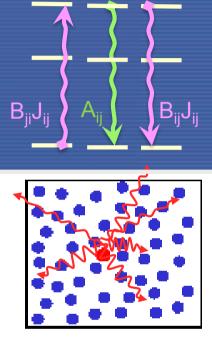
$$P(v) : \text{ line profile}$$

$$\int_{V_{jj}} V \qquad V$$

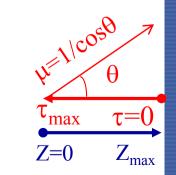
$$Z, V)$$

$$\int_{Z_{max}} (u - v) = U$$

 $\chi(Z, \nu)az$

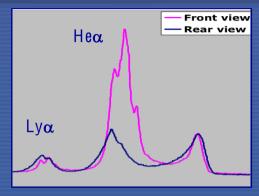


Planar geometry



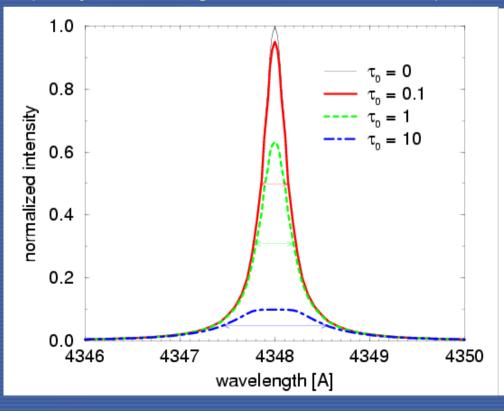
Modified line intensities by opacity broadening

Measured ratios between Ly- α and He- α lines are only possible for T_e > 1 keV for optically thin case

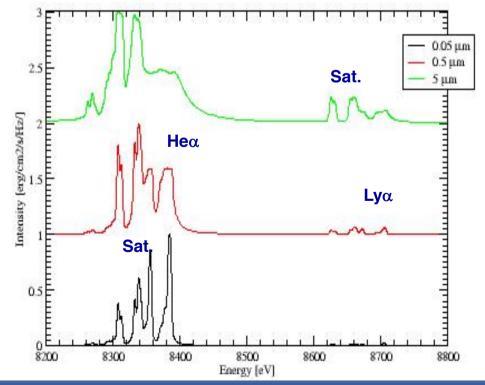


Measured ratios between Ly- α and He- α lines increase with plasma size/opacity effects

Opacity broadening due to line-core absorption



Cu Solid, T_e=2 keV, N^{hot}=2% 200keV



Reality Check NON-EQUILIBRIUM EFFECTS

Consideration of the non-equilibrium effects for spectral analysis

- Laboratory plasmas are complex
 - Time-dependence \rightarrow time-dependent NLTE model

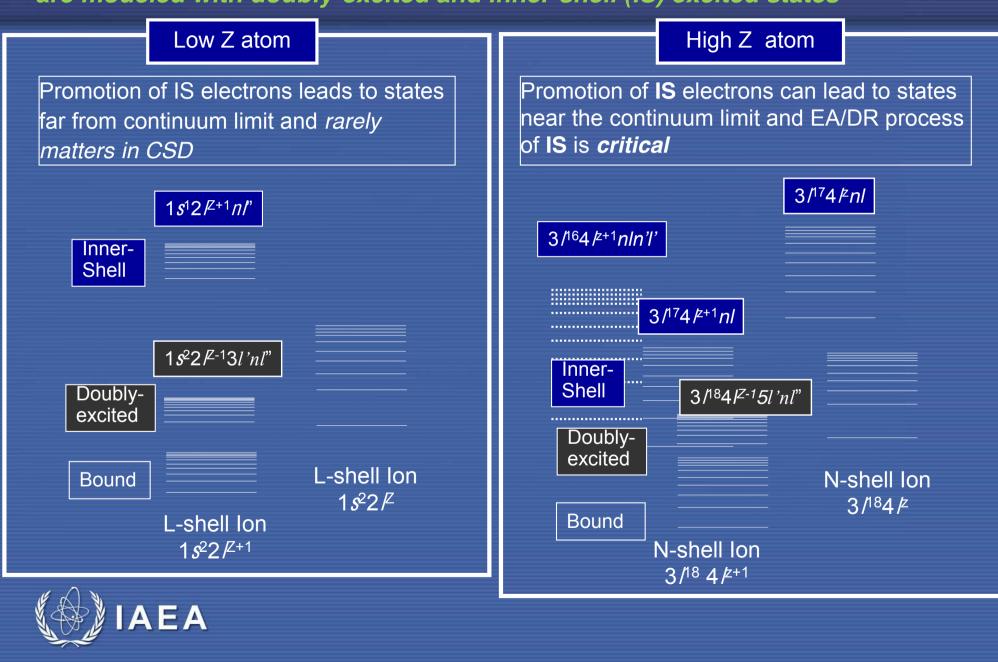
 - External radiation field
 - Non-thermal particles

