

2339-12

Workshop on Atmospheric Deposition: Processesand Environmental Impacts

21 - 25 May 2012

Deposition Measurements: Sampling and Analysis

E. Gardrat IDAF Network Laboratoire Aeerologie O.M.P. Toulouse France

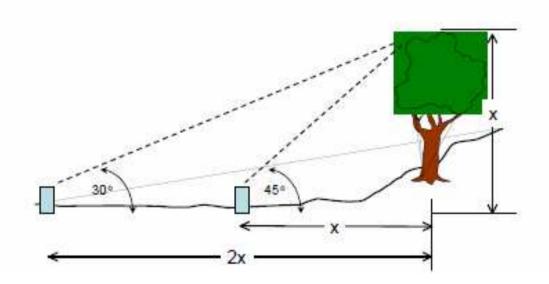
Deposition Measurements: Sampling and Analysis ICTP 22 may 2012 E. Gardrat **IDAF** Network Laboratoire d'Aérologie O.M.P. Toulouse

Summary

Deposition sampling: Constraints Dry deposition Wet deposition Sample analysis: Overwiew of techniques used **Quality Assurance/ Quality control**

Sampling constraints on sites: local positionning

Naturally vegetated, level area is preferred

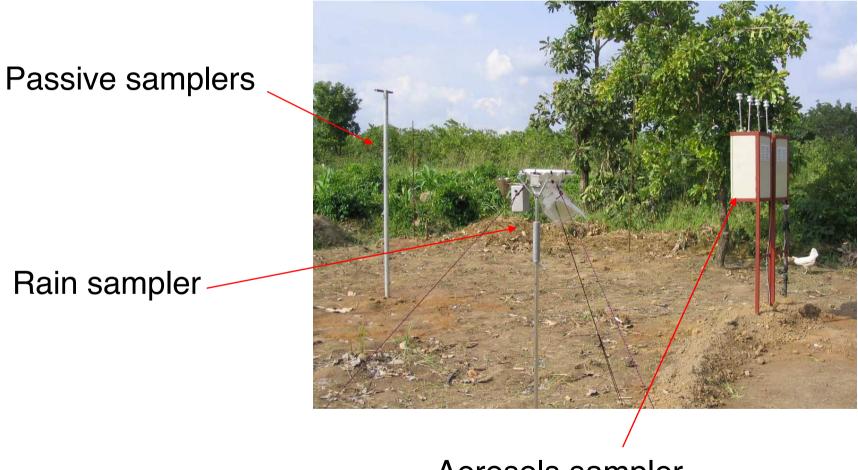

Maintain the height of vegetation less than 0.5 meters

Ground cover should surround the samplers for a distance of 30 meters

Structures projection angles:

