Dipolar Quantum Gases

Gora Shlyapnikov LPTMS, Orsay, France University of Amsterdam

Outline

- *Lecture 1.* Introduction. Dipolar Bose gases
- *Lecture 2*. Dipolar Fermi gases
- *Lecture 3.* Novel macroscopic quantum states

Trieste, July 4-6, 2012

Lecture 1. Introduction. Dipolar Bose gases

Outline

- Experiments with ultracold dipolar particles
- Scattering problem
- Dipolar BEC. Stability problem
- Roton-maxon spectrum and fluctuations in pancaked (2D) condensates

Novel object - Dipolar gas

Different physics compared to ordinary atomic ultracold gases

Alkali-atom molecules d from 0.6 D for KRb to 5.5 D for LiCs

Atoms with large μ

Remarkable experiments with Cr atoms ($\mu = 6\mu_B \Rightarrow d \approx 0.05$ D) T. Pfau group (Stuttgart)

Effects of the dipole-dipole interaction in the dynamics Stability diagram of trapped dipolar BEC

Spinor physics in chromium experiments at Villetaneuse, B. Laburthe-Tolra

Now disprosium ($\mu = 10\mu_B$, (B. Lev)) and erbium ($\mu = 7\mu_B$, (F. Ferlaino)) are in the game **Polar molecules. Creation of ultracold clouds**

Buffer gas cooling (Harvard, J. Doyle)

- Stark deceleration (Meijer, Berlin; JILA) H₃, ND₃, CO, etc. ; $T \sim 1mK$ and low density
- Optical collisions (photoassociation, D. DMille group, JILA, elsewhere)

Polar molecules. Creation of ultracold clouds

Photoassociation

Transfer of weakly bound KRb fermionic molecules to the ground rovibrational state JILA, D. Jin, J. Ye groups

Experiments with NaK (MIT, MUnich, Trento) and KCs (Innsbruck) molecules

Ultracold chemistry

 $\label{eq:KRb} \begin{array}{ll} \text{Ultracold chemical reactions} & \mathrm{KRb} + \mathrm{KRb} \Rightarrow \mathrm{K}_2 + \mathrm{Rb}_2 \\ \\ \text{New trends in ultracold chemistry} \end{array}$

Suppress instability \rightarrow induce intermolecular repulsion For example, 2D geometry with dipoles perpendicular to the plane

Reduction of the decay rate by 2 orders of magnitude at JILA

Select non-reactive molecules, like NaK, KCs, RbCs

Theoretical studies

- Innsbruck group (P. Zoller, G. Pupillo, M.A. Baranov et al). Large variety of proposals including bilayer systems, Rydberg atoms etc.
- Trento group (S. Stringari et al). Excitation modes etc
- Harvard group (E. Demler, M. Lukin et al). Multilayer systems etc
- Hannover group (L. Santos et al). Spinor and dipolar systems
- Tokyo group (M. Ueda et al) Spinor and dipolar systems
- Cambridge group (N.R. Cooper, Jesper Levinsen). Novel states
- Rice group (H. Pu et al). Excitations and stability etc
- Maryland group (S. Das Sarma et al) Fermi liquid behavior etc
- Taipei group (D.-W. Wang et al)
- Barcelona group (M. Lewenstein et al)

Dipole-diple scattering

Wave function of the relative motion

$$\psi_{in} \to \sum_{l,m} \psi_{kl}(r) i^{l} Y_{lm}^{*}(\theta_{kd}, \varphi_{kd}) Y_{lm}(\theta_{rd}, \varphi_{rd})$$

$$\psi_{out} \to \sum_{l',m'} \psi_{kl'}(r) i^{l'} Y_{l'm'}^{*}(\theta_{kd}, \varphi_{kd}) Y_{l'm'}(\theta_{rd}, \varphi_{rd})$$

Scattering matrix $\sim \int Y_{lm}^* Y_{l'm'} Y_{20} d\Omega_{rd}$

 V_d couples all even l, and all odd l, but even and odd l are decoupled from each other

