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Large-Scale Structure Lectures:

® Brief comments on shape of primordial spectrum
® Linear evolution of fluctuations
® Nonlinear Standard Perturbation Theory (SPT)

® Generation of non-Gaussianity (tree-level) and loop
corrections in P(k)

® Problems with SPT, Renormalized PT (RPT)

® Galaxy Bias (local and nonlocal), Redshift-Space
distortions
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Gaussian Fluctuations become non-Gaussian
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420x420x40 h-'Mpe slice 72=9.26
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Andreas Berlind (Las Damas)
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®Dwarf Galaxies 40x40x40 h~'Mpc region 72=9.26

O Massive Calaxies
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Homogeneous and Isotropic Universe

Coordinates:

Metric:

ds® = dt* — a*(t)

k = 0(flat), 1(closed), —1(open)
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rphys = a(t) T
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Symmetries (plus no bulk viscosity) require for each component a stress-
energy (in rest frame of fluid):

T} = diag(p, —p, —p, —p)
“Equation of state: p=wp

Friedmann Equations

a\ 2 STl
(—) = H* = 9 (PDM + PDE + ,URAD)

A s
— T3 Z(P +3p):

Q| S

1
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Stress-Energy Conservation |. Background

DM: w=0 pxa®

VAC: w= -1 p x const.
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RAD: pxa*— H?>xa?*— a(t) «t!/?

1
Hubble time/radius = H ™' X a’(t)

MAT: pxa®— H?>xa 3 — a(t) o« t?/3

1
H ' X a2 (1)

VAC: H™!=const. — a(t) oc e™?
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Describing Fluctuations at Sub-Horizon Scales

Density Field: p(x,t) = p(t) [1+(x,t)]

Spatial Fluctuations

average @
<>

Stress-Energy Conservation

T

Velocity Field: V=H()r+v(x,t)

Hubble Fluctuations
Flow
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Stress-Energy Conservation |l. Fluctuations

5T;’L;V:O
00
b (1 =
5,T—|—V (14+9)v]=0
ov
— 4+ Hv+v - Vv=-VOD
oT
. 2 3, 0
Poisson (€2, = 1) : V¢:§H5

V.-v=-HO, H = Ha
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Linear Evolution of Fluctuations

Linearize in perturbation amplitudes

\Ija — (5> — Gab ¢b

a/3 2 a~3/2 /-2 2
Gab:_
5\3 2 5 3 —3

The two eigenmodes correspond to growing and decaying
modes
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During RAD era, equations for the DM fluctuations can be
obtained from MAT by changing,

p—pPt+DP

The presence of substantial radiation makes the universe
expand so fast that density perturbations only grow as

0(k) ~ In(a)
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To get a feeling for what the shape of the power spectrum
means in practice, remember that it just measures the
square amplitude of Fourier coefficients as a function of
wavenumber. Say, if

P(k) ~ k"

If spectral index is “negative”, then distribution is dominated
by long wavelengths

If spectral index is “positive”, then distribution is dominated
by small wavelengths
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One realization of n=-2 one-dimensional Gaussian Random Field
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One realization of n=0 one-dimensional Gaussian Random Field
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Gaussian vs Non-Gaussian Information
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The two distributions have about the same Power Spectrum!
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Three-point statistics are the lowest order measure of the shape of structures
(filaments, walls, halos) generated by gravitational instability.

- Indeed, with two points one can only form a single shape: a line

- Three-points form a triangle, so we got different triangle shapes we can
compare, for example collinear triangles with equilateral triangles,

If filamentary structures are predominant, then the three-point amplitude (Q)
should be larger for collinear triangles than equilateral (or isosceles).