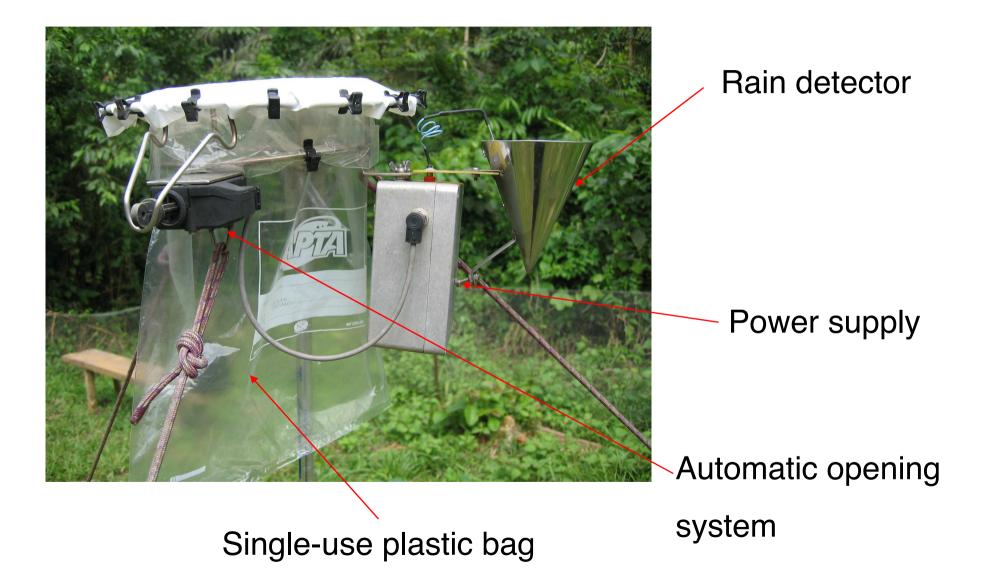
30 degrees optimal, 45 degrees maximum

30 metres minimum away of dwellings



Sampling constraints on sites global positionning

Table 2.1: Minimum-Distance Guidelines for GAW Precipitation Chemistry Stations.


Potential Interference	Minimum Dista	nce to Site (km) Examples, Notes and Local Consideration	Examples, Notes and Local Considerations
	Global	Regional	
			We and the second final and second states with the
SO2 or NO _x Point Source	50	20	If emission sources (such as power plants, refineries,
>100 tonnes per year	(A.7-7)		chemical plants, smelters or other major industrial facilities)
>1000 tonnes per year	100	50	are located in the general upwind direction from the collector,
Major Industrial Complex	150	50	then the regional distances indicated should be doubled.
Town, population 1,000-10,000	25	10	Future population growth and associated land development
Town, population 10,000-25,000	50	20	should be considered carefully, especially for towns and
City, population 25,000-100,000	100	50	villages near a station. If population centres are located in
City, population >100,000	200	100	the general upwind direction from the collector, then the regional distances indicated should be doubled.
Major highway, airport, railway,	25	5	Moving sources of pollution, such as air, ground, or water
shipping lane, harbour	20		traffic or the medium on which they traverse (e.g., runway, taxiway, road,
shipping lane, harbour			tracks, or navigable river), should not be within 500 metres of the collector.
Secondary road, heavily travelled	5	1	The local road network around the site is of particular
	3	0.5	
Secondary road, lightly travelled	-1	0.5	concern. Traffic volume and type as well as road surface will largely determine the impact at the site.
eedlot operations	50	2	Acceptable distances will vary greatly depending on size of the operation.
	125	2	Even small concentrations of animals should be housed no closer than 500 metres. If the feedlot, dairy barn or animal waste pile can be smelled at the
			collector, it is too close.
Intensive agricultural activities	10	2	Surface storage of agricultural products, fuels, vehicles or other source
			materials should be kept at least 500 metres from the collector.
imited agricultural activities	1	0.4	Storage of small amounts of agricultural products, fuels, or other source
			materials should be kept at least 200 metres from the collector and well seale
Parking lot or large paved area	0.5	0.2	On-site parking lots and maintenance yards also need to be kept at least
and a suble based area			300 metres from the collector.
Building with fuel combustion	1	0.4	
-	20	2	
Sewage treatment plant	20	2	
Active volcano, fumarole, etc.	100	20	Geothermal sites including geysers and springs may have significant
			emissions and should be avoided.
vatural salt, dust, alkali sources	2	2	Windswept materials from salt and alkali flats as well as sea spray from
			coastlines can contaminate samples.

IDAF station : DJOUGOU (BENIN)

Aerosols sampler

Wet depositon: IDAF rain collector

Wet deposition

Rain samples storage: GREINER centrifugation tubes (50 mL) filled and labelled after each rainy event

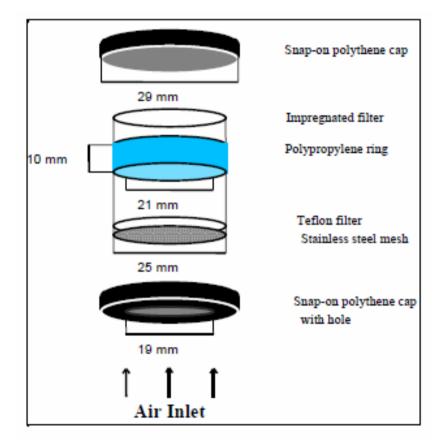
Rain samples preservation:

