

2354-1

Summer School on Cosmology

16 - 27 July 2012

Inflation - Lecture 1

M. Sasaki Yukawa Institute, Kyoto

Summer school on cosmology ICTP, 16-18 July 2012

Inflation

Misao Sasaki

Yukawa Institute for Theoretical Physics Kyoto University

contents

1. Inflationary Universe

- horizon & flatness problems
- slow-roll inflation
- reheating scenario
- 2. Cosmological Perturbations from Inflation
 - curvature (scalar-type) perturbation
 - gravitational wave (tensor-type) perturbation
- 3. Non-Gaussian Curvature Perturbation
 - origin of non-Gaussianity
 - δN formalism: NG generation on superhorizon scales
 - other sources of NGs
- 4. Summary and outlook

1. Inflationary Universe

• horizon problem $ds^{2} = -dt^{2} + a^{2}(t)d\sigma_{(3)}^{2} \qquad \ddot{a} = -\frac{4\pi G}{3}(\rho + 3P)a < 0 \text{ for } P > -\frac{\rho}{3}$

 $ds^{2} = a^{2}(\eta)(-d\eta^{2} + d\sigma_{(3)}^{2})$

if
$$a \propto t^n$$
, $n < 1$ gravity=attractive
 $d\eta = \frac{dt}{a(t)}$: conformal time

 $\int_{t_0 \to 0}^{t} \frac{dt}{a(t)} = \text{finite}$

conformal time is bounded from below

³ particle horizon

solution to the horizon problem

$$\ddot{a} = -\frac{4\pi G}{3}(\rho + 3P)a > 0$$

for a sufficient lapse of time in the early universe

η

$$\eta - \eta_0 = \int_{t_0}^t \frac{dt}{a(t)} \xrightarrow[t_0 \to 0]{t_0 \to 0} \infty$$

or large enough to cover the present horizon size

NB: horizon problem≠ homogeneity & isotropy problem

flatness problem (= entropy problem)

$$H^{2} = \frac{8\pi G}{3}\rho - \frac{K}{a^{2}}; \quad -\infty < K < +\infty$$

if $\rho \propto a^{-4}$, $\rho \gg \frac{|K|}{a^{2}}$ in the early universe.

conversely if $\rho \approx |K|/a^2$ at an epoch in the early universe, the universe must have either collapsed (if K > 0) or become completely empty (if K < 0) by now.

alternatively, the problem is the existence of huge entropy within the curvature radius of the universe

$$S = T^{3} \left(\frac{a}{\sqrt{|K|}}\right)^{3} \approx T_{0}^{3} \left(\frac{a_{0}}{\sqrt{|K|}}\right)^{3} > T_{0}^{3} H_{0}^{-3} \approx 10^{87}$$

 $(\# \text{ of states} = \exp[S])$

solution to horizon & flatness problems

spatially homogeneous scalar field:

$$\rho = \frac{1}{2}\dot{\phi}^{2} + V(\phi), \quad P = \frac{1}{2}\dot{\phi}^{2} - V(\phi)$$

$$\implies \rho + 3P = 2(\dot{\phi}^{2} - V(\phi)) < 0 \quad \text{if} \quad \dot{\phi}^{2} < V(\phi)$$

$$\implies \rho \approx -P \approx V(\phi) \quad \text{if} \quad \dot{\phi}^{2} \ll V(\phi) \quad \text{potential dominated}$$

$$V \sim \text{cosmological const./vacuum energy}$$

$$\rho \approx const. \quad \frac{K}{a^{2}} \text{ decreases rapidly}$$

$$\implies H^{2} \approx \frac{8\pi G}{3} \rho \approx const. \quad \text{inflation}$$

$$\text{`vacuum energy'' converted to radiation}$$

$$\text{after sufficient lapse of time}$$

solves horizon & flatness problems simultaneously

slow-roll inflation

• single-field slow-roll inflation Linde '82, ...

