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Large-scale Structure - Lecture Note 1



• Brief comments on shape of primordial spectrum

• Linear evolution of fluctuations

• Nonlinear Standard Perturbation Theory (SPT)

• Generation of non-Gaussianity (tree-level) and loop 
corrections in P(k)

• Problems with SPT, Renormalized PT (RPT)

• Galaxy Bias (local and nonlocal), Redshift-Space 
distortions

Large-Scale Structure Lectures:
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z=18.3(t=0.21Gyr) Volker Springel (Millenium)
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z=5.7 (t=1.0Gyr)
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z=1.4 (t=4.7Gyr)
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z=0 (t=13.6Gyr)
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δ = 0

δ < 0

δ > 0

Gaussian Fluctuations become non-Gaussian
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Andreas Berlind (Las Damas)
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Coordinates:

Physical
Coordinate

Comoving 
Coordinate

Scale 
Factor

Friedmann 
Equations

Homogeneous and Isotropic Universe

Metric:

ds
2 = dt

2
− a

2(t)
[

dr2

1 − kr2
− r

2
dΩ

]

= a
2(τ)

[

dτ
2
−

dr2

1 − kr2
− r

2
dΩ

]

rphys = a(t) r

Conformal 
Time

k = 0(flat), 1(closed),−1(open)
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Friedmann Equations

( ȧ

a

)2

= H2
=

8πG

3

(

ρDM + ρDE + ρRAD

)

Symmetries (plus no bulk viscosity) require for each component a stress-
energy (in rest frame of fluid):

Tµ

ν = diag(ρ,−p,−p,−p)

ä

a
= −

4πG

3

∑

i

(ρ + 3p)i

p = w ρ“Equation of state”:
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Stress-Energy Conservation  I. Background

T
µν

;ν = 0 d(ρa3) = −pd(a3)

ρ ∝ a
−3(1+w)

DM : w = 0 ρ ∝ a
−3

RAD : w =
1

3
ρ ∝ a

−4

VAC : w = −1 ρ ∝ const.
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RAD : ρ ∝ a−4
→ H2

∝ a−4
→ a(t) ∝ t1/2

MAT : ρ ∝ a−3
→ H2

∝ a−3
→ a(t) ∝ t2/3

Hubble time/radius = H−1
∝

1

t
∝ a2(t)

H
−1

∝

1

t
∝ a

3/2(t)

VAC : H
−1 = const. → a(t) ∝ eHt
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Describing Fluctuations at Sub-Horizon Scales

ρ(x, t) = ρ̄(t) [1 + δ(x, t)]

Spatial
average

Fluctuations

Density Field:

Stress-Energy Conservation

Velocity Field: V = H(t) r + v(x, t)

FluctuationsHubble
Flow
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δT
µν

;ν = 0

Stress-Energy Conservation  II. Fluctuations

∂δ

∂τ
+ ∇ · [(1 + δ)v] = 0

∂v

∂τ
+ Hv + v · ∇v = −∇Φ

Poisson (Ωm = 1) : ∇
2Φ =

3

2
H

2
δ

∇ · v ≡ −HΘ, H ≡ Ha
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Linear Evolution of Fluctuations

Linearize in perturbation amplitudes

Gab =
a

5

(

3 2

3 2

)

−

a−3/2

5

(

−2 2

3 − 3

)

Ψa ≡

(

δ

Θ

)

= Gab φb

The two eigenmodes correspond to growing and decaying 
modes
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During RAD era, equations for the DM fluctuations can be 
obtained from MAT by changing,

ρ̄ → ρ̄ + p̄

The presence of substantial radiation makes the universe 
expand so fast that density perturbations only grow as 

δ(k) ∼ ln(a)
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MatterInflation

Mode enters 
during RAD

Mode enters 
during MAT

ae(k) aeq

Radiation
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keq
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Tegmark et al. (2003)
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To get  a feeling for what the shape of the power spectrum 
means in practice, remember that it just measures the 

square amplitude of Fourier coefficients as a function of 
wavenumber. Say, if 

P (k) ∼ k
n

If spectral index is “negative”, then distribution is dominated 
by long wavelengths

If spectral index is “positive”, then distribution is dominated 
by small wavelengths
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One realization of n=-2 one-dimensional Gaussian Random Field

First 25 Fourier modes

First 50 Fourier modes
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First 25 Fourier modes

First 50 Fourier modes

One realization of n=0 one-dimensional Gaussian Random Field
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n = −2 n = −1.5

n = −1 n = 0

Sm
ith

 e
t 

al
. (

20
03

)
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Gaussian vs Non-Gaussian Information
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The two distributions have about the same Power Spectrum!
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Three-point statistics are the lowest order measure of the shape of structures 
(filaments, walls, halos) generated by gravitational instability.

