CLASSICAL AND QUANTUM WORM ALGORITHMS

Nikolay Prokofiev, Umass, Amherst

Collaborators on major algorithm developments

Boris Svistunov UMass, Amherst

Igor Tupitsyn PITP, Vancouver

Massimo Boninsegni UAlberta

Why bother with algorithms?

Efficiency

> Phid whille stiill youmg Better accuracy Large system size More complex systems Finite-size scaling Critical phenomena Phase diagrams

New quantities, more theoretical tools to address physics

Applications: classical and quantum critical phenomena, latttice spin systems, cold atoms, liquid \& solid Helium-4, Feynman diagrams for fermions \& frustrated magnetism

Weakly interacting Bose gas example: $T_{C}\left(a_{S}\right)$

from previous standard of $N \leq 216$ to $N \leq 100,000$

Finite-size scaling for superfluid density

Critical temperature dependence on interaction

Problem to overcome: crossover from Gaussian to generic $\mathrm{U}(1)$ universality

3D He-4 at $\mathrm{P}=0$ superfluid density \& critical temperature

Boninsegni, NP ,Svistunov ‘06

Interatomic potential was never optimized to fit $T_{C}^{\text {exp }}$

Bose-Hubbard model (up to 5,000,000 bosons @ exper. temperature)

The first insulating lobe/gap in 3D

Superfluid

MI

Figure 2 Absorption images of multiple matter wave interference patterns. These were obtained after suddenly releasing the atoms from an optical lattice potential with different potential depths V_{0} after a time of flight of 15 ms . Values of V_{0} were: $\mathbf{a}, 0 E_{r} ; \mathbf{b}, 3 E_{r} ; \mathbf{c}, 7 E_{r}$; d, $10 E_{r ;} \mathbf{e}, 13 E_{r} ; \mathbf{f}, 14 E_{r} ; \mathbf{g}, 16 E_{r} ;$ and $\mathbf{h}, 20 E_{r}$.

No fit comparison of time-of-flight images (momentum distributions) $N \approx 300000$
S. Trotzky, L. Pollet, F. Gerbier, U. Schnorrberger, I. Bloch, NP B. Svistunov, M. Troyer, '10

Disordered Bose-Hubbard model (ground state phase diagram)

PI Monte Carlo: Pollet, NP '12

Field theory in $1 / \mathbf{N}+$ corrections (here $\mathbf{N}=2$)

Worm algorithm idea

Standard Monte Carlo setup:

- configuration space $=$ (deprindfy erotearmoofo andoit' © represemtation)
can draw without loose ends)

- each cnf. has a weight factor

$$
\mathbb{H}_{c n f}^{E_{c n f}} / T
$$

"conventional" sampling scheme:

local shape change
Add/delete small loops

No sampling of topological classes (non-ergodic)

Critical slowing down (large loops are related to critical modes)

$$
\left(\frac{N_{\text {updates }}}{L^{d}}\right) \sim L^{z}
$$

dynamical critical exponent $z \approx 2$ in many cases

Worm algorithm idea

```
draw and erase:
```


- Topological classes are sampled efficiently (whatever you can draw!)
- No critical slowing down in most cases

Disconnected loops relate to important physics (correlation functions) and are not merely an algorithm trick!

High-T expansion for the Ising model $\quad-\frac{H}{T}=K \sum_{\langle i j\rangle} \sigma_{i} \sigma_{j} \quad(\sigma= \pm 1)$

$$
\equiv \sum_{\left\{N_{b}\right\}}\left(\prod_{b=\langle i\rangle} \frac{K^{N_{b}}}{N_{b}!}\right) \prod_{i}\left(\sum_{\sigma_{i}= \pm 1} \sigma_{i}^{M_{i}}\right)
$$

$$
\equiv 2^{N} \sum_{\left\{N_{b}\right\}=\text { oops }}\left(\prod_{b=\langle i j\rangle} \frac{K^{N_{b}}}{N_{b}!}\right)
$$

where $M_{i}=\sum_{<i j>} N_{b=<i j>}=$ even

$N_{b}=$ number of lines; enter/exit rule $\rightarrow M_{i}=$ even

Spin-spin correlation function: $\quad g_{I M}=\frac{G_{I M}}{Z}, G=\sum_{\left\{\sigma_{i}\right\}} e^{-H / T} \sigma_{I} \sigma_{M}$
same as before