$\varepsilon = -\frac{\dot{H}}{H^{2}} = \frac{\frac{3}{2}\dot{\phi}^{2}}{\frac{1}{2}\dot{\phi}^{2} + V} \approx \frac{3}{2}\frac{\dot{\phi}^{2}}{V} = \frac{M_{P}^{2}V'^{2}}{2V^{2}} \ll 1$ condition for quasi-de Sitter (inflationary) expansion

$$\delta \equiv \frac{\ddot{\phi}}{H\dot{\phi}} = \varepsilon + \frac{\dot{\varepsilon}}{2H\varepsilon} \approx \varepsilon - \frac{M_P^2 V''}{V}; \quad |\delta| \ll 1$$

condition for friction-dominated (over-damped) evolution

sufficient condition on potential:

$$\varepsilon_{V} \equiv \frac{M_{P}^{2} V'^{2}}{2V^{2}} \ll 1, \ \eta_{v} \equiv \frac{M_{P}^{2} V''}{V}; \ \left|\eta_{v}\right| \ll 1$$

reheating

Abbott & Wise '84, Dolgov & Linde '84 standard scenario Ψ e.g. $L_{\rm int} \sim g_V \phi \overline{\psi} \psi$ g_{Y} decay rate: $\Gamma \sim g_Y^2 m_\phi$; $m_\phi \gg m_w$ effective equation of motion: $V(\phi) = \frac{1}{2}m_{\phi}^2\phi^2 + \cdots$ when $m_{\phi} \gg H > \Gamma$, damped oscillation: $\ddot{\phi} + 3H\dot{\phi} + m_{\phi}^2\phi = 0 \implies \phi \propto a^{-3/2}\cos(m_{\phi}t + \alpha)$ effect of $\Gamma \implies \ddot{\phi} + 3H\dot{\phi} + V'(\phi) = -\Gamma\dot{\phi}$ $\Leftrightarrow \frac{d}{dt} \left(\frac{1}{2} \dot{\phi}^2 + V \right) = -(3H + \Gamma) \left\langle \dot{\phi}^2 \right\rangle$ $\Rightarrow \dot{\rho}_{\phi} + 3H\rho_{\phi} = -\Gamma\rho_{\phi}$

energy conservation eqns

 $\dot{\rho}_{\phi} + 3H\rho_{\phi} = -\Gamma\rho_{\phi}$ $\dot{\rho}_{r} + 4H\rho_{r} = \Gamma\rho_{\phi}$ ρ_{r} : produced radiation

• $\Gamma < H \sim t^{-1}$ $\rho_{\phi} = \rho_{\phi_f} \left(\frac{a}{a_f}\right)^{-3}, \quad \rho_r = \frac{2\Gamma}{5H_f} \rho_{\phi_f} \left(\frac{a}{a_f}\right)^{-4} \left(\left(\frac{a}{a_f}\right)^{5/2} - 1\right)$ $\rho_r = \max \operatorname{at} \frac{a}{a_f} = \left(\frac{8}{3}\right)^{2/5} \approx 1.48$

• $\Gamma > H \sim t^{-1}$ $\rho_{\phi} = 0, \quad \rho_r = \rho_r (t_R) \left(\frac{a}{a_R}\right)^{-4} t_R : \text{def by } H(t_R) = \Gamma$

reheating temperature & max temperature

comoving scale vs Hubble horizon radius

e-folding number: N

condition on e-folding number

ignore variation of H during inflation. entropy generated within present Hubble volume:

$$S = H_{f}^{-3} e^{3N(\phi_{h})} \left(\frac{a_{R}}{a_{f}}\right)^{3} T_{R}^{3} \sim \left(\frac{\rho_{f}}{M_{P}^{2}}\right)^{-3/2} e^{3N(\phi_{h})} \left(\frac{\rho_{f}}{T_{R}^{4}}\right) T_{R}^{3}$$
$$\approx \left(\frac{M_{P}^{3}}{T_{R}\rho_{f}^{1/2}}\right) e^{3N(\phi_{h})} > \left(\frac{T_{0}}{H_{0}}\right)^{3} \sim 10^{87}$$
$$\Rightarrow N(\phi_{h}) > 53 + \frac{2}{3} \ln \left[\frac{\rho_{f}^{1/4}}{10^{15} \text{ GeV}}\right] + \frac{1}{3} \ln \left[\frac{T_{R}}{10^{10} \text{ GeV}}\right]$$