Best: freezing in site to -18°C and kept frozen until an alysis

Alternative: adding thymol or formol to avoid bacterial activity

Dry deposition: gases by passive samplers

IDAF Passive samplers holders: 8 samplers exposed together



Dry deposition: gazes by passive samplers

IDAF sampler: developped in the Laboratoire d'Aérologie Based on M. Ferm work (IVL 1991, 1994)

Passive samplers

2 weeks or one month exposure, the impregnated paper filters react with gazes present in ambiant air and form species which can be measured in water by ion chromatography

IDAF samplers are colored to be easily identified ,they are exposed by duplicates to ensure precision and reproducibility

Shipped to the IDAF stations by mail; stored in fridge (4 $^{\circ}$ before and after exposure)

Gas (Colour of the sampler)	Coating solution	Chemical reaction on the filter
HNO ₃ and SO ₂ (Black)	0.5 g NaOH in 50 mL methanol (pH>12)	$\frac{\text{HNO}_3(g) \text{ OH}^- \rightarrow \text{NO}_3^- + \text{H}_2 \text{O}}{2\text{SO}_2(g) + 4\text{OH}^- + \text{O}_2 \rightarrow 2\text{H}_2 \text{O} + 2\text{SO}_4^{-2}}$
NO ₂ (Grey)	0.44 g NaOH + 3.95 g NaI in 50 mL methanol (pH>12)	$2NO_2(g)+3I^- \rightarrow 2NO_2^-+I_3^-$
NH ₃ (White)	1.0 g citric acid in 50 mL methanol	$NH_3(g)+H^+ \rightarrow NH_4^+$
O ₃ (Grey & black)	0.25 g NaNO ₂ + O.25 g K ₂ CO ₃ + 0.5 ml redistilled glycerol in 50 ml water	$O_3(g)+NO_2^- \rightarrow NO_3^-+O_2$

Passive samplers

Calculation of gases concentration: Fick's first law of diffusion

$$C_{avg}(ppb) = [(L/A).X.R.T] / (t.D.P)$$

L/A : depends of the sampler's physical caracteristics (m⁻¹)

- X : amount of gas pollutant trapped on the filter (μ mol)
- R : ideal gaz constant (atm K⁻¹ mol⁻¹)
- t : exposure time (s)
- P : mean atmospheric pressure during exposure (atm)
- T : mean temperature during exposure (K)
- D : diffusion coefficient of the wanted gas in air ($m^2 s^{-1}$)

Passive samplers

Easy to use, no electricity supply needed

Good reproducibility (10-20 %)

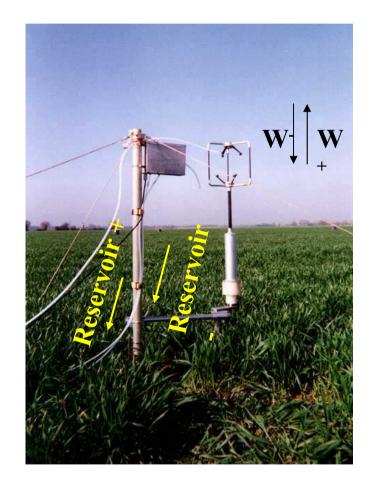
Mean gas concentrations values during the exposition period