- Indeed, with two points one can only form a single shape: a line

- Three-points form a triangle, so we got different triangle shapes we can 
compare, for example collinear triangles with equilateral triangles,

If filamentary structures are predominant, then the three-point amplitude (Q) 
should be larger for collinear triangles than equilateral (or isosceles).

- A limitation of three-point statistics is that three points always form a plane. In 
order to better probe the “three-dimensional” shape of structures, one needs to 
go to the four-point function.
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The two distributions can be distinguished easily by higher-order correlations!
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Baugh, Gaztanaga and Efstathiou (1995)

Tuesday, July 17, 2012



Bernardeau (1994)
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Another application is to calculate non-linear corrections to the power 
spectrum due to mode-mode coupling,

These corrections become important at scales where density perturbations of 
order unity, i.e.  

∆(k) ≡ 4πk
3
P (k) " 1

However, it depends strongly on spectral index and it differs for velocities...

(just an overall scaling)

(changes the shape)
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density-density

density-velocity

velocity-velocity

N-body Simulation

Perturbation Theory

“linear” (large)  scales non-linear regime
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At high-z nonlinearities are strong (density field power)

z=3

linear spectra

nonlinear spectra

critical n=-1.4 
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For sufficiently positive n,  nonlinear growth is always SMALLER than linear!

Colombi, Bouchet and Hernquist (1996)
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Standard Perturbative Approach to Gravitational Clustering

- In standard perturbation theory (PT), one expands in the amplitude of density 
perturbations.

- This is well justified when looking for asymptotic behavior at large-scales, 
where fluctuations become small.  PT at these scales is successful in predicting 
N-point correlation functions.

- In diagrammatic language, where a given topology uniquely describes the size of 
contributions in terms of the amplitude of fluctuations, such calculations are 
obtained by “tree” diagrams.

- The Universe is homogeneous at large (Hubble) scales. Fluctuations become 
larger as small scales are approached.
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power spectrum: linear PT vs. N-body simulations

N-body

linear

non-linear regime
“linear” (large)  scales
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- For the power spectrum (N=2), taking into account just one-loop corrections 
to the linear spectrum works well for steep spectra but not so well for CDM 
spectra at z=0.

- Similar results hold for the bispectrum (N=3).

- How about nonlinear corrections (“loop” diagrams) to tree-level results? 

- Once these become important, one basically needs to sum up all orders in PT 
(i.e. number of loops) to obtain meaningful answers, since the expansion 
parameter becomes of order unity or larger.

P (k, z) = D2
+(z) P0(k) + P1loop(k, z) + P2loop(k, z) + . . .

P1loop ∼ O(Plin ∆lin), P2loop ∼ O(Plin ∆2
lin), ∆lin ≡ 4πk3Plin
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density-density

density-velocity

velocity-velocity

non-linear regime“linear” (large)  scales

one-loop PT

N-body
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Why do we care? :  Extracting cosmological information requires 
understanding of nonlinearities

- Knowledge of the transition to the nonlinear regime helps significantly in 
constraining the growth factor and therefore e.g. constraints dark energy or 
modifications of general relativity.

- Studies of baryon acoustic oscillations imprinted on the dark matter power 
spectrum can be used to determine the angular diameter distance, which 
constraints the expansion history of the universe. However, these acoustic 
signatures are modified by weakly nonlinear evolution.

- Nonlinearities play an important role in the determination of cosmological 
parameters from large-scale structure surveys. Our inability to model them 
accurately puts a limit to the cosmological information we can extract.
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Why not just use N-Body simulations?

- Successful comparison reinforces validity of both, and differences lead to 
understanding of limitations of one method over another.

- Interplay between simulations and analytic results (e.g. as in fitting formulae)

- Physical insight and understanding of details difficult to extract from complex 
simulations.

- Computational cost is large for scanning over cosmological parameter space.

- Simulations make truncations of dynamics: finite box size and particle number, 
generation of initial conditions.

Simulations are extremely useful and rely on approximations that do not assume 
small fluctuations. However, there are benefits in having a complementary 
approach:
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- In RPT, one looks at the infinite series of diagrams in PT for correlation 
functions and sees how they organize themselves into a few characteristic 
physical quantities, the most important of which is the propagator

Renormalized Perturbation Theory (RPT)

Ψa(k, η) ≡

(

δ(k, η), −θ(k, η)/H

)

, η ≡ ln a(τ).

where

Final density / velocity div.