- N>50-60 solves horizon & flatness problems
- changing T_R by one order (by 10) changes N by 1

Q1. Show that conformal time η_h at $\phi = \phi_h$ satisfies $|\eta_h| > \eta_0$, where η_0 is the conformal time today.

preheating

Kofman, Linde & Starobinsky '94

If ϕ couples to other light scalar (bose) fields

e.g.
$$L_{\rm int} \sim g \phi^2 \chi^2$$
, $m_{\chi}^2 \ll m_{\phi}^2$

catastrophic χ - particle creation can occur

$$\ddot{\chi}_{k} + 3H\dot{\chi}_{k} + ((k/a)^{2} + g\phi^{2})\chi_{k} = 0$$

$$\Leftrightarrow \phi^{2} = \phi_{f}^{2}(a_{f}/a)^{3}\sin^{2}m_{\phi}t$$
for $m_{\phi}\Delta t \gg 1 \gtrsim H\Delta t$

$$\qquad \text{oscillating potential}$$

$$\ddot{\chi}_{k} + ((k/a)^{2} + g\phi^{2}\sin^{2}m_{\phi}t)\chi_{k} = 0$$

$$\Leftrightarrow \ddot{\chi}_{k} + (a - 2b\cos 2m_{\phi}t)\chi_{k} = 0$$
Mathiew eqn
$$\qquad \text{poscible parametric amplification of } \alpha$$

possible parametric amplification of χ_k

instability bands

Figure 1. Mathieu stability chart based on the numerical values, generated by (McLachlan, 1947).

if b>1 initially, evolutionary path passes through unstable region

instantaneous reheating

2. Cosmological Perturbations from Inflation > curvature perturbation: intuitive derivation zero-point (vacuum) fluctuations of ϕ : $\delta \phi = \sum_{k} \delta \phi_{k}(t)e^{ik \cdot x}$ $\delta \ddot{\phi}_{k} + 3H\delta \dot{\phi}_{k} + \omega^{2}(t)\delta \phi_{k} = 0$; $\omega^{2}(t) = \frac{k^{2}}{a^{2}(t)} = \left(\frac{2\pi c}{\lambda(t)}\right)^{2}$ physical wavelength $\lambda(t) \sim a(t)$

harmonic oscillator with friction term and time-dependent @

 $\delta \phi_k \rightarrow \text{const.}$

··· frozen when $\lambda > c H^{-1}$ (on superhorizon scales)

gravitational wave modes also satisfy the same eq.

fluctuation amplitude (vacuum fluctuations=Gaussian)

In the above, metric perturbations δg are ignored ~ a gauge in which δg is minimized = hypersurface on which $\delta R^{(3)}=0$: "flat" slice $R^{(3)}=\frac{K}{6a^2}, \ \delta R^{(3)}=\frac{4k^2}{a^2}\mathcal{R} \Rightarrow \ \delta K=\frac{2k^2}{3}\mathcal{R}$ \mathcal{R} : called curvature perturbation

generation of "comoving" curvature perturbation

- $\delta \phi$ is frozen on "flat" ($\mathcal{R}=0$) 3-surface (t = const. hypersurface)
- Inflation ends/damped osc starts on $\phi = \text{const.}$ 3-surface.

 ϕ =const. 3-surface is called "comoving" slice.

