Runoff and Evaporation in the WRF Regional Climate Model

Rachel White

Imperial College London, UK

Prof. Ralf Toumi
• Regional climate model and domain
 – The Olifants basin in South Africa

• Standard model of soil water physics

• Evidence for a better model?
 – Brooks et al. 2010

• Implementation of new physics in NOAH-WRF

• Results – validation of new scheme
WRF Regional Climate Model

- Designed for high resolutions and research purposes
- Has previously been shown to successfully simulate precipitation on regional scales.
- Many different options for physical schemes/parameterisations
Olifants Basin, South Africa

- Water-stressed region
- Local population, agriculture and mining economy dependent on water resources
- Runoff important for future water security

WRF V3.2.1
Nested domain, 12km resolution inner domain (36km outer)
Forcing from ERA40
Standard Soil Water Physics

- New infiltration displaces existing soil water downwards
- Subsurface runoff is oldest soil water
- Evaporation and transpiration occur from soil
- In reality this occurs on sloping terrain – lateral movement within soil.
- Expect water in soil close to a stream to be similar to water within the stream.
Brooks et al. 2010: Ecohydrologic separation of water between trees and streams

LMWL = Local meteoric water line, values below this indicate evaporation has occurred.

Initial wet season rain events had little impact on streamflow.
Brooks et al. conclusions:

- There are two distinct reservoirs within the soil:
 - Mobile water expressed in the stream
 - Tightly bound water represented by plant water
 - Agrees with Dawson and Ehleringer (1991)

- The tightly bound reservoir refills in the first rain events of the wet season – little response of streamflow to precipitation during this refill time.

- The tightly bound water does not move within the soil – it is removed by tensions exerted by plant roots or direct soil evaporation
Modeling the Tightly Bound Water Scheme in the NOAH LSM

NOAH Standard Scheme

a. Water into soil

b. Water out of soil

Transpiration

NOAH TBW Scheme

a. Water into soil

b. Water out of soil

Precipitation

Surface Runoff

Tightly Bound Water

Mobile Water

Sub-surface Runoff

Evaporation
10yr Simulation Results: Precipitation

Mean Annual Precipitation

- **WRF_STD**: 10.4
- **WRF_TBW**: 11.6
- **ERA40**: 10.6

RMSEs (mm/month)

- **WRF_STD**: 10.4
- **WRF_TBW**: 11.6
- **ERA40**: 10.6
10yr Simulation Results: Runoff

- Yearly bias reduced from +120% to +22%
- Reduction significant at 0.99 confidence (Student’s paired T-test)
- Such reduction in error not achievable by changing existing parameters within the NOAH Land Surface Model
Impact of TBW scheme

• Modelling present day extremes
Impact of TBW scheme

- Modelling future changes
 - Force WRF with CCSM3 data 1979–1999; 2039–2059
 - TBW scheme simulates greater decreases
 - TBW scheme simulates smaller increases

- Overall the TBW scheme simulates a greater decrease in runoff for the future.

Changes to Climatological Runoff:
2040s – 1980s.
Conclusions

- Evidence that soil water exists in two distinct reservoirs – tightly bound and mobile soil water.

- This new physics has been implemented into the NOAH land surface model within the WRF regional model.

- Results show a highly significant improvement in the simulation of runoff in a semi-arid climate.

- Likely to improve runoff simulation in regions with similar climate: significant moisture-controlled evaporation during rain season.

- No significant impact on precipitation in this region despite increase in evaporation – may vary in other areas.

Thank You!
WRF V3.2.1 Model Set-up

- WRF double-moment 6-class scheme
- Betts-Miller-Janjic scheme convection
- Longwave radiation using the RRTM
- Shortwave radiation using the Dudhia scheme
- Planetary boundary layer by MYNN Level 2.5
- Surface layer physics by the corresponding MYNN surface layer scheme.
- NOAH Land Surface Model.
- SSTs updated every 6 hours