Radius of the dipole-dipole interaction

$$\overset{\mathrm{d}}{\bullet} \underbrace{\stackrel{\mathrm{d}}{\phantom{\mathsf{r}}}}_{\mathrm{r}} \underbrace{\begin{pmatrix} -\frac{\hbar^2}{m}\Delta + V_d(\vec{r}) \end{pmatrix} \psi(\vec{r}) = \frac{\hbar^2 k^2}{m} \psi(\vec{r})}}_{\frac{\hbar^2}{mr_*^2} = \frac{d^2}{r_*^3} \Rightarrow r_* \approx \frac{md^2}{\hbar^2}}$$

 $egin{aligned} r \gg r_* &
ightarrow \mbox{free relative motion} \ r_* \sim 10^6 \div 10^3 a_0 & \ r_* pprox 50 a_0
ightarrow & \ chromium atoms \end{aligned}$

$$kr_* \ll 1 \longrightarrow \underbrace{\text{Ultracold limit}}_{T \ll 1mK \text{ for Cr}}$$

Scattering amplitude I

Ultracold limit $kr_* \ll 1$

$$V_d = 0 \Rightarrow f = g = \frac{4\pi\hbar^2}{m}a$$

What V_d does?

$$k = 0 \rightarrow g = \int \psi_0^*(\vec{r}) (\mathcal{U}(\vec{r}) + V_d(\vec{r})) d^3r = \text{const}; \quad r \lesssim r_*$$

g may depend on d and comes from all even l

Scattering amplitude II

 $k \neq 0$ $f = \int \psi_{k_i}^*(\vec{r}) V(\vec{r}) e^{i\vec{k}_f \vec{r}} d^3 r$ $r \leq r_* \rightarrow \mathsf{put} \ k = 0 \rightarrow q$ $r \gg r_* \to \psi_{k_i} = e^{i\vec{k}_i\vec{r}}$ $f = \int V_d(\vec{r}) e^{i\vec{q}\vec{r}} d^3r \longrightarrow \frac{4\pi d^2}{3} (3\cos^2\theta_{ad} - 1); \vec{q} = \vec{k}_f - \vec{k}_i$ $f = q + \frac{4\pi d^2}{2} (3\cos^2\theta_{ad} - 1)$

Dipolar BEC I

Uniform gas

$$H = \int d^3 \left[\psi^{\dagger}(\vec{r}) \left(-\frac{\hbar^2}{2m} \Delta \right) \psi(\vec{r}) + \frac{1}{2} g \psi^{\dagger}(\vec{r}) \psi^{\dagger}(\vec{r}) \psi(\vec{r}) \psi(\vec{r}) \right. \\ \left. + \frac{1}{2} \int d^3 r' \psi^{\dagger}(\vec{r}) \psi^{\dagger}(\vec{r'}) V_d(\vec{r} - \vec{r'}) \psi(\vec{r'}) \psi(\vec{r'}) \right]$$

Bogoliubov approach $\psi = \psi_0 + \delta \Psi \rightarrow$ biliniear Hamiltonian

$$H_B = \frac{N^2}{2V}g + \sum_k \left[\frac{\hbar^2 k^2}{2m} a_k^{\dagger} a_k + n\left(g + \frac{4\pi d^2}{3}\left(3\cos^2\theta_k - 1\right)\right)a_k^{\dagger} a_k\right]$$
$$\frac{n}{2}\left(g + \frac{4\pi d^2}{3}\left(3\cos^2\theta_k - 1\right)\right)\left(a_k^{\dagger} a_{-k}^{\dagger} + a_k a_{-k}\right)\right]$$

Dipolar BEC II

Excitation spectrum

$$\epsilon_k = \sqrt{E_k^2 + 2E_k n \left(g + \frac{4\pi d^2}{3} \left(3\cos^2\theta_k - 1\right)\right)}$$

$$g > \frac{4\pi d^2}{3} \rightarrow dynamically stable BEC$$

$$g < \frac{4\pi d^2}{3} \rightarrow \text{complex frequencies at small } k$$

and $\cos^2 \theta_k < \frac{1}{3} \rightarrow \text{collapse}$

Trapped dipolar BEC

Gross-Pitaevskii equation $\left[-\frac{\hbar^2}{2m}\Delta + V_h(\vec{r}) + g\psi_0^2 + \int \psi_0(\vec{r'})^2 V_d(\vec{r} - \vec{r'}) d^3r'\right] \psi_0(\vec{r}) = \mu \psi_0(\vec{r})$

Important quantity $V_{eff} = g \int \psi_0^4(\vec{r}) d^3r + \int \psi_0^2(\vec{r'}) V_d(\vec{r} - \vec{r'}) \psi_0^2(\vec{r}) d^3r d^3r'$

 $V_{eff} > 0$ or $V_{eff} < 0$ and $|V| < \hbar \omega$ $g = 0 \rightarrow N < N_c \rightarrow$ suppressed low *k* instability (Santos et.al, 2000)

It is sufficient?