- A limitation of three-point statistics is that three points always form a plane. In
order to better probe the “three-dimensional” shape of structures, one needs to
go to the four-point function.
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The two distributions can be distinguished easily by higher-order correlations!
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Another application is to calculate non-linear corrections to the power
spectrum due to mode-mode coupling,

Pk,7) =Pk, 7)+ PY(k,7)+ ...,

pWY (k,T) = [D'i”]g PL{JIC:I, (just an overall scaling)

pY (k,7) = Pos(k,T) + Pia(k, 7), (changes the shape)

Pao(k, ) =2 f[FLE”{k — 4, q)2Pe(|k — q|, 7)Py(q, T)d3q,

Pua(k,7) =6 f F®(k, q, —q) Py (k, )Py (g, T)d%q.

These corrections become important at scales where density perturbations of
order unity, i.e.

A(k) = 4rk’P(k) ~ 1

However, it depends strongly on spectral index and it differs for velocities...
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At high-z nonlinearities are strong (density field power)
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For sufficiently positive n,

nonlinear growth is always SMALLER than linear!
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Standard Perturbative Approach to Gravitational Clustering

- The Universe is homogeneous at large (Hubble) scales. Fluctuations become
larger as small scales are approached.

- In standard perturbation theory (PT), one expands in the amplitude of density
perturbations.

- This is well justified when looking for asymptotic behavior at large-scales,
where fluctuations become small. PT at these scales is successful in predicting
N-point correlation functions.

- In diagrammatic language, where a given topology uniquely describes the size of
contributions in terms of the amplitude of fluctuations, such calculations are
obtained by “tree” diagrams.
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power spectrum: linear PT vs. N-body simulations
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- How about nonlinear corrections (“loop” diagrams) to tree-level results?
- Once these become important, one basically needs to sum up all orders in PT

(i.e. number of loops) to obtain meaningful answers, since the expansion
parameter becomes of order unity or larger.

P(ka Z) — D-2|-(Z) P0<k) + Plloop(ka Z) + P2100p(k, Z) + ...

Plloop ~ O(Plin Alin)y P2loop ~ O(Plin AQ )7 Alin = 47Tk3PIin

lin

- For the power spectrum (N=2), taking into account just one-loop corrections
to the linear spectrum works well for steep spectra but not so well for CDM
spectra at z=0.

- Similar results hold for the bispectrum (N=3).
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“linear” (large) scales non-linear regime
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Why do we care! : Extracting cosmological information requires
understanding of nonlinearities

- Knowledge of the transition to the nonlinear regime helps significantly in
constraining the growth factor and therefore e.g. constraints dark energy or
modifications of general relativity.

- Studies of baryon acoustic oscillations imprinted on the dark matter power
spectrum can be used to determine the angular diameter distance, which
constraints the expansion history of the universe. However, these acoustic
signatures are modified by weakly nonlinear evolution.

- Nonlinearities play an important role in the determination of cosmological
parameters from large-scale structure surveys. Our inability to model them
accurately puts a limit to the cosmological information we can extract.
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Why not just use N-Body simulations!?

Simulations are extremely useful and rely on approximations that do not assume
small fluctuations. However, there are benefits in having a complementary
approach:

- Successful comparison reinforces validity of both, and differences lead to
understanding of limitations of one method over another.

- Interplay between simulations and analytic results (e.g. as in fitting formulae)

- Physical insight and understanding of details difficult to extract from complex
simulations.

- Computational cost is large for scanning over cosmological parameter space.

- Simulations make truncations of dynamics: finite box size and particle number,
generation of initial conditions.
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Renormalized Perturbation Theory (RPT)

- In RPT, one looks at the infinite series of diagrams in PT for correlation
functions and sees how they organize themselves into a few characteristic
physical quantities, the most important of which is the propagator

Final density / velocity div.

|
0V, (k, 77)>
09y (k')

T

Initial Conditions

Gab(kaﬁ) 5D(k — k/) — <

where

U, (k,n) = (5(1@ n), —9(kﬂ7)/H>, n=1Ina(r).
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Equations of motion can be written as,

877\Ifa(k, 77) + Qabqu(k7 77) — /yabc(ka k17 kg)\ljb<k1, n)\IjC(k27 77)

Laplace transform in time variable, (O';bl (W) = wdap + Lap)
~©) dwl
a,b ( ) \Ifb(k w) ¢a(k) a,bc k kl,kg —_— \Ifb kl,wl)\IJC(kQ,w —wl),

