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Brief review of Mabuchi energy

L → X ample line bundle over compact complex manifold.

Want to find “canonical” Kähler metric in c1(L).

Calabi’s suggestion: minimise L2-norm of curvature. Critical
points are “extremal metrics”, ∂̄(∇ Scal) = 0.

When there are no holomorphic vector fields, these are just
constant scalar curvature Kähler metrics. In this talk, mainly
interested in this case.

Mabuchi phrased this problem in terms of the geometry of H, the
set of Kähler metrics in c1(L) and a special function, now called
Mabuchi energy.



Brief review of Mabuchi energy

H carries natural metric (Donaldson–Mabuchi–Semmes):

TωH = C∞
0 (X,R) and (φ,ψ)ω =

∫
X

φψ
ωn

n!
.

! This metric is non-positively curved.

! It is symmetric in the sense that ∇Rm = 0.

Mabuchi energy is function E : H → R defined up to a constant
via the formula for its differential:

dEω(φ) =

∫
X

φ Scal(ω)
ωn

n!
.



Brief review of Mabuchi energy

! Critical points of E are constant scalar curvature Kähler
metrics.

! E is geodesically convex.

! Downward gradient flow of E is Calabi flow:

∂ω

∂t
= 2i∂̄∂ Scal(ω).

Can understand geodesic convexity of E in terms of its Hessian:

HessE = D∗D,

where D(f) = ∂̄(∇f).

Fourth order elliptic operator which is essential part of linearisation
of scalar curvature operator and Calabi flow.



Brief review of Mabuchi energy

What one might dream is true:

! There is a cscK metric iff the derivative of E in every direction
at infinity is positive. I.e., iff E is “proper” in some sense.

! Running to infinity in H is a metric degeneration. Pulling
back by diffeos can see it as a complex degeneration. Then
derivative of E in this direction should be calculable from this
degeneration, the “Futaki invariant”.

! So there is a cscK metric iff all Futaki invariants are positive,
i.e., (X,L) is K-stable. The famous DTY conjecture.

! If (X,L) is K-stable then Calabi flow should find the cscK
metric. If not it should metrically carry out the “worst”
degeneration.



Projective metrics

Given projective embedding X ↪→ CPN via holomorphic sections of
L, restrict Fubini–Study metric to get ω ∈ H.

Can do this for higher and higher powers of L to get more and
more embeddings: a basis of H0(X,Lk) gives embedding
ι : X ↪→ CPNk and hence a projective metric 1

k ι∗ωFS ∈ H.

Write Bk ⊂ H for those projective metrics obtained via H0(X,Lk).

Have map in other direction H → Bk, given as follows.

Given ω ∈ H, choose Hermitian metric h in L with curvature ω.
Now use hk and ω to define L2-innerproduct on sections of Lk and
choose orthonormal basis of H0(X,Lk) to embed. Write ωk ∈ H
for resulting projective metric.



Density of projective metrics

Theorem (Tian)⋃
Bk is dense in H. More precisely, ωk → ω as k → ∞.

ωk = ω + i
k ∂̄∂ log ρk where

ρk(x) =
∑

|sj(x)|
2

for orthonormal basis sj of holomorphic sections of Lk.

So Tian’s theorem says ρk is asymptotically constant. In fact,

ρk(x) = kn +O(kn−1).

(Here n = dimX.)

To leading order in k, the sections sj are “evenly spread out”.



Peaked sections

To see why, consider trivial bundle L → Cn with ω = 2idz ∧ dz̄.

Hermitian metric in L is h = e−|z|2 , so metric in Lk is e−k|z|2.

“Constant” section s of Lk = C× Cn with unit L2-norm has

|s|2 = kne−k|z|2.

Now go back to (Lk,X, kω). For large k, over a fixed ball in X
the metric kω is almost flat.

“Glue in” above picture at x ∈ X to get holomorphic section s of
Lk, localised at x, with |s(x)|2 ∼ kn.

Any section L2-orthogonal to s must be very small at x, proving
Tian’s theorem.



Quantisation

Tian’s theorem says that projective metrics “at level k”
approximate all Kähler metrics as k → ∞.

In quantisation, aim to associate to each object defined on H a
counterpart defined on Bk. These counterparts should converge in
some sense to original object as k → ∞.

Reason for name “quantisation” is that H0(X,Lk) is supposed to
be “state-space” of wave functions. As k → ∞, can produce
sections which are more and more peaked at points.

So think of 1/k as Planck’s constant and k → ∞ as the classical
limit.



Balanced embeddings

Donaldson worked out the “correct” quantisation of cscK metrics
and Mabuchi energy.

CPN ⊂ Herm0(N + 1), a Euclidean vector space via
〈A,B〉 = tr(AB). So can talk about centre of mass of X ⊂ CPN .

A projective submanifold is called balanced if it has centre of mass
zero.

Theorem (Luo, Zhang)

A complex submanifold X ⊂ CPN can be moved via GL(N +1,C)
to a balanced submanifold if and only if it is Chow stable.



Balancing energy

Balanced embeddings are critical points of function called
balancing energy.

Given X ⊂ CPN , write B for all projectively equivalent
embeddings mod unitary equivalence.

Balancing energy is function F : B → R.

! Critical points of F are balanced embeddings.

! F is geodesically convex wrt natural negatively curved
symmetric metric on B ∼= SL(N + 1)/SU(N + 1).

! Balanced embedding exists iff derivatives of F in all directions
at infinity in B are positive.

! Directions at infinity are one-parameter subgroups of
SL(N + 1). Derivative at infinity in a direction is exactly the
corresponding Chow weight, hence Luo–Zhang’s theorem.