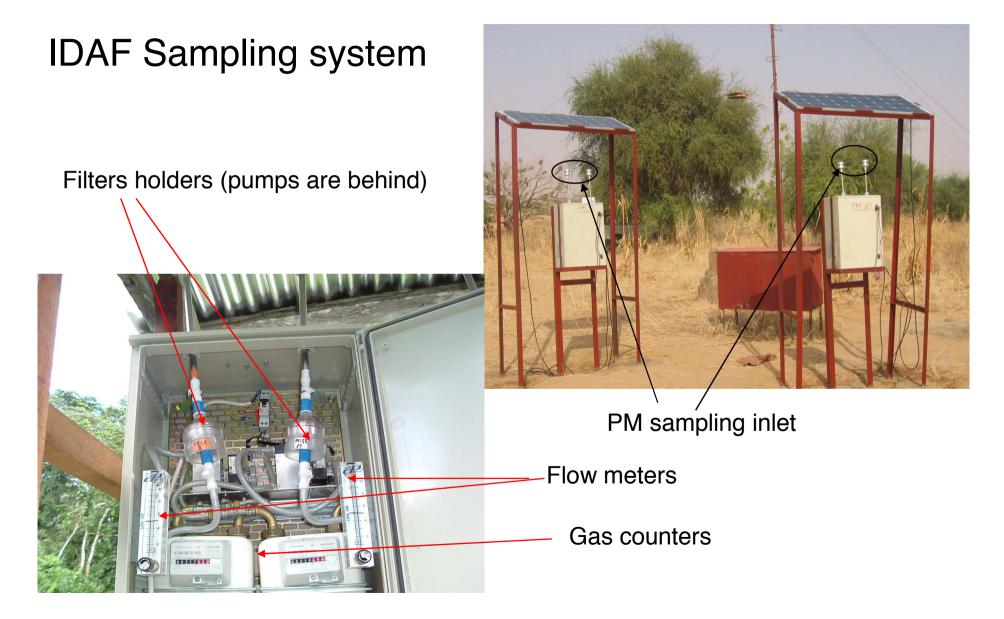
Good agreement active/passive measurements for NO₂, SO₂ and O₃

Dry Deposition: gazes

measurements by Relaxed Eddy Accumulation (REA)

Air mass selection according to the sign of the vertical speed (+ or -)


Air accumulation in 2 reservoirs (10 min)


Reservoirs air analysis (2 min)

Reservoirs emptying(3 min)

Flow is proportionnal to the concentration difference between the 2 reservoirs and to the standard deviation of the vertical speed (σ_w)

$$F_{c} = \beta \times \sigma_{w} \times (c^{+} - c^{-})$$

Filter holders NILU for 47 mm filters

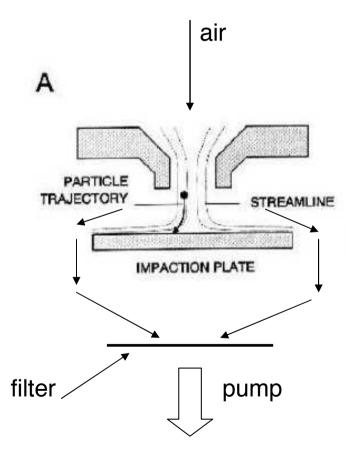
Inline: size segregation

Open face: total

Type: One stage inline 9631 Diameter: 70 mm Length: 90 mm (The filter shown is not included)

Outlet section 9656 O-ring nitrile 9652 O-ring silicone 9651 Backing 40 mm 9658

O-ring silicone 9651
Inlet inline 9657
Clamping ring 40 mm 9659
Filter 47 mm 9665



Type: One stage open face 9633 Diameter: 70 mm Length: 56 mm (The filter shown is not included)

Outlet section 9656 O-ring nitrile 9652 O-ring silicone 9651 Backing 40 mm 9658 O-ring silicone 9651 Inlet open face 9655 Clamping ring 40 mm 9659 Filter 47mm 9665

Size segregation: PM 2.5 and PM 10

47 mm filters used in NILU holders

lons: 0.5µm Teflon Zefluor from Pall

Carbon: quartz QMA from Wathman

One week sampling period in sequential mode (15 min/h for example)

4 filters collected together (PM 2,5 and PM 10; ions and carbon)

Electrical Low Pressure Impactor: ELPI (DEKATI) used for intensive measurement periods : real time particle size distribution in the size range 7 nm-10 μ m (13 stages cascade impactor)