 Non-equilibrium states due to other sources should be carefully considered before applying the NLTE model for measured spectra

FLYCHK Model : *simple, but complete*

- Screened hydrogenic energy levels with relativistic corrections
- Dirac Hartree-Slater oscillator strengths and photoionization crosssections
- Fitted collisional cross-section to PWB approximation
- Semi-empirical cross-sections for collisional ionization
- Detailed counting of autoionization and electron capture processes
- Continuum lowering (Stewart-Pyatt)

Application to a wide range of Z and experiments: *Excitation autoionization (EA) /Dielectronic recombinationa (DR) processes are modeled with doubly-excited and inner-shell (IS) excited states*



Applications to Plasma Research

• Short-pulse laser-produced plasmas

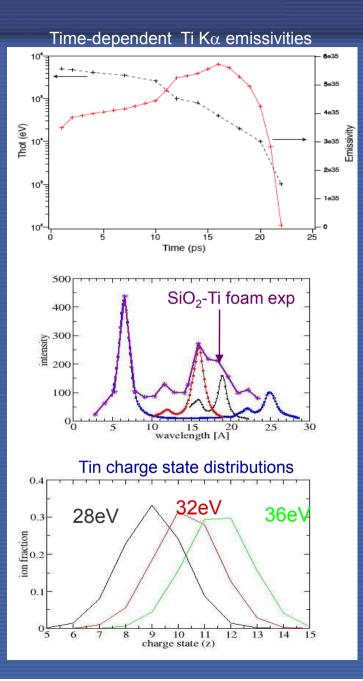
- Arbitrary electron energy distribution function
- Time-dependent ionization processes
- K-α shifts and broadening: diagnostics

Long-pulse laser-produced plasmas

- Average charge states
- Spectra from a uniform plasma
- Gas bag, Hohlraum (H0), Underdense foam

• <u>Z-pinch plasmas</u>: photoionizing plasmas

- Proton-heated plasmas: warm dense matter
- <u>EBIT</u>: electron beam-produced plasmas
- <u>EUVL</u>: Sn plasma ionization distributions
- <u>TOKAMAK</u>: High-Z impurities



Available to the community at passwordprotected NIST website: <u>http://nlte.nist.gov/FLY</u>

Advantages: simplicity and versatility \rightarrow applicability

- <Z> for fixed any densities: electron, ion or mass
- Mixture-supplied electrons (eg: Argon-doped hydrogen plasmas)
- External ionizing sources : a radiation field or an electron beam.
- Multiple electron temperatures or arbitrary electron energy distributions
- Optical depth effects

Outputs: population kinetics code and spectral synthesis

- <Z> and charge state distribution
- Radiative Power Loss rates under optically thin assumption
- Energy-dependent spectral intensity of uniform plasma with a size

Caveats: simple atomic structures and uniform plasma approximation

- Less accurate spectral intensities for non-K-shell lines
- Less accurate for low electron densities and for LTE plasmas
- When spatial gradients and the radiation transport affect population significantly