Worm algorithm cnf. space $=Z \mathrm{U} G$
Same as for generalized partition

$$
Z_{W}=Z+\kappa G
$$

Getting more practical: since $\quad e^{K \sigma_{1} \sigma_{2}}=\cosh ^{N}(K)\left[1+\tanh (K) \sigma_{1} \sigma_{2}\right]$

$$
Z=\cosh ^{d N}(K) \sum_{\left\{N_{b}=0,1\right\}}^{\text {loops }}\left(\prod_{b} \tanh ^{N_{b}}(K)\right)
$$

Complete algorithm :

- If $I=M$, select a new site \mathbf{f}

- select direction to move M, let it be bond b
- If $N_{b}=\left\{\begin{array}{l}0 \\ 1\end{array}\right.$ accept $N_{b} \rightarrow\left\{\begin{array}{l}1 \\ 0\end{array}\right.$ with prob. $R=\left\{\begin{array}{l}\min (1, \tanh (K)) \\ \min \left(1, \tanh ^{-1}(K)\right)\end{array}\right.$

Solving the critical slowing down problem:

Question: What are the signatures of the phase transition (critical modes)?
spin representation

loop representation

large loops of linear size \sim L (long-range correlations \longrightarrow draw large between spins = large distance loops!

$$
\begin{aligned}
& G(I-M)=G(I-M)+1 \\
& Z=Z+\delta_{I, M} \\
& N_{\text {links }}=N_{\text {links }}+\left(\sum_{b} N_{b}\right)
\end{aligned}
$$

Correlation function:

$$
g(i)=G(i) / Z
$$

Magnetization fluctuations: $\quad\left\langle M^{2}\right\rangle=\left\langle\left(\sum \sigma_{i}\right)^{2}\right\rangle=\sum_{i j}\left\langle\sigma_{i} \sigma_{j}\right\rangle=N \sum g(i)$

Energy: either
or

$$
E=-J N d\left\langle\sigma_{1} \sigma_{2}\right\rangle=-J N d g(1)
$$

$$
E=-J \tanh (K)\left[d N+\left\langle N_{\text {links }}\right\rangle \sinh ^{2}(K)\right]
$$

Ising $\rightarrow\left|\psi_{i}\right|^{4}$ lattice-field theory

$$
-\frac{H}{T}=t \sum_{i v=(x, y, z)} \psi_{i+v}^{*} \psi_{i}+\mu \sum_{i}\left|\psi_{i}\right|^{2}-U \sum_{i}\left|\psi_{i}\right|^{4} \quad \text { (XY-model in the } \mu=2 U \rightarrow \infty \text { limit) }
$$

Start as before

$$
Z=\prod_{i} \int d \psi_{i} e^{-H / T}
$$

Integrate over phases

$$
\psi_{i}=x e^{i \varphi}
$$

$$
\begin{aligned}
& \text { where } Q(M)=\left\{\begin{array}{lll}
0 & \text { if } M_{1} \neq M_{2} & \longrightarrow \\
\text { closed oriented loops } \\
\pi \int_{0}^{\infty} d x x^{M} e^{\mu r-U x^{2}}= & \text { tabulated numbers }
\end{array}\right.
\end{aligned}
$$

$$
\psi_{i}{ }^{N_{v}}\left(\psi_{i}^{*}\right)^{N_{v}} N_{i+v,-v}
$$

Flux in = Flux out \Rightarrow closed oriented loops of integer N -currents

$$
g(I-M)=\frac{G(I-M)}{Z}=\left\langle\psi_{I} \psi_{M}^{*}\right\rangle
$$

(one open loop)

Z-configurations have $I=M$

Same algorithm:

- $Z \leftrightarrow G$ sectors, prob. to accept $\quad R_{z \rightarrow G}=\min \left[1, \frac{Q\left(M_{I}+1\right)}{Q\left(M_{I}\right)}\right]$
- $N_{M v} \rightarrow N_{M v}+1$ draw $\quad R=\min \left[1, \frac{t Q\left(M_{M^{\prime}}+1\right)}{\left(N_{M v}+1\right) Q\left(M_{M^{\prime}}\right)}\right]$
- $N_{M+v,-v} \rightarrow N_{M+v,-v}-1 \quad$ erase $R=\min \left[1, \frac{\left(N_{M+v,-v}\right) Q\left(M_{M}-1\right)}{t Q\left(M_{M}\right)}\right]$
$\underset{\sim}{\text { M M }}$

Keep drawing/erasing ...

Multi-component gauge field-theory:

$$
-\frac{H}{T}=t \sum_{a ; i v} \psi_{a, i+v}^{*} \psi_{a, i} e^{i A_{v}(i)}+\mu \sum_{a ; i}\left|\psi_{a, i}\right|^{2}-\sum_{a b ; i} U_{a b}\left|\psi_{a, i}\right|^{2}\left|\psi_{b, i}\right|^{2}-\kappa \sum_{\text {plaquette sum }}\left[\nabla \times A_{v}(i)\right]^{2}
$$

solid-liquid transitions, deconfined criticality, XY-VBS and Neel-VBS quantum phase transitions, etc.
... and finite-T quantum models

Interacting particles on a lattice:

$$
\begin{aligned}
& H=H_{0}+H_{1}=\sum_{i j} U_{i j} n_{i} n_{j}-\sum_{i} \mu_{i} n_{i}-\sum_{<i j\rangle} t\left(n_{i}, n_{j}\right) b_{j}^{+} b_{i} \\
& \text { off-diagonal } \\
& Z=\operatorname{Tr} e^{-\beta H} \equiv \operatorname{Tr} e^{-\beta H_{0}} e^{-\int_{0}^{\beta} H_{1}(\tau) d \tau}{ }_{\text {diagonal }} H_{1}(\tau)=e^{\beta H_{0}} H_{1} e^{-\beta H_{0}} \\
&=\operatorname{Tr} e^{-\beta H_{0}}\left\{1-\int_{0}^{\beta} H_{1}(\tau) d \tau+\int_{\tau^{\prime}}^{\beta \beta} \int_{0}^{\beta} H_{1}(\tau) H_{1}\left(\tau^{\prime}\right) d \tau d \tau^{\prime}+\ldots\right\}
\end{aligned}
$$

In the diagonal basis set (occupation number representation): $\left\langle\left\{n_{i}\right\}\right|=\left\langle\left\{n_{1}, n_{2}, n_{3}, \ldots\right\}\right|$

$$
Z=\sum_{\left\{n_{i}\right\}}\left\langle\left\{n_{i}\right\}\right| e^{-\beta H_{0}}-\int_{0}^{\beta} e^{-(\beta-\tau) H_{0}} H_{1} e^{-\tau H_{0}} d \tau+\int_{\tau^{\prime} 0}^{\beta \beta} e^{-(\beta-\tau) H_{0}} H_{1} e^{-\left(\tau-\tau^{\prime}\right) H_{0}} H_{1} e^{-\tau^{\prime} H_{0}} d \tau d \tau^{\prime}+\ldots\left|\left\{n_{i}\right\}\right\rangle
$$

Each term describes a particular evolution of $\left\{n_{i}\right\}$ as imaginary "time" increases

0-order term

one of the 2-order terms

potential
energy
contribution
off-diagonal matrix elements for the trajectory with K kinks at times $\beta>\tau_{K}>\ldots>\tau_{2}>\tau_{1}>0$ (ordered sequence on the β-cylinder)
in this example, for $\mathrm{K}=2$, it equals $t \sqrt{2} \times t \sqrt{2}$ for bosons
all possible trajectories for N particles with
K hopping transitions
high-order term for $\mathbb{Z}=\operatorname{Tr} e^{-\beta H}$

0

Similar expansion in hopping terms for

$$
G_{I M}=\operatorname{Tr} b_{M}^{\dagger}\left(i_{M}, \tau_{\mathrm{M}}\right) b_{I}\left(i_{I}, \tau_{I}\right) \mathrm{e}^{-\beta H}
$$

