Pairing in Atomic Fermi Mixtures

Henk Stoof

- Introduction
- BCS Theory
- The BEC-BCS Crossover and Imbalanced Fermi Mixtures
- Towards Gravity Dual (AdS/CFT)

Ideal Fermi Gases I

• Experiments are always in a trap:

Ideal Fermi Gases II

• Number of states below a certain energy (for one spin state) is:

$$N(\varepsilon) = \frac{1}{(h\omega)^3} \int_0^{\varepsilon} d\varepsilon_x \int_0^{\varepsilon - \varepsilon_x} d\varepsilon_y \int_0^{\varepsilon - \varepsilon_x - \varepsilon_y} d\varepsilon_z = \frac{\varepsilon^3}{6(h\omega)^3}$$

• This means that the Fermi energy is:

$$\varepsilon_F = (6N)^{1/3} h\omega$$

Ideal Fermi Gases III

• Differently: For the homogeneous gas: $n = k_F^3 / 6\pi^2$. So in the trap

$$n(\mathbf{x}) = \frac{1}{6\pi^2} \left\{ \frac{2m}{h^2} [\varepsilon_F - V(\mathbf{x})] \right\}^{3/2}$$

• By integrating over space we find again:

$$\varepsilon_F = (6N)^{1/3} \,\mathrm{h}\omega$$

• Note that the size of the cloud is: $R = \sqrt{\frac{2\varepsilon_F}{m\omega^2}}$

Ideal Fermi Gases IV

• Comparison between bosons and fermions:

Ultracold Fermi Mixtures I

Experimental control over:

- temperature and density
- external potentials, disorder
- number of particles, their quantum state
- and even interactions!

- Degenerate Fermi mixtures
 - Neutron stars

$$(T = 10^6 \text{ K}, T_F = 10^{11} \text{ K}, T = 10^{-5} T_F)$$

- (High-Tc) superconductors
$$(T = 10^2 \text{ K}, T_F = 10^5 \text{ K}, T = 10^{-3} T_F)$$

- Ultracold atomic Fermi gases
$$(T = 10^2 \text{ nK}, T_F = \mu \text{K}, T = 10^{-1} T_F)$$

Ultracold Fermi Mixtures II

• Collisions are *s*-wave

$$hk_F r_V = h$$

and we thus only have interactions between two different spin states.

• This implies also: $nr_V^3 = 1$

Ultracold Fermi Mixtures III

Hyperfine and
 Zeeman interactions:

- Central or exchange interaction
- Together they lead to Feshbach resonances!

Ultracold Fermi Mixtures IV

• Interaction strength or scattering length:

• Binding energy:

$$E_b(B) = -\frac{h^2}{m[a(B)]^2} \propto -(B - B_0)^2$$

Superfluidity I

• Flow without friction. Described by a macroscopic wave function:

$$\Psi(\mathbf{x}) = \sqrt{n_s} e^{i(m\mathbf{v}_s/h)g\mathbf{x}}$$

or more general $\mathbf{v}_s(\mathbf{x}) = \mathbf{h} \nabla \vartheta(\mathbf{x}) / m$ and $n_s(\mathbf{x}) = |\Psi(\mathbf{x})|^2$.

• This implies the existence of quantized vortices with

$$\vartheta(\mathbf{x}) = l \varphi$$

which is really the trademark of superfluidity.

Superfluidity II

• Observed in a rotating Bose-Einstein condensate:

• What about a Fermi gas?

Superfluidity III

• Recently much debate over:

$$P = \frac{N_{\uparrow} - N_{\downarrow}}{N_{\uparrow} + N_{\downarrow}}$$

BEC I

• In second-quantization language the hamiltonian is

$$\mathbf{H} = \int d\mathbf{x} \psi^{\dagger}(\mathbf{x}) \left\{ -\frac{\mathbf{h}^2 \nabla^2}{2m} - \mu \right\} \psi(\mathbf{x}) + \dots$$
$$\dots + \frac{1}{2} V_0 \int d\mathbf{x} \psi^{\dagger}(\mathbf{x}) \psi^{\dagger}(\mathbf{x}) \psi(\mathbf{x}) \psi(\mathbf{x}),$$

• How do we treat Bose-Einstein condensation now?