Stability problem

$$\langle V_d \rangle = \int n_0(\vec{r'}) V_d(\vec{r'} - \vec{r}) d^3 r = -d^2 \frac{\partial^2}{\partial z^2} \int \frac{n_0(\vec{r'})}{|\vec{r} - \vec{r'}|} d^3 r$$
$$V_d = -d^2 \frac{\partial^2}{\partial z^2} \frac{1}{|\vec{r} - \vec{r'}|} - \frac{4\pi d^2}{3} \delta(\vec{r} - \vec{r'})$$

Large $N \Rightarrow$ Thomas-Fermi BEC

 $n_0 = n_0 \max\left(1 - \frac{z^2}{R_z^2} - \frac{\rho^2}{R_\rho^2}\right) \quad \text{Eberlein et. al (2005)}$ $g > \frac{4\pi d^2}{3} \rightarrow \text{stable at any } N$

Example

Experiment with Cr

$$g > \frac{4\pi d^2}{3}$$
$$(\mu = 6\mu_B!)$$

(T. Pfau, Stuttgart) BEC ($n \sim 10^{14} cm^{-3}$) effect of the dipole-dipole interaction (small)

Pancake dipolar BEC

– p. 20

 \rightarrow decrease of the interaction amplitude

Roton-maxon structure

Instability!

Stuttgart experiment

Ideas from superfluid ${}^{4}He$

How to put the roton minimum higher (*) or lower (**)?

What happens? (S.Balibar, P. Nozieres, L. Pitaevskii)

(*) negative pressure (acoustic pulses)

(**) increase the pressure

Metastable liquid

 $(**) \Rightarrow$ supersolid (density wave), loss of superfluidity, or?

Prehistory

Quasi2D dipolar BEC at T = 0

short range interaction (g) + dipole-dipole

Consider
$$0 < g \ll \frac{4\pi d^2}{3}$$
. Then, for $qr_* \ll 1$

$$V_{\vec{q}\vec{p}} = g(1 - C|\vec{q} - \vec{p}|)$$

where

$$C = \frac{2\pi d^2}{g}$$

Spectrum

Rotonization

$$\xi \ge C \ge \frac{\sqrt{8}}{3}\xi$$

The roton minimum touches zero for

$$C = \xi \Rightarrow k_r = \frac{2C}{\xi}$$

For $C > \xi$ we have collapse. No stable supersolid state Pedri/Shlyapnikov; Cooper/Komineas (2007)

Fluctuations I

· p. 28

Fluctuations II

Finite T (small Δ)

Normal fraction $\frac{n_T}{n} \simeq \frac{2mg}{\hbar^2} \frac{T}{\Delta}$

Significant reduction of the superfluid fraction

The bosons can remain only slightly condensed even at very T, such as $\mu\simeq ng$

Interesting questions

How to describe the emerging state with strong fluctuations ?

How to manipulate the short-range physics for obtaining a stable supersoliod?

Lecture 2. Dipolar Fermi gases Outline

- Introduction. Scattering amplitude
- Superfluid pairing in a single-component Fermi gas
- BCS transition temperature
- D dipolar Fermi gas. Superfluid-non-superfluid quantum transition
- ID dipolar Fermi gas. Quantum transition.

Dipolar Fermi gas

What does th dipole-dipole interaction do in a Fermi gas?

Single component gas

The dipole-dipole scattering amplitude is independent of |k| at any orbital angular momenta alowed by the selection rules.