• curvature perturbation on comoving slices:

gauge transf.
$$\implies \mathcal{R}_c = -\frac{H}{\dot{\phi}} \, \delta \phi \, \longleftarrow$$

evaluated on flat slice

conservation of comoving curvature perturbation

0 100

Kodama & MS '84

$$\mathcal{R}_{c}^{"} + \frac{(z^{2})'}{z^{2}} \mathcal{R}_{c}^{'} + k^{2} \mathcal{R}_{c} = 0; \quad z^{2} \equiv \frac{a^{2} \dot{\phi}^{2}}{H^{2}} = 2\varepsilon a^{2} M_{p}^{2}; \quad '= \frac{d}{d\eta} = a \frac{d}{dt}$$

$$\int_{V} k^{2} \rightarrow 0 \qquad \varepsilon = -\frac{\dot{H}}{H^{2}} = \frac{3}{2} (1+w), \quad w = \frac{P}{\rho}$$

$$\mathcal{R}_{c}^{"} + \frac{(z^{2})'}{z^{2}} \mathcal{R}_{c}^{'} = 0 \qquad \varepsilon : \text{ slow-roll parameter}$$

$$\mathcal{R}_{c}^{'} + \frac{(z^{2})'}{z^{2}} \mathcal{R}_{c}^{'} = 0 \qquad \varepsilon : \text{ slow-roll parameter}$$

$$\mathcal{R}_{c} = const.: \text{"growing" mode}$$
if \mathcal{R}_{c} becomes const., "adiabatic" limit is reached

$$\mathcal{R}_{c}(k \ll aH) \approx \mathcal{R}_{c}(k = aH) = -\left(\frac{H}{\dot{\phi}} \delta\phi\right)(k = aH)$$

Curvature perturbation spectrum

• spectrum
$$P_{\mathcal{R}}(k) = \left(\frac{H^2}{2\pi\dot{\phi}}\right)_{k=aH}^2 = \frac{1}{2} \left(\frac{H}{2\pi M_P \varepsilon^{1/2}}\right)_{k=aH}^2$$

• spectral index

$$P_{\mathcal{R}}(k) = Ak^{n_{S}-1}; \quad n_{S} - 1 = M_{P}^{2} \left(2\frac{V''}{V} - 3\frac{{V'}^{2}}{V^{2}} \right) = 2\eta_{V} - 6\varepsilon_{V}$$

Liddle & Lyth ('92)

spectrum derived by 1st principle calculation Mukhanov (`85), MS ('86)

more elegantly derived a la Faddeev-Jackiw method Garriga, Montes, MS & Tanaka ('98)

generalized to k-inflation: $L = P(X, \phi)$; $X = -g^{\mu\nu}\partial_{\mu}\phi\partial_{\nu}\phi$ Garriga & Mukhanov ('99) • generalized action for \mathcal{R}_{C}

Garriga & Mukhanov ('99)

$$S = \int d\eta d^3x \frac{z^2}{2c_s^2} \Big[\mathcal{R}_C'^2 - c_s^2 k^2 \mathcal{R}_C^2 \Big]; \qquad z^2 = 3(1+w)a^2 M_P^2$$

 $c_s =$ sound velocity (=1 for canonical case)

canonical quantization:

$$\pi_{R} = \frac{\delta S}{\delta \mathcal{R}_{C}'} = z^{2} c_{s}^{-2} \mathcal{R}_{C}' \qquad \left[\mathcal{R}_{C}, \pi_{R}\right] = i\hbar \qquad \text{positive freq fcn} \\ \mathcal{R}_{C} = a_{\vec{k}} r_{k}(\eta) + a_{-\vec{k}}^{\dagger} r_{k}^{*}(\eta); \qquad r_{k} \to \frac{1}{\sqrt{2c_{s}k}} \frac{c_{s}}{z} e^{-ic_{s}k\eta} \quad (\eta \to -\infty) \\ \longrightarrow \qquad P_{\mathcal{R}}(k) = \frac{4\pi k^{3}}{(2\pi)^{3}} |r_{k}|_{c_{s}k|\eta|=1}^{2} = \frac{1}{3c_{s}(1+w)} \left(\frac{H}{2\pi M_{P}}\right)_{c_{s}k=aH}^{2} \\ \end{array}$$

Q2. Derive the above spectrum by performing canonical quantization as outlined above.