BEC II

• Our most simple variational ground-state wave function for a Bose-Einstein condensed gas is now

$$|\Psi\rangle \propto \left(\int d\mathbf{x} \,\phi(\mathbf{x}) \psi^{\dagger}(\mathbf{x})\right)^{N} |0\rangle.$$

• However, for N? 1 we expect that we are also allowed to use the more convenient wave function

$$|\Psi\rangle \propto \exp\left(\int d\mathbf{x} \,\phi(\mathbf{x}) \psi^{\dagger}(\mathbf{x})\right)|0\rangle.$$

BEC III

• The latter ground-state wave function has the property that

$$\psi(\mathbf{x})|\Psi\rangle = \phi(\mathbf{x})|\Psi\rangle.$$

• This suggests that Bose-Einstein condensation is associated with spontaneous symmetry breaking, i.e.,

$$\langle \psi(\mathbf{x})\rangle \neq 0.$$

• This is the macroscopic wavefunction of superfluidity!

Symmetry Breaking I

• It is nice to understand spontaneous symmetry breaking a bit better. At a fixed number we have

$$|N\rangle \propto \frac{1}{\sqrt{N!}} \left(\int dx \, \phi(x) \psi^{\dagger}(x) \right)^{N} |0\rangle.$$

At fixed phase we have, however,

$$|\vartheta\rangle \propto \sum_{N} \frac{\exp(iN\vartheta)}{\sqrt{N!}} |N\rangle.$$

Symmetry Breaking II

• This shows that the phase and the number of particles are conjugate variables, i.e.,

$$[N, \vartheta]_{-} = -i.$$

• Moreover, the energy obeys due to the definition of the chemical potential

$$E ; E_0 + \mu \Delta N + \frac{1}{2} \frac{d\mu}{dN} \Delta N^2.$$

Symmetry Breaking III

• The thermodynamic potential thus obeys

$$\Omega \; ; \; \Omega_0 + \frac{1}{2} \frac{d\mu}{dN} \Delta N^2,$$

• which leads to the Schrödinger equation

$$ih\frac{\partial}{\partial t}\Psi(\vartheta) = \frac{1}{2}\frac{d\mu}{dN}\left(\frac{1}{i}\frac{\partial}{\partial\vartheta} - N\right)^2\Psi(\vartheta).$$

Symmetry Breaking IV

• So the absolute ground state of the gas is the symmetry unbroken state

$$\Psi(\vartheta) = \frac{1}{\sqrt{2\pi}} \exp(iN\vartheta).$$

• However, if N? 1 it takes a very long time for the gas to 'diffuse' to this state and we can safely assume that

$$\Psi(\vartheta) = \delta(\vartheta).$$

BCS I

• In second-quantization language the hamiltonian is

$$\mathbf{H} = \sum_{\sigma} \int d\mathbf{x} \psi_{\sigma}^{\dagger}(\mathbf{x}) \left\{ -\frac{\mathbf{h}^{2} \nabla^{2}}{2m} - \mu_{\sigma} \right\} \psi_{\sigma}(\mathbf{x}) + \dots$$
$$\dots + V_{0} \int d\mathbf{x} \psi_{\uparrow}^{\dagger}(\mathbf{x}) \psi_{\downarrow}^{\dagger}(\mathbf{x}) \psi_{\downarrow}(\mathbf{x}) \psi_{\uparrow}(\mathbf{x}),$$

• Now we have Bose-Einstein condensation of pairs so:

$$\langle \psi_{\downarrow}(\mathbf{x})\psi_{\uparrow}(\mathbf{x})\rangle \neq 0.$$