T

Initial Conditions

then going back to time,

n
U, (k,n) = gap(n)dp(k) + / A1’ gan(n — 7)) (K, Ky, ko) We (ke , ') Wa(ko, 1
0

Diagrammatically:

k k k k
no O mn v n 2 M
2(m) d(k)
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The propagator is a measure of the memory of initial conditions, and reduces to
the usual growth factors in linear theory,

e 3 2 e~ 3n/2 | _9 9

gab(n) — g 3 9 o T 3 -3 |’
growing mode decaying mode
¢a(k) oc (1,1) ¢a(k) oc (1, -3/2)

At smaller scales this receives nonlinear corrections that drive the propagator to
zero (the final condition “does not remember” the initial condition).

Once these terms are resummed into the nonlinear propagator, the rest of
the diagrams (still an infinite number) can be thought of as the effects of
mode-coupling,

- they measure generation of structure at small scales

- they dominate in a narrow range of scales, drastically improving convergence
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Measuring the Propagator from Numerical Simulations

A. From the Cross-Corrrelation:

For Gaussian initial conditions, the nonlinear propagator can be related to the
cross-correlation between initial and final conditions,

Gap (k) (dp(k)de(k)) = (Va(k,n) pe(k)).

In this sense the propagator measures the memory of perturbations to their
initial conditions.

B. From the Functional Derivative:

The definition involves,

SUu(k) _ Wolon(k) + eop(k — K] — Wy[on(K)]
5(bb(k’) e—0 € .

This is impractical, but doable assuming ergodicity.
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Both methods give the same answer!

O : cross-correlation

X : functional derivative (Gs5,Go) = Gap (1,1)p = (G11 + G12,G21 + Ga23)
i 1 1 1 I | II 1 1 1 I | II ] i 1 1 1 I LI I 1 1 1 I | II ]
L g— & = L —
0B — — 08— —
= 0.8 - 7 o~ 0.8 - -
= s

M 1 & [ |
Y o4 % - Y o4 —
| , i i i
0.2 w0 — 02 - ?% —
o one-loop PT k o %h-n
i 1 Lo el 1 1 L Lol | i 1 I e 1 L Lol |

.01 0.05 a.1 0.5 1 001 0405 a.1 0.5 1

k [ Mpe1] k [h Mpe-1]

FIG. 4: The density (left panel) and velocity divergence (right panel) propagators at redshift = = 0 from initial
conditions at = = 5 (corresponding to 'y = 4.68). The symbols represent measurement in numerical simulations,
from implementation of the functional derivative [crosses) and from the relation to the cross-correlation coefficient
(circles). The solid lines show the predictions of one-loop PT, Eq. (28).
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Calculating the Propagator in RPT

In the exact dynamics the resummation of the propagator can be calculated,
though it is much more difficult than in ZA.

Let me just sketch how it is done.

Diagramatically, the PT expansion looks like:

k k k k k /
TR ¥ n 2 n N B
gm) (k)

FIG. 3: Diagrams up to order n = 4 in the series expansion of W(k,n).
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Power Spectrum

'1G. 5: Diagrams for the correlation function F,p(k,n) up to two-loops (only 7 out of 20 two-loop diagrams a
hown here). The dashed lines represent the points at which the two trees representing perturbative solutions to 1
nd W have been glued together.
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Propagator

(Z)

)

(11}

16 16

FIG. 2: Diagrams for the non linear propagator G(k,n) up to two loops.

Let’s see how the dominant contributions arise...
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The dominant contributions have the simplest ramification possible in terms of
initial conditions (that’s why the cross-correlate the most):

piq;) T
942 q :
ko k) k k
n n e/ &
gl gis,— 5

The dominant contributions can be resummed exactly in high-k limit!

This is so because in the high-k limit the interaction vertex simplifies, and these
diagrams have a very simple time dependence, with all propagators from initial
conditions being in the purely growing mode.