Initial Conditions

←
−

←
−

φa(k) = Ψa(k, η = 0)

Gab(k, η) δD(k − k
′) ≡

〈

δΨa(k, η)

δφb(k′)

〉
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∂ηΨa(k, η) + ΩabΨb(k, η) = γabc(k,k1,k2)Ψb(k1, η)Ψc(k2, η)

Laplace transform in time variable,               (                                 )

σ−1
ab

(ω) Ψb(k, ω) = φa(k) + γ
(s)
abc

(k,k1,k2)

∮
dω1

2πi
Ψb(k1, ω1)Ψc(k2, ω − ω1),

Initial Conditions

←
−

σ
−1

ab
(ω) ≡ ωδab + Ωab

Ψa(k, η) = gab(η)φb(k) +

∫ η

0
dη′gab(η − η′)γ(s)

bcd(k,k1,k2)Ψc(k1, η
′)Ψd(k2, η

′),

then going back to time, 

Equations of motion can be written as,

Diagrammatically:
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gab(η) =
eη

5

[

3 2
3 2

]

−

e−3η/2

5

[

−2 2
3 −3

]

,

The propagator is a measure of the memory of initial conditions, and reduces to 
the usual growth factors in linear theory,

Once these terms are resummed into the nonlinear propagator, the rest of 
the diagrams (still an infinite number) can be thought of as the effects of 
mode-coupling,

- they measure generation of structure at small scales

- they dominate in a narrow range of scales, drastically improving convergence

At smaller scales this receives nonlinear corrections that drive the propagator to 
zero (the final condition “does not remember” the initial condition).

growing mode
φa(k) ∝ (1, 1)

decaying mode
φa(k) ∝ (1,−3/2)
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A. From the Cross-Corrrelation:

For Gaussian initial conditions, the nonlinear propagator can be related to the 
cross-correlation between initial and final conditions,

Gab(k, η) 〈φb(k)φc(k
′)〉 = 〈Ψa(k, η) φc(k

′)〉.

In this sense the propagator measures the memory of perturbations to their 
initial conditions.

Measuring the Propagator from Numerical Simulations

B. From the Functional Derivative:

The definition involves,

δΨa(k)

δφb(k
′)

= lim
ε→0

Ψa[φb(k) + ε δD(k − k
′)] − Ψa[φb(k)]

ε
.

This is impractical, but doable assuming ergodicity.
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Both methods give the same answer!

:  cross-correlation

:  functional derivative

one-loop PT

characteristic scale

(Gδ, Gθ) = Gab (1, 1)b = (G11 + G12, G21 + G22)
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In the exact dynamics the resummation of the propagator can be calculated, 
though it is much more difficult than in ZA.

Diagramatically, the PT expansion looks like:

Let me just sketch how it is done.

Calculating the Propagator in RPT

Tuesday, July 17, 2012



Power Spectrum
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Propagator

Let’s see how the dominant contributions arise...
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The dominant contributions can be resummed exactly in high-k limit!

This is so because in the high-k limit the interaction vertex simplifies, and these 
diagrams have a very simple time dependence, with all propagators from initial 
conditions being in the purely growing mode.

These results can be extended for higher-point versions of the propagator.

The dominant contributions have the simplest ramification possible in terms of 
initial conditions (that’s why the cross-correlate the most):

Tuesday, July 17, 2012



4

In the large-k limit (to be better specified below) these
propagators enjoy a remarkable property. Indeed, in [3] it
has been shown that in this limit and for Gaussian initial
conditions, the nonlinear 2-point propagator Gab ≡ Γ(1)

ab
has a simple expression

Gab(k; η, η0) = gab(η, η0) exp
�
−k2σ2

d(e
η − eη0)2/2

�
,

(26)
where σ2

d is the variance of the initial displacement field.
Note that the linear propagator gab is simply the tree
level analog of Gab. This result has been generalized to
(n+ 1)-point propagators with n ≥ 2 in [5], where it has
been shown that

Γ(n)
ab1...bn

= Γ(n)−tree
ab1...bn

exp
�
−k2σ2

d(e
η − eη0)2/2

�
, (27)

where Γ(n)−tree is the corresponding propagator com-
puted at tree level.