BCS II

• Introducing $\Delta = V_0 \langle \psi_{\downarrow}(\mathbf{x}) \psi_{\uparrow}(\mathbf{x}) \rangle$ the Hamiltonian can be approximated by

$$\mathcal{H} ; \sum_{\sigma} \int d\mathbf{x} \psi_{\sigma}^{\dagger}(\mathbf{x}) \left\{ -\frac{\mathbf{h}^{2} \nabla^{2}}{2m} - \mu_{\sigma} \right\} \psi_{\sigma}(\mathbf{x}) + \dots \\
\dots + \int d\mathbf{x} \Delta \psi_{\uparrow}^{\dagger}(\mathbf{x}) \psi_{\downarrow}^{\dagger}(\mathbf{x}) + \int d\mathbf{x} \Delta^{*} \psi_{\downarrow}(\mathbf{x}) \psi_{\uparrow}(\mathbf{x}),$$

This is thus a mean-field theory!

Zero Temperature I

- The microscopic Hamiltonian

$$\hat{H} = \sum_{\mathbf{k},\alpha} (\epsilon_{\mathbf{k}} - \mu_{\mathbf{k}}) \hat{\psi}_{\mathbf{k},\alpha}^{\dagger} \hat{\psi}_{\mathbf{k},\alpha} + \frac{V_0(\Lambda)}{V} \sum_{\mathbf{K},\mathbf{k},\mathbf{k}'} \hat{\psi}_{\mathbf{K}-\mathbf{k}',\uparrow}^{\dagger} \hat{\psi}_{\mathbf{k}',\downarrow}^{\dagger} \hat{\psi}_{\mathbf{K}-\mathbf{k},\downarrow} \hat{\psi}_{\mathbf{k},\uparrow}$$

- Interaction vs. scattering length

$$V_0(\Lambda) = \frac{4\pi\hbar^2 a}{m} \frac{\pi}{\pi - 2a\Lambda}$$

- The BCS Ansatz

$$|\Psi_{\text{BCS}}\rangle = \prod_{\mathbf{k}} \left(u_{\mathbf{k}} + v_{\mathbf{k}} \hat{\psi}_{-\mathbf{k},\uparrow}^{\dagger} \hat{\psi}_{\mathbf{k},\downarrow}^{\dagger} \right) |0\rangle$$

- Expectation values

$$\langle \Psi_{\text{BCS}} | \hat{\psi}_{\mathbf{k},\alpha}^{\dagger} \hat{\psi}_{\mathbf{k},\alpha} | \Psi_{\text{BCS}} \rangle = v_{\mathbf{k}}^{2},$$
$$\langle \Psi_{\text{BCS}} | \hat{\psi}_{\mathbf{k},\downarrow} \hat{\psi}_{-\mathbf{k},\uparrow} | \Psi_{\text{BCS}} \rangle = u_{\mathbf{k}} v_{\mathbf{k}}.$$

Zero Temperature II

- Normalization and minimization of $\langle \Psi_{\rm BCS} | \hat{H} | \Psi_{\rm BCS} \rangle$,

$$v_{\mathbf{k}}^2 = 1 - u_{\mathbf{k}}^2 = \frac{1}{2} \left(1 - \frac{\epsilon_{\mathbf{k}} - \mu}{\hbar \omega_{\mathbf{k}}} \right) \text{ with}$$

$$\hbar \omega_{\mathbf{k}} = \sqrt{(\epsilon_{\mathbf{k}} - \mu)^2 + \Delta^2} .$$

- Gap and number equation:

$$\Delta \equiv -\frac{V_0(\Lambda)}{V} \sum_{\mathbf{k}} u_{\mathbf{k}} v_{\mathbf{k}}$$
$$n = \frac{2}{V} \sum_{\mathbf{k}} v_{\mathbf{k}}^2$$

can be easily solved numerically.