Graphic user interface

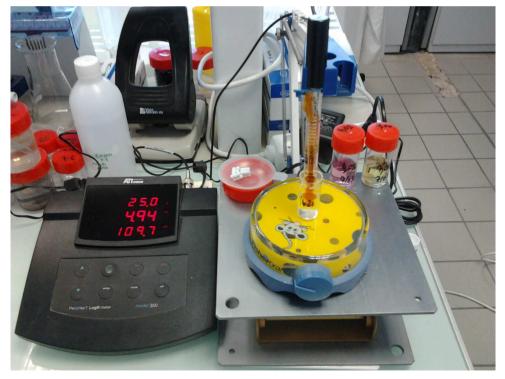
13 stages cascade impactor (can be used alone with one pump)

Stage	D50%
	[µm]
13	10
12	6,8
11	4,4
10	2,5
9	1,6
8	1
7	0,65
6	0,4
5	0,26
4	0,17
3	0,108
2	0,06
1	0,03
Filter stage	0,007

Each impaction stage can be charged with 25 mm filters for chemical analysis

Sample analysis back to lab

- Water system
- pH and conductivity
- Gravimetic analysis
- Ion Chromatography
- Thermal Optical analysis
- Thermal analysis
- ICP/ MS


Water system

Type I ultra pure water: (18.2 MΩ.cm;TOC< 5 ppb) ELGA system Eluent preparation, standards dilution, glassware cleaning and samples soaking

pH for rain samples

Thermo Orion pH meter and electrode

Temperature compensated (25°) 2 points calibration: 4,01 and 7,00 Match with majority of rain samples Precision: +/- 0,01 pH

Conductivity for rain samples

WTW conductivity meter and sensor

Temperature compensated (25°C)

2 points calibration: 1413 and 23.8 μ S

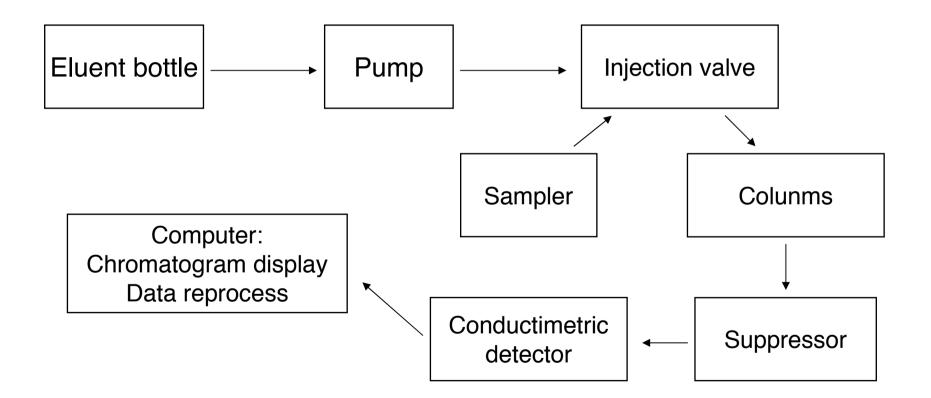
Precision: +/- 1.5%

Gravimetric analysis

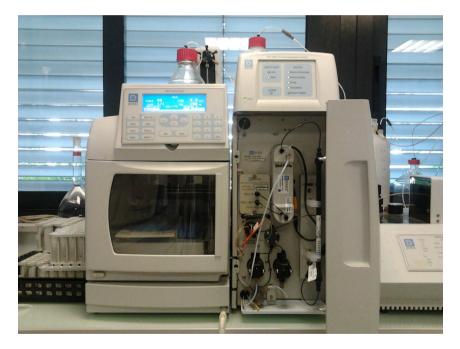
Teflon 47 or 25 mm filters weighted before and after collection