These results can be extended for higher-point versions of the propagator.
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. - &~ < a4 ~subdominant loo
dominant locp \A\ ®“ | P
\ . .
k ’ ‘ k:
Gab(k) = 7y Y 41—"|5rrrmﬂ11'l'rrre-
\ / :
dominant loqp _’» '

Oy T /®§ubdominant loop :

Fc(z?l)))cd(kh ko, k3) -

FIG. 2: Example of diagrams contributing to Gau(k) (top)

and FS?C ;(k, k1, ko, ks) (bottom). The dominant contribution
after resuming all possible configurations is expected to come
from those diagrams where all loops are directly connected
to the principal line (top) or principal tree (bottom). The
principal line and tree are drawn with a thick solid line. A
symbol ® denotes a power spectrum evaluated at initial time
Min- 1The dominant loops are those drawn by dashed lines,
while the sub-dominant loops are those in dotted lines.
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For kgvD+ > 1

G(k,z) ~ Dy(z) exp [— %ngg (D+(z) — 1)2},

1 P,
0-121 o / O(Q) d3Q7

3 q>

Dy (2)o,]" ' =0.15,0.24,0.46 hMpc™" at 2=0,1,3

Notice this scale is rather large (thanks to the shape of CDM spectrum), so
scales much smaller than this have exponentially small influence on large scales.

This " “separation of scales” is crucial for successful modeling of BAO.

In order to recover the propagator for all scales, we match this asymptotic result
to the low-k limit (one-loop correction) by regarding the one-loop propagator
as the power series expansion of a Gaussian.
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Comparison between predicted G(k) and N-Body Simulations
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In std N-body simulations (with ICs set in the growing mode, phi+ ~ (I,1)) we
can only measure the following combinations,

Gapdp =1{Gs,Go }

To measure the each matrix element we must set initial conditions for density

and velocities using different (uncorrelated) random Gaussian fields.
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Testing the fundamentals of Propagator Resummation
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For the power spectrum, RPT reorganizes the PT expansion,

P(]{?,Z) D —|—P1100p ]{7 Z —|—P2100p ]{7 Z)

into, \u//>< /

G2 k,z) Py(k) + Puc(k, 2)
with,
Pk, 2) = PP (k, z) + PP (k, 2) + . ..

Thus, non linear effects can be divided (exactly) into two classes,

- those that are proportional to the initial power at same k.

- those that create power at k even if there was no power to begin
with (mode-coupling)

The two-pt function can be written as,

5(747 Z) — [GQ ® 50](T7 Z) + fMC(Tv Z)v

Tuesday, July 17, 2012



The Power Spectrum in RPT
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The Two-Point Function in RPT

[ILELL | L | L | L | [ILELL | | L | L | L | |
B linear
100 - N_ | -
N | ]
B | _
|— I —
!
B | i
!
[ Damping in Fourier 2 |
- Space Leads to G ®$O |
broadening (and shift) !
i of acoustic peak | i
o |
b |
107 = I —
5 l §
- | -
u | -
| Moc{le-coupling i
i ge:nerates a |
shift jof the peak
B : i
!
!
10—5 1 1 1/1 | I | L1 1 1 | I I | | I l L 11 1 | L1 1 1 | I I | | |
80 85 90 95 100 105 110 115 120

r [Mpc/h]

Tuesday, July 17, 2012



100

10

P(k)

0.1

0.01

Tuesday, July 17, 2012
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RPT expansion (schematic)
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Explicit calculation of Mode-Coupling power to 2-loops in RPT
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Nonlinear Evolution of the Power Spectrum and Acoustic Oscillations

- Can use acoustic oscillations imprinted in the dark matter power spectrum as
a probe of expansion history (to get to dark energy / modified gravity).