Long-range cotribution
$$\sim d^2$$

Short-range cotribution $\sim k^2$
omit
Universal result for *f*

Physical picture. Stability

Odd-*l* **scattering amplitude**

$$f = \frac{1}{2} \int \left(e^{i\vec{k}_i\vec{r}} - e^{-i\vec{k}_i\vec{r}} \right) V_d(\vec{r}) \left(e^{-i\vec{k}_f\vec{r}} - e^{i\vec{k}_f\vec{r}} \right) d^3r = 4\pi d^2 (\cos^2\theta_{dq_-} - \cos^2\theta_{dq_+})$$

$$\vec{q}_{\pm} = \vec{k}_i - \vec{k}_f$$

$$e^{i\vec{k}\vec{r}} = 4\pi \sum_{l=0}^{\infty} \sum_{m=-l}^{l} j_l(kr) i^l Y_{lm}(\hat{r}) Y_{lm}^*(\hat{k})$$

Partial amplitude $f(l_i m_i; l_f m_f)$

$$f(10;10) = -\frac{6d^2}{5}\cos\theta_{dk_i}\cos\theta_{dk_f}$$

Superfluid *p***-wave pairing**

$$nd^2 \ll E_F$$

Analog of
$$a \to \sim \frac{md^2}{\hbar^2} (r_*!)$$

$$\Delta = g \langle \psi_{\uparrow} \psi_{\downarrow} \rangle \sim E_F \exp\left(-\frac{1}{\lambda}\right); \lambda \sim \frac{1}{k_F r_*};$$

$$\Delta \propto E_F \exp\left\{-\frac{\pi E_F}{12nd^2}\right\}$$

Cooper pairs are superpositions

of all odd angular momenta (for $m_l = 0$)

Transition temperature

 $nd^2 \ll E_F$ $T_c = 1.44E_F \exp\left\{-\frac{\pi E_F}{12nd^2}\right\}$ Baranov et.al (2002) GM correction included

 $\Delta \rightarrow \text{anisotropic} \propto \sin\left(\frac{\pi}{2}\cos\theta\right)$

- Maximum in the direction of the dipoles.
- Vanishes in the direction perpendicular to the dipoles

Distiguished features

Anisotropic gap \rightarrow gapless excitations in the direction perpendicular to the dipoles. Damping rates etc.

Anisotropy \rightarrow different from *p*-wave superfluid B and A phases of ³He. In B Δ is isotropic, and in A it vanishes only at 2 points on the Fermi shpere ($\theta = 0$ and $\theta = \pi$)

Value of T_c

$$d \sim 0.1 \div 1 \mathcal{D}$$

NaK $\Rightarrow d = 2.7\mathcal{D}$ and can be made $0.5\mathcal{D}$ ($r_* = 2500 \text{\AA}$) in a certain electric field

$$\frac{T_c}{E_F} \rightarrow 0.025$$
 at $n \rightarrow 6 \times 10^{12} \mathrm{cm}^{-3}$ ($E_F \approx 400$ nK

 $(T_c \rightarrow 10nK)$

One easily achieves the strongly interacting regime

2D dipolar Fermi gas

2-component Fermi gas (\uparrow and \downarrow). Short range g > 0

$$H = \sum_{k} \frac{\hbar^{2} k^{2}}{2m} \left(a_{k\downarrow}^{\dagger} a_{k\downarrow} + a_{k\uparrow}^{\dagger} a_{k\uparrow} \right) + |g| \sum_{k,p,q} \left(1 - C |\vec{q} - \vec{p}| \right) a_{k+q\uparrow}^{\dagger} a_{k-q\downarrow}^{\dagger} a_{k-p\downarrow} a_{k+p\uparrow} - C = \frac{2\pi d^{2}}{|g|}$$

Interesting problem

s-wave interaction on the Fermi surface

 $|g|(1 - 4Ck_F/\pi)$

 $k_F C > \pi/4 \rightarrow 8d^2 k_F > |g| \rightarrow \text{superfluidity}$

 $k_F C < \pi/4 \rightarrow 8d^2 k_F < |g| \rightarrow \text{no superfluidity}$

Quantum transition to a normal state with decreasing density

Superfluid pairing for tilted dipoles \rightarrow Baranov/Sieberer (2011)