The exponentiation in eqs. (26) and (27) has been ob-
tained in [2, 3] by summing up an infinite number of
diagrams thought to dominate in the large-k limit. In
order to identify which diagrams dominate in this limit,
the concept of principal line and its generalization for the
(n + 1)-point propagators, the principal tree, have been
introduced. In [3] it has been shown that each diagram
contributing to the nonlinear propagator Gab(k; η, η0) al-
ways contains a unique line that goes from some time η0
(symbolized by the vertical dotted line) to a final time
η. To this line may be attached loops containing power
spectra evaluated at an initial time ηin. This is illus-
trated in Fig. 2, upper panel. The principal line is the
unique way to go from η0 to η without crossing an initial
power spectrum ⊗, thus moving always in the direction
of increasing time. Similarly, for each diagram contribut-

ing to Γ(n)
ab1...bn

there always exists a unique tree with n
branches, the principal tree, that joins η0 to η (see bot-
tom diagram of Fig. 2) [5].

We can now specify under which assumption the rela-
tions (26) and (27) have been derived. These are:

• The multi-point propagators are dominated by
those diagrams in which every loop is directly con-
nected to the principal tree.

• The diagrams are computed and summed up in the
limit where the incoming wave modes qi are soft,
i.e. qi � k.

As we will show below, the eikonal approximation corre-
sponds exactly to the last assumption. It can incorporate
the first one if necessary.

C. Resumming the 2-point propagator with the
eikonal approximation

In [6] it has been shown that eqs. (26) and (27) can
be obtained irrespectively of the diagrammatic repre-
sentations and of the nature of the initial conditions.

k k

k

k1

k2

k3

Gab(k) =

Γ(3)
abcd(k1,k2,k3) =

FIG. 2: Example of diagrams contributing to Gab(k) (top)

and Γ(3)
abcd(k,k1,k2,k3) (bottom). The dominant contribution

after resuming all possible configurations is expected to come
from those diagrams where all loops are directly connected
to the principal line (top) or principal tree (bottom). The
principal line and tree are drawn with a thick solid line. A
symbol ⊗ denotes a power spectrum evaluated at initial time
ηin. The dominant loops are those drawn by dashed lines,
while the sub-dominant loops are those in dotted lines.

Indeed, the nonlinear fluid equations contain nonlinear
terms that couple short and long-wavelength modes. The
eikonal approximation corresponds to study the effect of
very long-wavelength modes q on the dynamics of a given
short-wavelength mode k, in the limit of q � k. In this
limit, space variations of the long-wavelength modes are
tiny with respect to the mode k, and the long modes
can be treated as an external random background. If we
neglect the mode couplings between short scales, the non-
linear fluid equations can be rewritten as linear equations
embedded in an external random medium.
Let us be more explicit here. Coupling terms are given

by a convolution of fields taken at wave modes k1 and
k2 such that k = k1 + k2. These nonlinear terms can
be split into two different contributions: the one coming
from coupling two modes of very different amplitudes,
k1 � k2 or k2 � k1, and the one coming from coupling
two modes of comparable amplitudes. In the first case,
the small wave modes ought to be much smaller than k
itself. Let us denote these small modes by q. In the limit
of q � k, the equations of motion (15) can be rewritten
as

∂

∂η
Ψa(k) + ΩabΨb(k) = Ξab(k)Ψb(k)

+ [γabc(k,k1,k2)Ψb(k1)Ψc(k2)]H ,
(28)

with

Ξab(k, η) ≡ 2

�

S

d3q γabc(k,k,q)Ψc(q, η) . (29)

dominant loop

subdominant loop
dominant loop

subdominant loop

subdominant loop
principal line
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G(k, z) � D+(z) exp
�
− 1

2
k2σ2

v

�
D+(z)− 1

�2�
,

k σvD+ � 1For

σ2
v ≡

1
3

�
P0(q)

q2
d3q,

[D+(z)σv]−1 = 0.15, 0.24, 0.46 h Mpc−1 at z = 0, 1, 3

Notice this scale is rather large (thanks to the shape of CDM spectrum), so 
scales much smaller than this have exponentially small influence on large scales.

This ``separation of scales” is crucial for successful modeling of BAO. 

In order to recover the propagator for all scales, we match this asymptotic result 
to the low-k limit (one-loop correction) by regarding the one-loop propagator 
as the power series expansion of a Gaussian.
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Figure 1. Two-point (nonlinear) propagator for the density field: model vs. measurements in n-body simulations at z = 0, 0.5, 1. The
model performs remarkably well at all redshifts shown. Dashed line shows the corresponding high-k limit. Lower panels show the ratio
of the measurements to the two different analytic descriptions.

Mention that this prescription coincides with RegPT at
one-loop ?

4.2 Mixed Mode Nonlinear Propagator

Let us now see how the prescription for the propagator (and
the high-k resummation) changes from the standard case
discussed above to the case of mixed mode initial conditions
introduced in Sec. 2.3, where the initial velocities and den-
sities are given by two independent random fields.