The BEC-BCS Crossover I

- Cooper condensate wavefunction:

$$\phi_{\mathbf{0}}(\mathbf{r}) = -\frac{1}{V} \sum_{\mathbf{k}} u_{\mathbf{k}} v_{\mathbf{k}} e^{-i\mathbf{k}\mathbf{r}}$$

- Fermi energy

$$\epsilon_{\rm F} = \hbar^2 k_{\rm F}^2 / 2m = \hbar^2 (3\pi^2 n)^{2/3} / 2m$$

The BEC-BCS Crossover II

MIT: the study of vortices Innsbruck: the study of collective modes

Summary

• BEC:

$$|\Psi\rangle \propto \exp\left(\int d\mathbf{x} \,\phi(\mathbf{x}) \psi^{\dagger}(\mathbf{x})\right)|0\rangle$$
.

• BCS:

$$|\Psi\rangle \propto \exp\left(\int d\mathbf{x} \, d\mathbf{x}' \phi(\mathbf{x}, \mathbf{x}') \psi_{\downarrow}^{\dagger}(\mathbf{x}) \psi_{\uparrow}^{\dagger}(\mathbf{x}')\right) |0\rangle$$

leads to gap equation for $\Delta(\mathbf{x}) = V_0 \langle \psi_{\downarrow}(\mathbf{x}) \psi_{\uparrow}(\mathbf{x}) \rangle$.

Imbalanced Fermi Gas at Unitarity

- Mean-field substitution, where $V_0\langle \hat{\psi}_{\downarrow}(\mathbf{x}) \hat{\psi}_{\uparrow}(\mathbf{x}) \rangle \equiv \Delta$, such that

$$V_0 \hat{\psi}_{\uparrow}^{\dagger}(\mathbf{x}) \hat{\psi}_{\downarrow}^{\dagger}(\mathbf{x}) \hat{\psi}_{\downarrow}(\mathbf{x}) \hat{\psi}_{\uparrow}(\mathbf{x}) \rightarrow \Delta^* \hat{\psi}_{\downarrow}(\mathbf{x}) \hat{\psi}_{\uparrow}(\mathbf{x}) + \Delta \hat{\psi}_{\uparrow}^{\dagger}(\mathbf{x}) \hat{\psi}_{\downarrow}^{\dagger}(\mathbf{x}) - \Delta^2 / V_0$$

- Mean-field Hamiltonian,

$$\frac{\hat{H}}{V} = \sum_{\mathbf{k}} \frac{\epsilon_{\mathbf{k}} - \mu_{\downarrow}}{V} + \frac{1}{V} \sum_{\mathbf{k}} \left[\hat{\psi}_{\mathbf{k},\uparrow}^{\dagger}, \hat{\psi}_{-\mathbf{k},\downarrow} \right] \left[\begin{array}{cc} \epsilon_{\mathbf{k}} - \mu_{\uparrow} & \Delta \\ \Delta^{*} & \mu_{\downarrow} - \epsilon_{\mathbf{k}} \end{array} \right] \left[\begin{array}{cc} \hat{\psi}_{\mathbf{k},\uparrow} \\ \hat{\psi}_{-\mathbf{k},\downarrow}^{\dagger} \end{array} \right] - \frac{|\Delta|^{2}}{V_{\mathbf{0}}}$$

- The Bogoliubov quasi-particles,

$$\hat{\phi}_{\mathbf{k},\uparrow} = u_{\mathbf{k}} \hat{\psi}_{\mathbf{k},\uparrow} - v_{\mathbf{k}} \hat{\psi}_{-\mathbf{k},\downarrow}^{\dagger}$$

$$\hat{\phi}_{-\mathbf{k},\downarrow}^{\dagger} = v_{\mathbf{k}} \hat{\psi}_{\mathbf{k},\uparrow} + u_{\mathbf{k}} \hat{\psi}_{-\mathbf{k},\downarrow}^{\dagger}$$

- The quasi-particle dispersions,

$$\hbar\omega_{\mathbf{k},\uparrow/\downarrow} = \mp h + \sqrt{(\epsilon_{\mathbf{k}} - \mu)^2 + \Delta^2}$$