Sartorius MC 21S microbalance + Mettler Toledo Anti-Electrostatic Generator

Precision: +/- 5 μ g

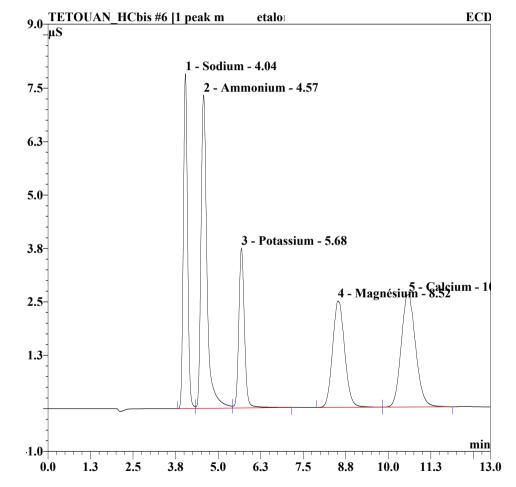


- Rain samples: direct analysis
- <u>Passive samplers</u>: impregnated filters soaked in ultra pure water
- <u>Aerosols samples</u>: Teflon filters soaked in ultra pure water; 0.2 μm filtration if necessary. Only the soluble part available


A part of HPLC, our systems from DIONEX Specificities:

- ion-exchange columns (cations or anions)
- suppressed eluent before detector
- conductivity detector
- calibration by dilution of mono elemental standards
- detection limit: 10 ppb (10 μ g/L)

Schematic representation:


Cations analysis: DIONEX ICS 1000 and automated sampler DIONEX AS50

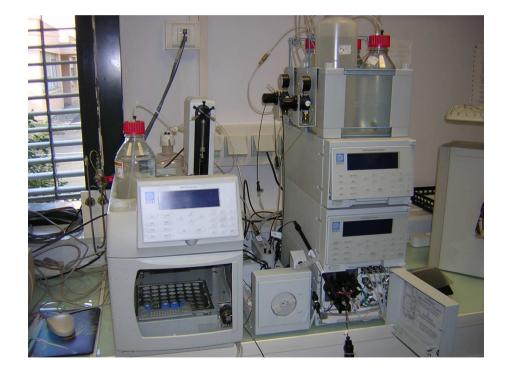
Isocratic mode for majors inorganic cations:

Columns: CG12A+CS12A

Eluent: 20 mM MSA (Methanesulfonic acid)

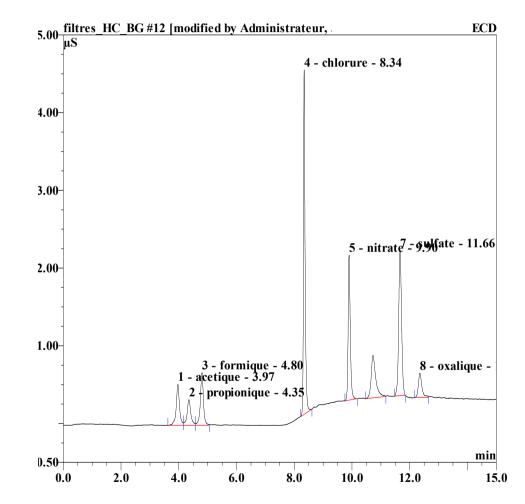
Mineral Anions analysis: DIONEX DX100 and automated sampler DIONEX AS 40


Mainly for passive samplers analysis


Isocratic mode for inorganic anions:

Columns: AG4A-SC+ AS4A-SC

Eluent :1.8mM CO_3^{2-} /1.7 mM HCO_3^{-}


Anions analysis: DIONEX DX 500 and automated sampler AS50

Gradient mode for small organic acids and inorganic anions in the same run

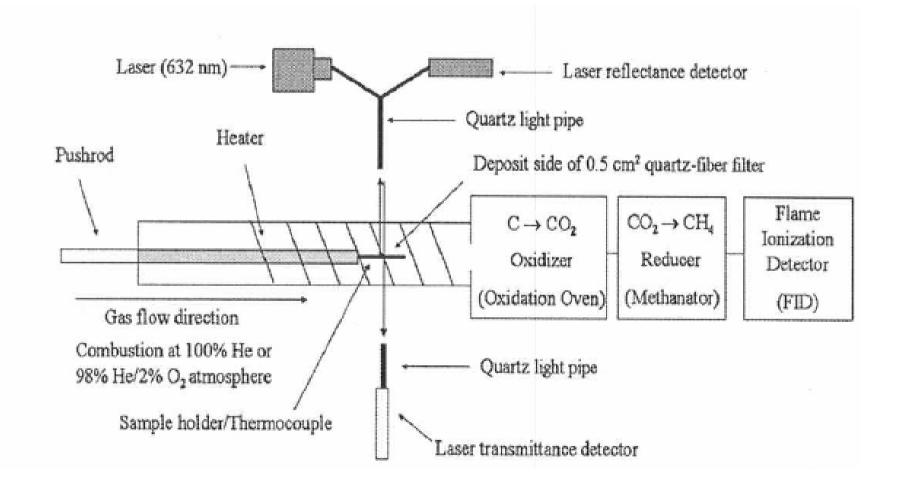
Columns: AG11+AS11

Eluent:0.4 mM NaOH to 8 mM NaOH

Thermo optical analysis

Quantify in the same run Organic Carbon and Black Carbon on an aerosol sample

TC = OC + BC


DRI model 2001 carbon analyser


Thermo optical analysis

- For quartz filters samples
- IMPROVE method used (Chow and Watson 2002)
- Calibration with methane and sucrose solutions
- Detection limit: 0.05 μ g C/ cm²

Schematic representation

Thermogram: IMPROVE method

Thermal analysis

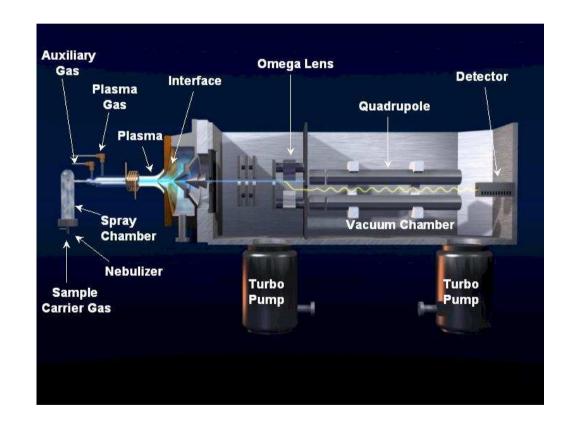
- Used with quartz filtrers
- Sample is heated to 1000°C and CO 2
 evolved is detected by infra-red
- Direct analysis of a sample : TC
- Sample heated 2 hours under oxygen flow to 340°C before analysis : BC
- Then OC = TC BC

Thermal analysis

BRUKER G4 ICARUS Carbon Analyser

ICP-MS

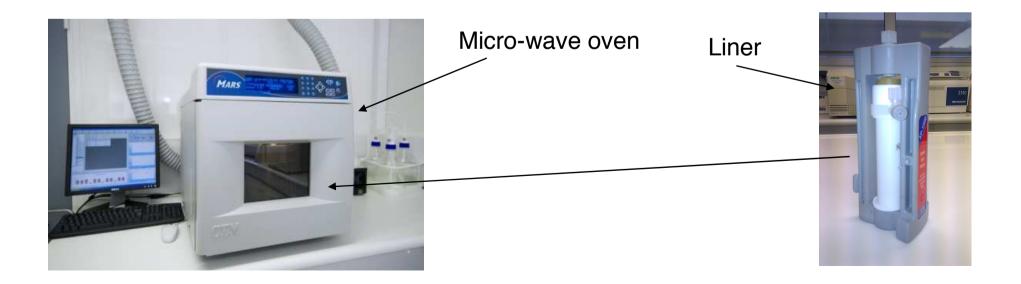
Inductively coupled plasma mass spectrometry Located in GET laboratory


Fast analysis of a lot of elements (80)

- Includes isotopic speciation
- Low detection limit 1 ppt (1 ng/L)
- Acid attack on Teflon Filters in clean room

ICP-MS

Thermo Finnigan system



Schematic representation

ICP-MS

For TEFLON filters, method developped by our students for IDAF samples

- 10 ml nitric acid (HNO₃) bi-distilled + 0,5ml fluorhydric acid (HF)
- ultra-sonication for 15 minutes
- microwave digestion in two steps:
 - 15' ramp until 160°C hold 10 minutes
 - 10' ramp until 180°C hold 30 minutes
- rince with ultra pure water in the liner
- evaporate at 75°C to dry , add 2% bi-distilled nitric ac id before ICP-MS analysis.