A good starting point is the analysis of the structure of
the one-loop contribution to Gab calculated from,

δG1−loop
ab = 4

Z η

0

ds1

Z s1

0

ds2gac(η − s1)γcde(k,q,k− q)

× gdf (s1)geg(s1 − s2)× γghi(k + q�,q�,k)

× ghj(s2) �φf (q)φj(q
�) � gib(s2)

where γabc is the vertex function in standard PT (see for
instance Eq. (22) in Crocce & Scoccimarro (2006a) for a
general derivation of this expression), since this is what then
gets exponentiated by the resummation procedure.

In the standard growing mode case the correlator of
initial conditions is,

�φf (q)φj(q
�) � = ufujP0(q)δD(q + q�), (17)

with u = (1, 1). For our mixed mode initial conditions we
have instead (see Sec. 2.3),

�φf (q)φj(q
�) � = δK

fjP0(q)δD(q + q�), (18)

where the Kronecker symbol δK
fj = 1 if f = j and 0 other-

wise. This means that instead of evaluating

gdf (s1)ghj(s2)ufuj = es1+s2uduh (19)

in the standard case (with s = ln a), we have to compute

gdf (s1)ghj(s2)δ
K
fj =

13
25

es1+s2uduh + decaying mode, (20)

where the decaying mode piece evolves as e−3(s1+s2)/2.
Therefore, neglecting the decaying mode contribution we see
that the overall effect of using independent random field ini-
tial conditions is to renormalize

{f(k), g(k)}→ 13
25

{f(k), g(k)} (21)

in Eqs. (14). This can be carried out to all orders leading to
the same high-k limit resummation as Eq. (16) except that

σ2
v →

13
25

σ2
v. (22)

Thus our model for the full propagator for mixed mode IC
is simply the one in Eqs. (15) with the replacement given in
Eq. (21).

In Fig. 2 we show the four different components of the
propagator measured in the simulations with mixed mode
initial conditions against predictions by the above model (in
solid blue) and the high-k asymptothic (in dashed black).
The propagator was measured following,

Gab(k) =
�Ψa(k)φb(−k)�

P0(k)
(23)

where now the initial conditions φb are different for density
(b = 1) or velocities (b = 2) according to Eq. (1). Reassur-
ingly all the four components follow the expected theoretical
decay towards small scales. This is an interesting and impor-
tant cross-check, in particular for resummation schemes such
as RPT, TimeRG or Closure Theory, that integrate the in-
dividual components separately despite the fact that until
now only “density” or “velocity” propagators were tested
against simulations.

4.3 3-point and 4-point propagators

The three-point propagator was introduced for the first time
by Bernardeau et al. (2008) and recently studied in detail in
Bernardeau et al. (2011). In the later work a general scheme

c� 2011 RAS, MNRAS 000, 1–10

Comparison between predicted G(k) and N-Body Simulations

In std N-body simulations (with ICs set in the growing mode, phi+ ~ (1,1)) we 
can only measure the following combinations,

Gabφb ≡ {Gδ, Gθ}

To measure the each matrix element we must set initial conditions for density 
and velocities using different (uncorrelated) random Gaussian fields.
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Testing the fundamentals of Propagator Resummation
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6 M. Crocce et al.
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Figure 2. Components of the Nonlinear propagator. We show for the first time the four individual components of the nonlinear

propagator (normalized to the linear growth factor) measured in dedicated simulations with mixed mode initial conditions. In our model

the decay of the density propagators Gδδ and Gδθ is given by exp[(13/25)f(k)D2
(z)] while for the velocity ones, Gθδ and Gθθ, by

exp[(13/25)g(k)D2
(z)], see Eqs. (15,21). Dashed lines show the reference decay obtained in the high-k limit exp(−k2σ2

v/2) (same for all).

to interpolate between small and large scales for any prop-

agator was proposed. A priori this scheme could also serve

to incorporate perturbative information to any loop order.

In particular, the prescription for the three-point prop-

agator is given by,

Γ(2)RegPT
a (k1,k2) =

h
Γ(2)Tree

(k1,k2) + δΓ(2)one−loop
(k1,k2)

+
1

2
k2σ2

vΓ(2)Tree
(k1,k2)

–
exp(−k2σ2

v/2)

(24)

where k = k1 + k2 (Do we mention time dependencies?).

The one-loop term in this expression is described in detail in

Bernardeau et al. (2011) and involves one integral over P0(q)
for each triangle configuration (k1,k2). Although Eq. (24)

gives a very good agreement with measurements in simula-

tions we have found that it usefulness to compute the one-

loop P (k) is limited because it takes long time to evaluate.