1D dipolar Fermi gas

short range g > 0

$$\begin{split} H &= \sum_{k} \frac{\hbar^{2} k^{2}}{2m} \left(a_{k\downarrow}^{\dagger} a_{k\downarrow} + a_{k\uparrow}^{\dagger} a_{k\uparrow} \right) + \\ &+ |g| \sum_{k,p,q} \left(1 + B |\vec{q} - \vec{p}|^{2} \ln(|\vec{q} - \vec{p}| l_{0}) \right) a_{k+q\uparrow}^{\dagger} a_{k-q\downarrow}^{\dagger} a_{k+p\downarrow} a_{k-p\uparrow} \end{split}$$

$$B = \frac{d^2}{|g|}$$

Quantum transition

Interaction at the Fermi points

$$g_{eff} = |g|[1 + 2B(k_F l_0)^2 \ln(k_F l_0)]$$

 $g_{eff} < 0 \rightarrow \text{superfluid}$

 $g_{eff} > 0 \rightarrow$ ordinary Luttinger liquid

Quantum transition superfluid-Luttinger liquid with decreasing density

Lecture 3. Novl macroscopic quantum statea

Outline

- RF-dressed polar molecules
- **•** Topologcal $p_x + ip_y$ phase in 2D
- Bilayer systems of dipolar fermions. BCS-BEC crossover
- *p*-wave interlayer superfluids

Are there novel states with single-component fermions?

Does the dipole-dipole interaction lead to the emergence of novel phases for identical fermions?

Why single-component fermions are interesting?

Topological aspects of $p_x + ip_y$ state in 2D

Vortices. Zero-energy mode related to two vortices. (Read/Green, 2000)

The number of zero-energy states exponentially grows with the number of vortices $2^{(N_v/2-1)}$ Non-abelian statistics \Rightarrow Exchanging vortices creates a different state! Non-local character of the state. Local perturbation does not cause decoherence Topologically protected state for quantum information processing

p-wave resonance for fermionic atoms

p-wave resonance Experiments at JILA, ENS, Melbourne, Tokyo, elsewhere

$$\mathsf{BCS} \Rightarrow \quad T_c \sim \exp\left(-\frac{1}{(k_F b)^2}\right) \quad \text{practically zero}$$

Molecular and strongly interacting regimes \Rightarrow rather high T_c , but collisional instability

Gurarie/Radzihovsky; Gurarie/Cooper; Castin/Jona-Lazinio

RF-dressed polar molecules in 2D. Innsbruck idea

Two RFD molecules in 2D. The dipole moment is rotating with RF frequency

Fermionic RFD molecules. Superfluid transition

Fermionic RFD molecules in a single quantum state in 2D Attractive interaction for the *p*-wave scattering ($l = \pm 1$)

$$\hat{H} = \int d^2 r \,\hat{\Psi}^{\dagger}(\mathbf{r}) \{ -(\hbar^2/2m)\Delta + \int d^2 r' \hat{\Psi}^{\dagger}(\mathbf{r}') V_{eff}(\mathbf{r} - \mathbf{r}') \hat{\Psi}(\mathbf{r}') - \mu \} \hat{\Psi}(\mathbf{r})$$
$$\Delta(\mathbf{r} - \mathbf{r}') = \langle V_{eff}(\mathbf{r} - \mathbf{r}') \hat{\Psi}(\mathbf{r}) \hat{\Psi}(\mathbf{r}') \rangle$$

Gap equation $\Delta(\mathbf{k}) = -\int \frac{d^2k}{(2\pi)^2} V_{eff}(\mathbf{k} - \mathbf{k}') \Delta(\mathbf{k}') \frac{\tanh(\epsilon(k')/T)}{2\epsilon(k')}$ $\epsilon(k) = \sqrt{(\hbar^2 k^2 / 2m - \mu)^2 + |\Delta(k)|^2}; \quad \mu \approx E_F$ $T_c \approx E_F \exp(-3\pi/4k_F r_*)$ $\Delta(\mathbf{k}) = \Delta \exp(i\phi_k) \quad p_x + ip_y \text{ state } (l = \pm 1)$

Superfluid transition. Role of anomalous scattering

For short-range potentials should be $V_{eff} \propto k^2$ and $T_c \propto \exp(-1/(k_F b)^2)$ This is the case for the atoms

Anomalous scattering in $1/r^3$ potential \rightarrow Contribution from $r \sim 1/k$

$$V_{eff}(k) = -\frac{8\hbar^2}{3m}(kr_*); \quad |k| = |k'|$$
$$T_c \propto \exp\left(-\frac{1}{\nu(k_F)|V_{eff}(k_F)|}\right); \quad \nu = \frac{m}{2\pi\hbar^2}$$
$$T_C \propto \exp\left(-\frac{3\pi}{4k_Fr_*}\right)$$