Sarma Phase

- BCS ground state energy and ideal gas of quasi-particles

$$\frac{\hat{H}}{V} = -\frac{\Delta^2}{V_0(\Lambda)} + \frac{1}{V} \sum_{\mathbf{k},\alpha} \left\{ -\hbar \omega_{\mathbf{k},\alpha} v_{\mathbf{k}}^2 + \hbar \omega_{\mathbf{k},\alpha} \hat{\phi}_{\mathbf{k},\alpha}^{\dagger} \hat{\phi}_{\mathbf{k},\alpha} \right\}$$

- In principle, majority becomes gapless, when $\Delta = h$.
- Then, ground state becomes gapless polarized superfluid.
- Occupation numbers:

$$\langle \hat{\psi}_{\mathbf{k},\alpha}^{\dagger} \hat{\psi}_{\mathbf{k},\alpha} \rangle \equiv n_{\mathbf{k},\alpha}$$

- Typically, Sarma phase is unstable at zero temperature.

Thermodynamics

- Thermodynamic potential density

$$\omega_{\text{BCS}} = -\frac{\Delta^2}{V_0(\Lambda)} + \frac{1}{V} \sum_{\mathbf{k}} \left\{ \hbar \omega_{\mathbf{k}} - \epsilon_{\mathbf{k}} + \mu \right\} - \frac{1}{\beta V} \sum_{\mathbf{k}, \alpha} \log \left(1 + e^{-\beta \hbar \omega_{\mathbf{k}, \alpha}} \right).$$

-Second-order transition:

$$\frac{\partial \omega_{\mathrm{BCS}}[\Delta]}{\partial \Delta^2} \bigg|_{\Delta=0} = 0$$

-First-order transition:

$$\omega_{\mathrm{BCS}}[0] = \omega_{\mathrm{BCS}}[\langle \Delta \rangle]$$

Homogeneous Phase Diagram

- Crossover from fully gapped BCS superfluid to gapless Sarma (S) superfluid, when $\Delta = h$

- Forbidden region (FR) gives rise to phase separation.
- (Local) polarization: $p = \frac{n_{\uparrow} n_{\downarrow}}{n_{\uparrow} + n_{\downarrow}}$
- Fermi temperature:

$$k_{\rm B}T_{{\rm F},\alpha} \equiv \epsilon_{F,\alpha} = \hbar^2 (6\pi^2 n_{\alpha})^{2/3}/2m$$

The Local-Density Approximation (LDA)

-Trapping potential: $V_{\rm trap}(\mathbf{r}) = \frac{1}{2}m\omega_{\rm trap}^2r^2$

- LDA: $\mu_{\alpha}(\mathbf{r}) \equiv \mu_{\alpha} - V_{\text{trap}}(\mathbf{r})$

- In the trap: decreasing $\mu(\mathbf{r})$, constant h.

Phase Diagram in a Trap

- Superfluid phase: 2nd order transition in the trap.
- Phase separation: 1st order transition in the trap.
- Normal phase: normal throughout trap.

(Global) polarization:
$$P = \frac{N_{\uparrow} - N_{\downarrow}}{N_{\uparrow} + N_{\downarrow}}$$

'Old' MIT Experiments

Shell structure with fully paired core and normal outer region.

1st or 2nd order?

'New' MIT Experiment: Homogeneous Phase Diagram

• Measurements locally in the trap. Now MIT also experimentally shows phase separation.

Shin *et al.*, Nature **451**, 689 (2008)

The Rice Experiments

• Typical gas clouds with superfluid core at MIT.