We hence seek an alternative prescription.

We have found that, in analogy to Eq. (16), the follow-

ing expression (k = k1 + k2)

Γ(2)
δ (k1,k2; z) = D2

+(z) F2(k1,k2) exp[f(k)D2
+(z)] (25)

yields very similar results to that in Eq. (24) and virtually

the same one-loop power spectrum after the corresponding

momentum integration. This is shown in Fig. 3 were mea-

surements of Γ(2)
for different triangle configurations are de-

picted together with the prediction by the model in Eq.(25)

in solid black (used throughout this paper) and RegPT from

Eq. (24) in dashed black. Left and Middle panels correspond

to equilateral with k1 = k2 = k3 = k (top left); colinear with

k1 = k2 = k/2 and k3 = k (top center); elongated (bottom

left) with k1 = k/2 and k2 = k3 = k ; and squezeed (bottom

center) k1 = k/4 k2 = k3 = k configurations
7
.

Notice that the theory is binned in the same way as

the data, this is essential to recover the correct asympthotic

behavior at low-k (see Bernardeau et al. (2011) for details

on the measurement estimator and the binning correction).

7
We assume the final (nonlinear) density field has wave-vector

k3 (last argument). Hence the three-point propagator is only sym-

metric with respect to the 1st and 2nd indices that corresponds

to the initial (linear) fields.

From these panels it is clear that both models perform

very well for all these configurations with a slight over-

prediction by Eq. (25) for squeezed configurations.

In addition the right panels of Fig. (3) show the same

comparison for the configuration that would yield the dom-

inant contribution to the one-loop computation of P (k).

From Eq. (2) we see that the one-loop power spectrum

is of the form

P 1−loop
(k) ∼ 4π

k

Z
P0(q1)q1dq1

Z
P0(q2)q2dq2

×
h
Γ(2)

δ (q1, q2, k)

i2
(26)

Hence by symmetry reasons the most relevant configuration

for a given k is roughly Γ(2)
(q, q, k). Figure (3) shows this

configuration for k = 0.06 h Mpc
−1

(top right panel) and k =

0.1 h Mpc
−1

(bottom right panel). Here again the model in

Eq.(25) describes the N-body results remarkably well yield

the same answer as RegPT (notice the dashed and solid line

on top of each other.

The four-point propagator its basically a measure of the

trispectrum between final and initial density fields. Thus it is

very hard to compare any theoretical ansatz to N-body sim-

ulations. Nonetheless from theoretical grounds we do know

the behavior at low and high-k, and have not reason to ex-

pect a different behavior at intermediate scales from the

one already probed for the two and three point propagators.

Hence we will adopt the following prescription (k = k123),

Γ(3)
δ (k1,k2,k3; z) = D3

+(z)F3(k1,k2,k3) exp[f(k)D2
+(z)],

(27)

for the three point propagator, in full analogy to Eqs. (16)

and (25). This prescription will then satisfy the low-k and

high-k asymptothic, at intermediate scales the use of f(k) or

−σ2
vk2

to describe the transition have a marginal difference

to describe the power spectrum.

Provided with prescriptions for the propagators up to

3 points, we are now in place to discuss the multi-point

expansion for the power spectrum.
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Notably it agrees with the measurements at the sub-percent level for all the scales of interest in all cases studied.
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P (k, z) = D2
+(z) P0(k) + P1loop(k, z) + P2loop(k, z) + . . .

For the power spectrum, RPT reorganizes the PT expansion,

into,

Thus, non linear effects can be divided (exactly) into two classes,

- those that are proportional to the initial power at same k.
- those that create power at k even if there was no power to begin 
with (mode-coupling)

 The two-pt function can be written as,

P (k, z) = G2(k, z)P0(k) + PMC(k, z)

ξ(r, z) = [G2 ⊗ ξ0](r, z) + ξMC(r, z),

PMC(k, z) = P 1loop
MC (k, z) + P 2loop

MC (k, z) + . . .

with,
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The Power Spectrum in RPT

Damping of Linear
Power Spectrum

Growth of Power
due to 

mode-coupling
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The Two-Point Function in RPT

Damping in Fourier
Space Leads to

broadening (and shift)
of acoustic peak

Mode-coupling
generates a 

shift of the peak
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dashed lines correspond 
to negative contributions

Different orders 
become 

comparable in the 
nonlinear regime

non-linear regime

 PT expansion (schematic)
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Different orders 
dominate only in a 
narrow range of 
scales and are 
always positive

Linear spectrum 
suppressed at 

high-k due to loss 
of memory of 

initial conditions

non-linear regime

 RPT expansion (schematic)

Similar to 1-halo term contributions 
from different halo masses
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 Explicit calculation of Mode-Coupling power to 2-loops in RPT

PMC ≡ P − G
2
P0
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Nonlinear Evolution of the Power Spectrum and Acoustic Oscillations

- Can use acoustic oscillations imprinted in the dark matter power spectrum as 
a probe of expansion history (to get to dark energy / modified gravity).