Quantisation of cscK metrics

Donaldson’s key observation:

! Balanced embeddings are the quantisation of cscK metrics.

! Balancing energy on Bk is the quantisation of Mabuchi energy.

! Luo–Zhang theorem is the quantisation of the DTY
conjecture.

More precisely:

Theorem (Donaldson)

Assume that Aut(X,L)/C∗ is discrete. Suppose also that c1(L)
contains a cscK metric ωcsc. Then for all large k, Bk contains a

balanced embedding θk ∈ Bk which is unique. Moreover,

θk → ωcsc as k → ∞.



From cscK to balanced

Important fact: ω ∈ Bk is balanced iff ω = ωk.

I.e., (L,X) ⊂ (O(1),CPN ) is balanced iff when we pull back
Fubini–Study, then use this to define L2-innerproduct on
H0(X,L), a second embedding of X by an L2-orthonormal basis
gives us the same metric.

Recall ωk = ω + i
k ∂̄∂ log ρk(ω) where

ρk(ω) = kn +O(kn−1)

In particular, ρk(ωk) = kn +O(k−1) and so given any ω, the kth

approximation ωk is nearly balanced.

Theorem (Catlin, Lu, Tian, Zelditch)

ρk(ω) = kn + Scal(ω)kn−1 + · · ·

So if ω is cscK, ωk is really nearly balanced!



From cscK to balanced

Scalar curvature appears because as we try to push peaked
sections together their essential supports take up volume.

Scalar curvature measures the difference in volume of small balls
from Euclidean case.

To complete proof, want to flow ωk down gradient of balancing
energy Fk : Bk → R to reach a minimum.

To do this need uniform control of (amongst other things) the first
eigenvalue of the Hessian of Fk along the flow.



Convergence of the flows

Downward gradient flow of Mabuchi energy is Calabi flow,

∂ω

∂t
= 2i∂̄∂ Scal(ω)

Downward gradient flow of balancing energy is called “balancing
flow”.

Given ι : X → CPN , have centre of mass µ̄(ι) ∈ Herm0. Defines
holomorphic vector field Vµ̄(ι) on CPN .

Balancing flow is
dι

dt
= −ι ◦ Vµ̄(ι)

Theorem (F.)

Let ω ∈ H and ω(t) solve Calabi flow starting at ω. Write ωk ∈ Bk

for Tian’s sequence of approximations and let ωk(t) solve
balancing flow starting at ωk. Then ωk(t) → ω(t) as k → ∞.



Applications

First main application of Donaldson’s result is uniqueness of
ωcsc ∈ c1(L). (Result since improved by Chen–Tian, Mabuchi.)

Second application: possible to numerically approximate ωcsc.
since finding balanced metric θk is finite dimensional problem.

Similarly, could use balancing flows to numerically approximate
Calabi flow.

Might also hope to use balancing flows to understand long-time
behaviour of Calabi flow.

E.g., in situation of Donaldson’s theorem, know balancing flows
ωk(t) converge for small time to Calabi flow. Also know
ωk(∞) = θk converge to ωcsc. What happens for large t?

Do the final directions of the flows even converge?



The Hessians

Gradient flows arrive along eigendirections of the Hessian at the
critical point.

So want to understand convergence of the Hessians of balancing
energy to that of Mabuchi energy.

Recall Hess(E)(f) = D∗Df where D(f) = ∂̄(∇f).

Given θ ∈ Bk, consider corresponding embedding X → CPN with
normal bundle E → X.

TθBk
∼= Herm0(N + 1). Given A ∈ Herm0, write VA for

corresponding holomorphic vector field on CPN .

Define Pk : TpBk → Γ(E) by Pk(A) = π(VA). Then,

HessFk = P ∗
kPk

(Use Fubini–Study to define L2-innerproduct on Γ(E).)



Convergence of the eigenvalues

Heuristically, k2HessFk → HessE as k → ∞.

Write λm for mth eigenvalue of HessE, at ω, counted with
multiplicities, λ1 ≤ λ2 ≤ · · ·

Write νk,m for mth eigenvalue of HessFk, at ωk, counted with
multiplicities, νk,1 ≤ νk,2 ≤ · · ·

Theorem (F.)

Assume that Aut(X,L)/C∗ is discrete. Then

νk,m = k−2λm +O(k−3).

The same result is true if ω has constant scalar curvature and

HessFk is taken at the balanced embeddings θk.



Convergence of the eigendirections

For simplicity, assume that spectrum of HessE is simple

λ1 < λ2 < · · ·

Previous result says that for large k, same is true for HessFk.

Write Wp ⊂ C∞(X,R) for the λp-eigenspace of D∗D.

Write Uk,p ⊂ Tωk
Bk for the νk,p-eigenspace of P ∗

kPk.

Then the image of Vk,p under the derivative of the inclusion
Bk → H converges at O(k−1) to Wp as k → ∞.

This derivative sends A to the Kähler potential corresponding to
the change in induced metric given by moving X ⊂ CPN in the
direction VA.



Convergence of the eigendirections

If λp is multiple eigenvalue, let q ≥ p be such that

λp−1 < λp = λp+1 = · · · = λq < λq+1

Write Uk,p,q for span of the νk,m-eigenvectors, p ≤ m ≤ q.

Theorem (F.)

Assume that Aut(X,L)/C∗ is discrete. Then

1. The derivative of the inclusion Bk → H, taken at ωk, is

O(k−1) from an isometric embedding when restricted to

Uk,p,q.

2. The image of Uk,p,q is O(k−1) from Wp.

Same result holds if ω has constant scalar curvature and we

consider eigendirections of HessFk taken at the balanced

embeddings θk.