QA/QC

Quality Assurance in the sites:

- Enough sampling material available in the station (prevent lack)
- Procedures for changing of samples included in the field journal if there is changes in the technical staff
- Samples kept frozen just after collection (rain) or refrigerated (aerosols and passive samplers)
- Copies of sampling reporting forms should be sent to the lab (better than originals in case of loosing)
- Regular field blanks are necessary

QA/QC

Quality assurance in the lab

- Daily calibration and check standards
- Standards mother solutions changed every year
- Standard operating procedures for each kind of samples
- Preventive maintenance for instruments
- Regular test of sampling materials :plastic bags, Greiner tubes, plastic glassware used for filters soaking, fresh prepared passive samplers and field blancks

Quality Control

IDAF lab participates twice a year to the WMO/GAW intercomparison study: Analysis of 3 unknown simulated rain samples.

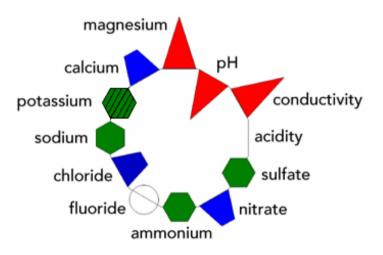
Parameters tested:

pH, conductivity Na⁺, NH4⁺, K⁺, Mg²⁺, Ca²⁺ Cl⁻, NO3⁻, SO₄²⁻

Quality Control

After WMO publishes statistics results and ring diagrams

GOOD - Green Hexagon


Measurement is within the interquartile range (IQR), defined as the 25th to 75th percentile or middle half (50%) of the measurements. Examples: sulfate, ammonium, sodium, and potassium.

SATISFACTORY - Blue Trapezoid

Measurement is within the range defined by the median \pm IQR/1.349. The ratio, IQR/1.349, is the non-parametric estimate of the standard deviation, sometimes called the pseudo-standard deviation. Examples: nitrate, chloride, and calcium.

UNSATISFACTORY - Red Triangle

Measurement is outside the range defined by the median \pm IQR/1.349. Examples: pH, conductivity, and magnesium.

Quality Control

Precipitation
Chemistry
Data
Quality
Objectives

Measurement	DQO
рН	<u>+</u> 0.07 units
conductivity	<u>+</u> 7%
acidity	<u>+</u> 25%
sulfate	<u>+</u> 7%
nitrate	<u>+</u> 7%
Ammonium	<u>+</u> 7%
fluoride	none
chloride	<u>+</u> 10%
sodium	<u>+</u> 10%
potassium	<u>+</u> 20%
calcium	<u>+</u> 15%
magnesium	<u>+</u> 10%

Sources

WMO/ GAW REPORT No 160 : MANUAL FOR THE GAW PRECIPITATION CHEMISTRY PROGRAMME:Data Quality Objectives and Standard Operating Procedures prepared by the GAW Precipitation Chemistry Science Advisory Group

Ferm and al. 1994. New mesurement technique for air pollutants(in swedish), Kemish tidskrift,1,30-32.

Chow, J.C., Watson, J.G., 2002. PM2.5 carbonate concentrations at regionally representative Interagency Monitoring of Protected Visual Environment sites. Journal of Geophysical Research 107 (D21), ICC6-1–ICC6-9. doi:10.1029/2001JD000574.

EMEP manual for sampling and chemical analysis. Norwegian Institute for Air Research

www.aero.obs-mip.fr	http://qasac-americas.org	www.dekati.fi
www.get.obs-mip.fr	www.nilu.no/products	www.dionex.com
http://idaf.sedoo.fr	www.thermoscientific.com	www.dri.edu