- This “ruler”, however, gets modified due to nonlinearities

Challenge:1% error on sound horizon (~wiggle positions) 
induces about 5% error on w
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 Nonlinear Evolution of Acoustic Oscillations

G2P0 + P 1loop
MC

G2P0

Plinear
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G2P0

G2P0 + P 1loop
MC

Plinear
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Power Spectrum: Dependence on Cosmology
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tions) is not a very good approximation, even at large
scales.

Figure 2 illustrates the spatial distribution of velocity
and density estimations from the HR160 run at z ¼ 0. The
panels show overdensity, divergence and vorticity on a
1h"1 Mpc-thick cross section of the simulation. Also, the
overdensity corresponding to halo particles (particles in-
side dark matter halos) is shown. Even though the over-
density field can take on values up to a few hundred, its
scale was chosen to go up to ! ¼ 3 because the dark matter
halos are small compared to the scale of this figure and
increasing the upper scale limit would just hide the lower
density structures.

We can see that the divergence field is, not surprisingly,
remarkably similar to the density field. However, the struc-
tures in the velocity divergence have, in general, lower
amplitude and are more extended in space, as expected
from the power spectrum results discussed above. It is
interesting to note that, at the halo positions, the divergence
tends to be smaller than in the still collapsing regions, as it
should be. On the other hand, the vorticity field fluctuates
in sign on scales of the order of #1h"1 Mpc (roughly as
expected from theoretical arguments; see Fig. 8 in [42]),
and it is concentrated on collapsing regions, where shell
crossing is currently occurring. There are no large-scale
coherent fluctuations in vorticity, so we expect the vorticity
power spectrum to be much smaller than the divergence
power on large scales, as we now discuss.

B. Dependence on Mass Resolution

Figure 3 shows the power spectrum of divergence and
vorticity obtained from the Delaunay method from differ-
ent simulations (see Table I). The velocity field is domi-
nated, especially on large scales, by its irrotational
component, consistent with the spatial distribution seen
in Fig. 2. We see from Fig. 3 that the divergence power
spectra measured over a broad range of volume, number of
particles and mass resolution simulations match
consistently.
The estimate of the vorticity power spectrum, on the

other hand, appears not to be so robust: it shows a clear
monotonic dependence on the mass resolution. We verified
that this dependence was not an artifact of the Delaunay
method by comparing these results to the ones obtained
from the Cloud-in-Cell (CIC) mass-weighted scheme. We
observed that these two methods agree on the mass reso-
lution dependence of the vorticity power spectrum (not
shown in Fig. 3 for clarity). Thus we believe the depen-
dence on mass resolution of the measured vorticity is real
and may be due to insufficient sampling of collapsing
regions [43]. However, as the particle mass goes below
mpar # 109h"1M$, the vorticity power spectrum eventu-
ally converges.
Also, we check for aliasing effects, discussed in detail in

the appendix. Our estimates for the spurious aliased vor-
ticity based on Eq. (A13) are at least 2 orders of magnitude
lower than the measured vorticity from the simulations.
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FIG. 2 (color online). Illustration of overdensity, divergence and vorticity in a 1h"1 Mpc thick cross section of the simulation box at
z ¼ 0. The divergence and vorticity components panels correspond to the dimensionless quantities r % u=H f and r& u=H f. The
panel labeled ‘‘Halo particle overdensity’’ shows the overdensity of particles belonging to dark matter halos with mass m * 2:4&
1010h"1M$.
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mixing creates in such regions a velocity field that is
approximately the result of mass weighting the single-
stream velocities [see discussion related to Eq. (25) below].
Then we expect w ’ ð1þ !Þ$1fvr% ½ð1þ !Þv', where
fv is only nonzero in regions where orbit crossing occurs,
and on average can be thought as the fraction of the volume
that undergoes orbit crossing, an increasing function of
time. Then the vorticity power spectrum reads [44]

Pwðk; zÞ ( ½fvðzÞ'2
Z

d3q
ðk% qÞ2

q4

!
P!ðjk$ qjÞP"ðqÞ

$ q2

ðk$ qÞ2 Pxðjk$ qjÞPxðqÞ
"
; (4)

where Px is the cross spectrum between ! and ". In the
low-k limit this reduces to