Starobinsky ('85)

$$N(\phi) = \int_{t(\phi)}^{t_{end}} H dt = \int_{\phi}^{\phi_{end}} \frac{H}{\dot{\phi}} d\phi$$

$$\implies \delta N(\phi) = \left[\frac{\partial N}{\partial \phi} \delta \phi\right]_{k=aH} = \left[-\frac{H}{\dot{\phi}} \delta \phi\right]_{k=aH} = \mathcal{R}_{c}$$

$$P_{\mathcal{R}}(k) = \left(\frac{H^2}{2\pi\dot{\phi}}\right)_{k=aH}^2 = \left(\frac{\partial N}{\partial\phi}\right)^2 \left|\varphi_k\right|_{k|\eta|=1}^2; \quad \left|\varphi_k\right|^2 = \left\langle\delta\phi_k^2\right\rangle = \left(\frac{H}{2\pi}\right)_{k=aH}^2$$

geometrical justification $\delta N = \sum_{A} \frac{\partial N}{\partial \phi^{A}} \delta \phi^{A}$ MS & Stewart ('96) NL generalization Lyth, Malik & MS ('04)

only knowledge of background evolution is necessary

Tensor Perturbation

 $\partial^i h_{ij}^{TT} = \delta^{ij} h_{ij}^{TT} = 0$: transverse-traceless

canonically normalized tensor field

$$S \sim \int d^4 x \sqrt{-g} \frac{1}{2} \left(\frac{\partial \phi_{ij}}{\partial t} \right)^2 + \cdots$$
$$\phi_{ij} \equiv \frac{1}{\sqrt{32\pi G}} h_{ij}^{TT} = \frac{M_P}{2} h_{ij}^{TT}; \quad M_P \equiv \frac{1}{\sqrt{8\pi G}}$$

$$\phi_{ij}(k;t) = \sum_{\sigma=+,\times} a_k^{\sigma} P_{ij}^{\sigma}(k) \varphi_k(t) + h.c.$$
$$\varphi_k(t): \text{ same as massless scalar}$$

• tensor spectrum

$$\sum_{\sigma} \left| \left\langle h_{ij}^{TT} \left| \vec{k}, \sigma \right\rangle \right|^2 = \frac{4}{M_P^2} \sum_{\sigma} \left| \left\langle \phi_{ij} \left| \vec{k}, \sigma \right\rangle \right|^2 = \frac{8 \left| \varphi_k \right|^2}{M_P^2} = 8 \left(\frac{H}{2\pi M_P} \right)^2$$

Starobinsky ('79)

··· valid for all slow-roll models with canonical kinetic term

$$r \equiv \frac{P_g}{P_s} \le 8 \left| n_g \right|$$

Comparison with observation

 Standard (single-field, slowroll) inflation predicts scaleinvariant Gaussian curvature perturbations.

CMB (WMAP) is consistent with the prediction.
Linear perturbation theory seems to be valid.

CMB constraints on inflation

Komatsu et al. '10

scalar spectral index: n_s = 0.95 ~ 0.98
tensor-to-scalar ratio: r < 0.15

28

However,....

 Inflation may be non-standard multi-field, non-slowroll, DBI, extra-dim's, ...

- PLANCK, ... may detect Non-Gaussianity (comoving) curvature perturbation: $\mathcal{R}_{C} = \mathcal{R}_{gauss} + \frac{3}{5} f_{NL} \mathcal{R}_{gauss}^{2} + \cdots; \quad f_{NL} \gtrsim 5?$
- B-mode (tensor) may or may not be detected. energy scale of inflation $H^2 \ge 10^{-10} M_{\text{Planck}}^2$? modified (quantum) gravity? NG signature?

Quantifying NL/NG effects is important