+ two special points for Ira and Masha

The rest is worm algorithm in this $\mathrm{Z} \cup G_{I M}$ configuration space: draw and erase lines using exclusively Ira and Masha

ergodic set of local updates

time shift:

space shift
("particle" type):

space shift
("hole" type):

Insert/delete

Ira and Masha:

$$
Z \leftrightarrow G
$$

connects Z and G configuration spaces

$$
Z=\iiint d R_{1} \ldots d R_{P} \exp \left\{-\sum_{i=1}^{P=\beta / \tau}\left(\frac{m\left(R_{i+1}-R_{i}\right)^{2}}{2 \tau}+U(R) \tau\right)\right\}
$$

G

(open/close update)

\mathbb{Z}_{i}

(insert/remove update)

Not necessarily for closed loops!

Feynman (space-time) diagrams for fermions with contact interaction (attractive) $O=-U$ ($\mathrm{n}=1$ positive Hubbard model too)

Pair correlation function
$\left\langle a_{\uparrow}{ }^{+}\left(r_{1}, \tau_{1}\right) a_{\downarrow}{ }^{+}\left(r_{1}, \tau_{1}\right) a_{\downarrow}\left(r_{2}, \tau_{2}\right) a_{\uparrow}\left(r_{2}, \tau_{2}\right)\right\rangle$

The rest is worm algorithm in this $Z \cup G_{I M}$ configuration space: draw and erase interaction vertexes using exclusively Ira and Masha

More: winding numbers and superfluid density

$$
W_{\mu}=\int_{0}^{\beta}[\text { particle number flux }]_{\mu} d \tau
$$

$W=$ fractional

$$
\rho_{S}=\left(m / \beta d L^{d-2}\right)\left\langle W^{2}\right\rangle
$$

Grand canonical ensemble (a "must" for disorder problems!)

More tools:

1. Density matrix $n\left(r^{\prime}, r\right)=\left\langle\psi^{\dagger}\left(r^{\prime}, \tau\right) \psi(r, \tau)\right\rangle$ (and the condensate fraction) is as cheap as energy
2. μ is an input parameter, and $\langle N\rangle_{\mu}$ is a simple diagonal property
3. But also compressibility ${ }_{\kappa} \kappa T=\left\langle(N-\langle N\rangle)^{2}\right\rangle_{\mu}$

$$
P_{\mu^{\prime}}(N)=P_{\mu}(N) e^{\left(\mu^{\prime}-\mu\right) N / T}
$$

4. Added particle wavefunction:

$$
G\left(\beta / 2 \rightarrow \infty, r, r^{\prime}\right)=\left\langle G_{N}\right| \psi^{\dagger}(r)\left|G_{N-1}\right\rangle\left\langle G_{N-1}\right| \psi\left(r^{\prime}\right)\left|G_{N}\right\rangle=\varphi(r) \varphi\left(r^{\prime}\right)
$$

mobility thresholds, participation ratio, etc.

Why bother with algorithms?

Efficiency

PthD whille stilll youning
Better accuracy
Large system size
More complex systems
Finite-size scaling
Critical phenomena
Phase diagrams
Reliably!

New quantities, more theoretical tools to address physics
"Wave function" of the added particle

$$
\phi_{N}(\mathbf{r})=\left\langle\Psi_{G}(N)\right| b_{\mathbf{r}}^{\dagger}\left|\Psi_{G}(N-1)\right\rangle
$$

It is a theorem that for $\Delta>E_{G A P}$ the compressibility is finite

Quantum spin chains $\begin{aligned} & \text { gaps, spin wave spectra, } \\ & \text { magnetization curves } . .\end{aligned} \quad \mathbf{H}=-\sum_{\langle i j>}\left[J_{x}\left(S_{j x} S_{i x}+S_{j y} S_{i y}\right)+J_{z} S_{j z} S_{i z}\right]-H \sum_{i} S_{i z}$.

Energy gap: One dimensional S=1 chain with $J_{z} / J_{x}=0.43$

magnetization curves