- This “ruler”, however, gets modified due to nonlinearities

Challenge: 1% error on sound horizon (~wiggle positions)
induces about 5% error on w
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P <k>/Psmooth

1:)(k>/1:)smooth

Tuesday, July 17, 2012

1.8
1.6
1.4
1.2

0.8

1.8
1.6
1.4
1.2

0.8

Power Spectrum: Dependence on Cosmology

Fiducial (Q_ = 0.27)

™

—IIIII|IIII|III}|IIII|IIII| III|

b

—IIIII|IIII|IIII|\IIII|IIII|III




Power Spectrum: Dependence on Cosmology
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Beyond the pressure-less perfect fluid approximation (PPF)

Overdensity
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FIG. 4 (color online). Time dependence of the divergence and
vorticity power spectra. The divergence power spectrum at z = 1
and z = 3 are linearly extrapolated to z = 0 for comparison. The
vorticity power spectrum was similarly scaled using Eq. (3) with
n,, = 7. In the nonlinear regime, both divergence and vorticity
grow slower than the large-scale extrapolation.
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FIG. 9 (color online). Correction to the PPF approximation for
the velocity divergence (three top lines) and density power
spectrum (three bottom lines) due to velocity dispersion at red-
shifts z =0 (solid lines), z = 0.5 (dashed lines) and z =1
(dotted lines). Note that the actual correction is negative in all
cases, we plot their absolute values. These corrections are
computed in linear theory, Egs. (45) and (48), thus extrapolation
well beyond k ~ 0.12 Mpc~! is only illustrative.

Impact of scalar modes
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FIG. 11 (color online). Corrections to the density power spec-
trum at z =0 due to stress tensor vector modes (vorticity
effects); see Egs. (67) and (68). Note that the AP5 contribution
(long dashed lines) is negative and larger in magnitude than the
AP,, contribution (short dashed lines). The total correction
(solid lines) is negative and reaches 1% of the linear spectrum
(top dotted lines) at k ~ 1h Mpc~!, where further nonlinear
effects not included here should become important.
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Bias: From Dark Matter to Galaxies

The process that gives rise to the luminous galaxies we see in galaxy surveys is
complicated and not yet fully understood, involving nontrivial effects from
hydrodynamics and radiative transfer, among other things.

However, for the purpose of studying galaxy clustering there are many details of

galaxy formation that are not needed, particularly if one is interested in the
distribution at large scales (since gravity is the only long-range force).

- How different is the clustering of galaxies observed in surveys from the dark
matter clustering we measure in numerical simulations!?
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Galaxy bias
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The Local Bias Model

When smoothed on sufficiently large scales R the relationship between galaxies
and dark matter becomes a local mapping of fluctuations

0g (z) = f(6" (2))

Thus at large scales the relationship between galaxies and dark matter can then
be approximated by,

b2

0g ~= b10 + —52 b3

53

and then one can use this to calculate galaxy correlation functions, e.g. the power
spectrum,

P,(k) =biP(k) +...
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Bias parameters measured from halo-matter scatter plots:
- go to constants in the large-scale (large R) limit

- “run” with R at small scales

Alternatively, one can measure the bias parameters in Fourier space, by using
higher-order correlations (comparing the tracer bispectrum to the matter
bispectrum)

This is more practical than scatter plots for observations (where no scatter plot
can easily be constructed)
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Bias Parameters from Large-Scale Correlations

One can use higher-order correlation functions to determine the bias
parameters. The three-point function (bispectrum) can be estimated by,

Bio3 /dgaz Ok, (X)0k, (X) 0k, (X)

When suitably normalized, it depends only on galaxy bias and spectral index,

B Bi2s
Qp =
PP+ PoPs + P3Py
b
QB = _QB + b;
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Bispectrum analysis of local bias
TABLE II. Local Eulerian bias parameters b1 and b2 obtained
from halo-matter-matter bispectrum fits for all triangles with
k < 0.1 hMpc~t. We also include the large-scale bias by ob-
tained from the halo-matter power spectrum, to be compared
with b1. The last column indicates the goodness of the fit
assuming a diagonal covariance matrix (Ngor = 148).