Shin et al., PRL 97, 030401 (2006)

• No deformation

• Gas clouds at lowest and higher temperature of Rice

Partridge *et al.*, PRL **97**, 190407 (2006)

a) Deformation c) No deformation

Zero T, Unitary, Normal Phase: MC Equation of State

• Spin-down particle in sea of spin-up particles: fermion or Cooper pair?

or

Quantum Monte Carlo equation of state

• Dashed line

$$E(N_{\uparrow}, N_{\downarrow}) = \frac{3}{5} E_{F,\uparrow} N_{\uparrow} + \frac{3}{5} E_{F,\downarrow} N_{\downarrow} - 0.6 E_{F,\uparrow} N_{\downarrow}$$

Remember! $h\Sigma_{\downarrow} = -0.6E_{F,\uparrow}$

• Quantum phase transition at P = 0.39 (homogeneous) and P = 0.78 (trap with LDA)!

Lobo et al., PRL 97, 200403 (2006)

Renormalization Group Approach

- Integrate out modes in high-momentum shell Λ of width $d\Lambda$. Absorb result in couplings. Integrate out new shell, etc.
- Use RG as (non-perturbative) method to solve iteratively many-body problem.
- Starting point. The microscopic action

$$S = \sum_{\mathbf{k},n} \phi_{\sigma,\mathbf{k},n}^* (-i\hbar\omega_n - \varepsilon_{\mathbf{k}} - \mu_{\sigma}) \phi_{\sigma,\mathbf{k},n} + \sum_{\substack{\mathbf{q},\mathbf{k},\mathbf{k'},\\m,n,n'}} \Gamma_{\mathbf{q},m} \phi_{\uparrow,\mathbf{q}-\mathbf{k},m-n}^* \phi_{\downarrow,\mathbf{k},n}^* \phi_{\downarrow,\mathbf{k'},n'} \phi_{\uparrow,\mathbf{q}-\mathbf{k'},m-n'}$$

- Technically, we have to calculate one-loop diagrams.
- Infinitesimal width makes higher-loop diagrams vanish.

RG Theory for Imbalanced Fermi Gas

• Integrate out momenta in a shell Λ of infinitesimal width $d\Lambda$. Renormalization of chemical potentials determines fermionic self-energy.

$$d\mu_{\sigma} = -\frac{\Lambda^2}{2\pi^2} \Gamma_{\mathbf{0},0} N_{-\sigma} d\Lambda$$

Due to infinitesimal width higher loop diagrams vanish!

• Interaction: 'ladder diagram' (scattering of particles), 'bubble diagram' (screening by particle-hole excitations). Coupled diff. equations!

$$d\Gamma_{\mathbf{0},0}^{-1} = \frac{\Lambda^2}{2\pi^2} \left(\frac{1 - N_{\uparrow} - N_{\downarrow}}{2(\varepsilon_{\Lambda} - \mu)} - \frac{N_{\uparrow} - N_{\downarrow}}{2h} \right) d\Lambda , \quad N_{\sigma} = \frac{1}{e^{\beta(\varepsilon_{\Lambda} - \mu_{\sigma})} + 1} , \quad \varepsilon_{\Lambda} = \frac{h^2 \Lambda^2}{2m}$$

• Phase transition: $\Gamma_{0,0}(\infty)$ diverges (Thouless criterion). Self-energies diverge. Unphysical! CM-momentum/frequency dependence important!

$$\Gamma_{\mathbf{q},m}^{-1} = \Gamma_{\mathbf{0},0}^{-1} - Z_q^{-1} q^2 + Z_{\omega}^{-1} i h \omega_m$$

RG Theory for *T*=0, Unitary, Extremely Imbalanced Gas

• One spin-down particle in a sea of spin up particles. Density of spin-down particles is zero. Self energy due to strong interactions (unitarity limit).

$$d\Gamma_{\mathbf{0},0}^{-1} = \frac{\Lambda^2}{2\pi^2} \left(\frac{1 - N_{\uparrow}}{2(\varepsilon_{\Lambda} - \mu_{\downarrow})} - \frac{N_{\uparrow}}{2h} \right) d\Lambda$$

$$d\mu_{\downarrow} = -\frac{\Lambda^2}{2\pi^2 (\Gamma_{\mathbf{0},0}^{-1} - Z_q q^2)} N_{\uparrow} d\Lambda$$

 QPT from zero to nonzero down-density at

$$E_{F,\downarrow} = \mu_{\downarrow}(\infty) = 0 = \mu_{\downarrow}(0) - h\Sigma_{\downarrow}$$

$$h\Sigma_{\downarrow} = -0.6\mu_{\uparrow} = -0.6E_{F,\uparrow}$$

• Crucial to let chemical potential flow!