Transition temperature

Do better than simple BCS. Reveal the role of short-range physics

Renormalized gap equation

 $\Delta(\mathbf{k}') = -\int f(\mathbf{k}', \mathbf{k}) \Delta(\mathbf{k}) \left\{ \frac{\tanh[\epsilon(k)/2T]}{2\epsilon(k)} - \frac{1}{(E_k - E_{k'} - i0)} \right\} \frac{d^2k}{(2\pi)^2}$

 $\Delta(\mathbf{k}) = \Delta(k) \exp(i\phi_k); f(\mathbf{k}', \mathbf{k}) = f(k', k) \exp[i(\phi_k - \phi_{k'})] \text{ scattering amplitude}$

2D scattering in the potential with a $1/r^3$ tail

Scattering amplitude. No transparent exact solution for a finite k

Asymptotic method for slow scattering ($kr_* \ll 1$)

Divide the range of distances into two parts, $r < r_0$ and $r > r_0$ The distance r_0 is such that $r_0 \gg r_*$, but $kr_0 \ll 1$

 $r < r_0$ Match exact zero-energy with free finite-k solution at $r = r_0$: $f \Rightarrow (\pi/2)d^2r_*k^2 \ln k$ $r > r_0$ interaction as perturbation: $f = -(8\pi/3)d^2k + (\pi/2)d^2r_*k^2 \ln k$ Related results for the off-shell scattering amplitude

Manipulate T_c ?

$$f(k',k) = -\pi d^2 k F\left(\frac{1}{2}, -\frac{1}{2}, 2, \frac{k^2}{k'^2}\right); \ k \le k'; \ kr_* \ll 1$$

Include k^2 -term $f = \frac{1}{2}\pi d^2 r_* k^2 \ln[kr_*u]$
 $T_c = \frac{2e^C}{\pi} E_F \exp\left\{-\frac{3\pi}{4k_F r_*} - \frac{9\pi^2}{64}\ln[k_F r_*u]\right\}$

Take into account second-order Gor'kov-Melik-Barkhudarov processes

 κ depends on short-range physics and can be varied within 2 orders of magnitude

Collisional stability and T_c

p-wave atomic superfluids: $BCS \Rightarrow T_c \rightarrow 0$ Resonance \Rightarrow collisional instability

Polar molecules \Rightarrow sufficiently large T_c and collisional stability

 $\alpha_{in} = A \frac{\hbar}{m} (kr_*)^2; \quad A \Rightarrow 10^{-3} - 10^{-4} \quad \alpha_{in} \to (10^{-8} - 10^{-9}) \text{ cm}^2/\text{s}$

 $\begin{array}{rll} {\sf LiK\ molecules} & \rightarrow & d\simeq 3.5\ {\sf D} & r_*\approx 4000 a_0 \\ n=2\times 10^8\ {\sf cm}^{-2} \Rightarrow & E_F=2\pi\hbar^2n/m=120\ {\sf nK} & T_c\approx 10\ {\sf nK}; & \tau\sim 2{\sf s} \end{array}$

Bilayered dipolar fermionic systems

$$V(\rho) = d^2 \left\{ \frac{1}{(\rho^2 + \lambda^2)^{3/2}} - \frac{3\lambda^2}{(\rho^2 + \lambda^2)^{5/2}} \right\}$$

Dipole-dipole length $r_* = md^2/\hbar^2$ Dipole-dipole strength $\beta = r_*/\lambda$.

$$V_{min} = -\frac{2d^2}{\lambda^3}; \quad \int_0^\infty V(r)rdr = 0$$

Always a bound state of \uparrow and \uparrow dipoles \rightarrow B. Simon, 1974 $\beta \lesssim 1 \Rightarrow \epsilon_b \simeq \frac{\hbar^2}{m\lambda^2} \exp[-8/\beta^2 + 8/\beta - (5 + 2C - 2\ln 2)]$

BCS-BEC crossover

 $\epsilon_b \ll E_F(r_b \gg n^{-1/2}) \Rightarrow f < 0 \rightarrow s$ -wave BCS pairing

 $\epsilon_b \gg E_F \Rightarrow$ Molecules of \uparrow and \uparrow dipoles (interlayer dimers). Molecular BEC

New BCS-BEC crossover (Pikovski, Klawunn, Santos, GS), 2010 Baranov et al, 2011, Zinner et al, 2011