Sample b« b1 b2 x> /dof
LMz0  1.43 1424001 —0914+0.03  1.86
MMz0 175 1.71+0.01 —055+0.03  1.29
HMz0 — <C2.66 +0.02> 2.98+0.07 3.74
LMz0.5 1.77 4 0.0T~_—0.15+ 0.03  0.91

MMz0.5 2.13 £0.01 0.67 =0.03 0.87
HMz0.5 2.84 0.0 5.89 =0.10 3.77
LMz1 2.22 0.0 1.27 £ 0.04 0.89
MMz1 2.62 £0.02 2.77 = 0.06 1.07
HMz1 3.41 £ 0.07 9.98 = 0.14 3.42
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Is local bias stable under time evolution?

Suppose at some time t*, objects form with local bias,

* 1k bS 2 bE; 3
Gy = b0+ 202+ Dol

As time goes on, does bias stay local?

The answer is (a resounding) no!

0, ¢ = 712G (Py)(1+ B9)
6
+ 3 (g3((1)v) + - 92(i>§1>, (I)ZLPT)) + ...

QQ(CI)V) — (vijq)\f)z — (V2CI>V)2,
G3(®,) = (V*®,)° +2V;®, V1@,V @, — 3(V,;0,)* VD,
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of constant Jp,

linear bias ~ | .4
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linear bias ~ 4
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Bispectrum analysis of non-local bias

TABLE IV. Eulerian bias parameters b; and b2 and non-local
~v2 parameter obtained from doing a quadratic non-local bias
model fit to the bispectrum. For comparison purposes, note
that a non-zero 2 gives an effective —(4/3)~2 contribution to
b2 (see top panel in Fig. 8). Here Ngor = 147.

Sample by b1 bo Yo x*/dof
LMz0 1.43 1.42+0.02 —0.92 £0.08 —0.01 £0.03 1.87
MMz0 1.75 1.76 & 0.02 —0.81 £0.08 —0.10 £0.03 1.19
HMz0 2.66 2.61 =20.04 1.714+£0.18 —0.484+0.06 2.74
LMz0.5 1.88 1.83 £ 0.02 —0.46 & 0.09 —0.12 4+ 0.03 0.84
MMz0.5 2.26 2.24 +0.02 0.054+0.09 —-0.24+0.03 0.67
HMz0.5 3.29 3.16 = 0.06 4.10 4+ 0.28 —0.7040.10 2.91
LMzl 2.43 2.35+0.03 0.57+0.13 —0.284+0.05 0.74
MMz1 2.86 2.80+0.03 1.70£0.16 —0.42+0.06 0.80
HMz1 3.99 3.84 +£0.08 7.55+£0.41 —-0.96+0.16 2.73
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Impact of non-local bias on the power spectrum
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Redhift Distortions

Squashing Effect
effects large scales ~10'sMpc

Velocity-Dispersion Effect
(aka Finger of God)
effects small scales ~ few Mpc
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clustering in redshift-space is

anisotropic!

Anisotropy has info on
velocities, thus gravity

Fig. by Eyal Kazin



An exact relationship between real and redshift-space clustering:

4
\%
O
-
redshift-space ry o SaTSPace
: ol separation
separation
O
vv\. !
rp =51
1+ &s(s),8L) = / dry [1+&(r)] P(ry — s),r), RS.(2004)
—© ——
Vp

Everything is encoded in the pairwise velocities PDF.
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These are incorporated into the so-called “dispersion model”, for the power
spectrum,

1

P, — P 1 2)?
(k‘,,LL) g(k) ( _|_6:u ) 1_|_k2u20_g/27

which is used to constrain cosmological parameters from redshift surveys.
Anisotropy depends on degenerate combination, at large scales

f 2

= ku=k,, o, = pairwise velocity dispersion
1

- f is the most interesting part: it depends on gravity (but not only!), e.g.

F=9Q1, ~=~0.56 (GR), 0.68 (DGP)

- b1 is the linear bias (that relates matter to galaxy clustering). From latest BOSS
data, after using CMB, f=0.41+-0.03 (z=0.57) consistent with LCDM+GR: f
=0.45+-0.02 (Reid et al 2012)
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Redshift-space power spectrum contours
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effect of redshift-space distortions on higher-order moments
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