RG Theory: Weakly Interacting, Balanced Fermi Gas

• In the extremely weakly interacting limit the chemical potentials don't renormalize anymore, i.e. the selfenergies go to zero

$$d\Gamma_{\mathbf{0},0}^{-1} = \frac{\Lambda^2}{2\pi^2} \left(\frac{1 - 2N}{2(\varepsilon_{\Lambda} - \mu)} - \beta N(1 - N) \right) d\Lambda$$

- Differential form of gap equation with Gorkov's correction.
- Flow to (stationary) Fermi surface. Natural endpoint because here excitations of lowest energy.
- Exactly solvable! Leads to the BCS transition temperature reduced by a factor of *e* (with relative momentum it is 2.2)

RG Theory: Unitarity Limit, Imbalanced Case

• Three Fermi levels in the system! But only one pole in RG equations

$$d\Gamma_{\mathbf{0},0}^{-1} = \frac{\Lambda^2}{2\pi^2} \left(\frac{1 - N_{\uparrow} - N_{\downarrow}}{2(\varepsilon_{\Lambda} - \mu)} - \frac{N_{\uparrow} - N_{\downarrow}}{2h} \right) d\Lambda$$

$$d\mu_{\sigma} = -\frac{\Lambda^2}{2\pi^2(\Gamma_{0,0}^{-1} - Z_q q^2)} N_{-\sigma} d\Lambda$$

- Flow automatically to average Fermi level
- Tricritical point determined by following class of Feynman diagram

Results

RG equations:
$$d\Gamma_{0,0}^{-1} = \frac{\Lambda^2}{2\pi^2} \left(\frac{1 - f_{\uparrow} - f_{\downarrow}}{2(\varepsilon_{\Lambda} - \mu)} - \frac{f_{\uparrow} - f_{\downarrow}}{2h} \right) d\Lambda,$$

Experiments:

$$d\mu_{\sigma} = -\frac{\Lambda^2}{2\pi^2(\Gamma_{\mathbf{0},0}^{-1} - Z_q q^2)} f_{-\sigma} d\Lambda,$$

with
$$\Gamma_{\mathbf{q},m}^{-1} = \Gamma_{\mathbf{0},0}^{-1} - Z_q^{-1} q^2$$
,

and
$$f_{\sigma} = \frac{1}{e^{\beta(\varepsilon_{\Lambda} - \mu_{\sigma})} + 1}$$
.

Conclusion and Outlook I

- Ultracold quantum gases are ideal quantum simulators. The field is able to address fundamental questions on many-body quantum systems in great detail.
- A first good example is the detailed study of the BEC-BCS crossover, which gives a unified view on BEC- and BCS-like superfluidity.
- A second example is the study of the strongly interacting Fermi mixture with a population imbalance, whose phase diagram is important to condensed matter, nuclear matter and astrophysics.
- Many more examples are under way. Fermi mixtures with a mass imbalance, with long-ranged anisotropic dipole interactions, the doped fermionic Hubbard model, etc. We recently worked on:

Conclusion and Outlook II

• Superfluid-normal interface and surface tension:

Conclusion and Outlook III

• Mass imbalance (⁶Li-⁴⁰K) at unitarity:

Conclusion and Outlook IV

• Imbalanced antiferromagnet:

The Quantum Fluids and Solids Group

■ Students: Jeroen Diederix

Jasper van Heugten

Jildou Baarsma

Vivian Jacobs

Jogundas Armaitis

■ Postdoc's: Shaoyu Yin

■ Staff: Henk Stoof