Transition temperature. BCS regime

Kosterlitz-Thouless transition $\epsilon_b \ll E_F \rightarrow T_{KT}$ is close to T_{BCS}

$$\begin{split} \Delta(\mathbf{k}) &= -\int \frac{dk'^2}{(2\pi)^2} \frac{V(\mathbf{k} - \mathbf{k}')\Delta(\mathbf{k}')}{2\epsilon_{k'}} \tanh\left(\frac{\epsilon_{k'}}{2T}\right) \\ \epsilon_k &= \sqrt{(E_k - \mu)^2 + |\Delta(k)|^2}; \quad E_k = \hbar^2 k^2 / 2m \\ \Delta(k) &= -\frac{\hbar^2}{2m} \int \frac{d^2k'}{(2\pi)^2} f(k,k')\Delta(k') \left\{ \frac{\tanh(\epsilon_{k'}/2T)}{\epsilon_{k'}} - \frac{1}{E_{k'} - E_k - i0} \right\} \\ f(\mathbf{k},\mathbf{k}') &= (m/\hbar^2) \int \exp(-i\mathbf{k}'\mathbf{r})V(r)\psi_{\mathbf{k}}(\mathbf{r})d^2r \\ f(k,k') &= \frac{2\pi}{\ln(\kappa/k) + i\pi/2} - 2\pi kr_*F_1\left(\frac{k'}{k}\right) + k^2 \text{terms} \\ T_c &= \frac{\exp C}{\pi} \Delta_0(k_F) \end{split}$$

Strongly interacting and BEC regimes

Leggett model. Gap equation plus number equation

$$n = \frac{1}{2} \int \frac{d^2k}{(2\pi)^2} \left\{ 1 - \frac{E_k - \mu}{\epsilon_k} \tanh\left(\frac{\epsilon_k}{2T}\right) \right\}$$

 $T_{KT} = \pi \hbar^2 \rho_s(T_{KT}) / 2M^2; \quad M = 2m$

 $E_F \ll \epsilon_b \rightarrow$ Formation of bound pairs by fermions of different layers T_{KT} of a weakly interacting Bose gas

Transition temperature

LiCs and KRb molecules $\lambda \simeq 250$ nm, $n \simeq 5 \, 10^8$ cm⁻², $k_F \lambda \simeq 2$, $E_F \simeq 110$ nk $\Rightarrow T_{KT}$ up to ~ 10 nK

Interlayer superfluids

Multilayer system \rightarrow Harvard group of E. Demler

Bilayer systems of \uparrow and \downarrow dipoles

Bilayer system of \uparrow **and** \downarrow **dipoles**

Put J = 0 molecules in one layer and J = 1 in the other Apply an electric field perpendicularly to the layers Slightly non-uniform to prevent resonant dipolar flips leading to a rapid decay

Always a bound state of \uparrow and \downarrow dipoles

$$\beta \lesssim 1 \Rightarrow \epsilon_b \simeq \frac{\hbar^2}{m\lambda^2} \exp[-8/\beta^2 - 8/\beta - (5 + 2C - 2\ln 2)]$$

 $\beta = r_*/\lambda$

Interlayer interaction. Scattering amplitudes

s-wave amplitude
$$k \to 0$$
 $f_0(k) = \frac{4\pi\hbar^2}{m\ln(\epsilon_b/\epsilon)} + \frac{8\hbar^2}{m}kr_*$
 $\epsilon = \hbar^2 k^2/m$ $r_* = md^2/\hbar^2$

 $f_0 > 0$ for reasonable k. No interlayer superfluid pairing

Interlayer interaction. Scatering amplitudes

p-wave and d-wave amplitudes are < 0

Interlayer *p***-wave and** *d***-wave pairing**

For $k_F r_* \gtrsim 1$ the effective mass significantly decreases

Transition temperature $T_c \sim E_F^* \exp\left(\frac{2\pi\hbar^2}{m_*|f(k_F)|}\right)$

The quasiparticle Fermi energy increases

Compensate the decrease of m_* in the exponent by increasing d^2 and, hence, f

p-wave interlayer superfluid with $T_c \sim \text{tens}$ of nK

d-wave superfluids with $T_c\sim$ nK. Analogy with high-temperature superconductors LiCs with $n>10^9~{\rm cm}^{-2}$