Pwðk; zÞ ( ½fvðzÞ'2
Z

d3q
ðk% qÞ2

q4

% ½P!ðqÞP"ðqÞ $ PxðqÞPxðqÞ'
/ k2½fvðzÞ'2½DþðzÞ'6; (5)

where in the last step we have assumed the velocities are
normalized as in Eq. (1) and used that the square brackets
vanish in linear theory, so the leading nonzero contribution
comes from one-loop PT (which induces a D4

þ time de-
pendence in the power spectra beyond leading order).
Despite the crude approximations made in arriving to

Eq. (5), the scale and time dependence of the large-scale
vorticity power spectrum seen in Fig. 4 may be explained
qualitatively along these lines.

D. Impact of Virial Velocities

In Fig. 2, it can be observed that the velocity field is
rotational in high-density collapsing regions. Compare, for
instance, the lower panels against the top right panel for
which only particles belonging to halos are shown. On the
upper left corner of the simulation box, there is a large
filamentary structure. We can see that the vorticity occurs
mainly on the outskirts of virialized objects. This suggests
that the fraction of the vorticity power spectrum coming
from virialized regions themselves is not very big. To
check this, we took the HR160 simulation and replaced
the particle velocities belonging to halos by the center-of-
mass velocity of the corresponding halo, thus eliminating
the velocity dispersion of all halos. We measured diver-
gence and vorticity power spectra and compared them to
those of the unmodified HR160 simulation. The results are
shown in Fig. 5. It can be seen that at the scales we probe
the divergence power spectrum is essentially not affected
by the virial velocities, and the vorticity power spectrum is
reduced by less than 5%. It is important though to keep in
mind that our measurements on the HR160 simulations are
done in a grid of size 160, so the contribution from scales

FIG. 5 (color online). Comparison between divergence and
vorticity power spectra of the simulation to the power spectra
obtained by replacing velocities of particles inside halos by the
center-of-mass velocity of the parent halo, thus setting virial
velocities to zero. We can see that the divergence is mostly
unaffected, while the vorticity differences are less than 5%.

FIG. 4 (color online). Time dependence of the divergence and
vorticity power spectra. The divergence power spectrum at z ¼ 1
and z ¼ 3 are linearly extrapolated to z ¼ 0 for comparison. The
vorticity power spectrum was similarly scaled using Eq. (3) with
nw ¼ 7. In the nonlinear regime, both divergence and vorticity
grow slower than the large-scale extrapolation.

GENERATION OF VORTICITY AND VELOCITY . . . PHYSICAL REVIEW D 80, 043504 (2009)
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Vorticity Power
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corrections relative to the PPF approximation for both
density and velocity divergence at redshifts z ¼ 0, 0.5, 1.
We see that at z ¼ 0 the correction to the divergence power
spectrum reaches 1% at about k" 0:1h Mpc#1, while for
the density power spectrum this happens at about k"
0:2h Mpc#1. By z ¼ 1 these scales shift by about a factor
of 2. At higher redshifts they rapidly decline as the growth
factor changes rapidly before the onset of cosmic
acceleration.

These effects can be understood qualitatively, and to
some extent quantitatively, by considering the typical
size of the corrections to the velocities predicted by the
single-stream, PPF approximation, smoothed over scale R.
These corrections are, in average, of order

!rms
v ðRÞ & H f

!Z
d3kP!ðkÞW2

THðkRÞ
"
1=4

; (49)

where WTHðkRÞ is the Fourier transform of a top-hat filter
of radius R, P!ðkÞ is the power spectrum of the trace of the
velocity dispersion tensor (which is the dominant compo-
nent), and the factor H f restores the correct units to !ij

[see Eq. (34)]. Equivalently, these velocity corrections can
be interpreted as comoving position fluctuations, given by

!rmsðRÞ &
!Z

d3kP!ðkÞW2
THðkRÞ

"
1=4

: (50)

These two quantities are shown in Fig. 10. In the top panel,
the ratio of the displacement corrections from Eq. (50) to
the scale R is plotted as a function of scale. An order of
magnitude estimate of the effect on the density power
spectrum can be obtained from the following argument.
The dispersion in comoving positions given by !rmsðRÞ
smooths out density perturbations. That suppression is
approximately given by

PsmoothðkÞ " PðkÞe#2ðk!rmsð2"=kÞÞ2 : (51)

At large scales, e.g. k" 0:1h Mpc#1, this gives a suppres-
sion consistent with the previously calculated density
power spectrum corrections seen in Fig. 9.
The bottom panel shows !rms

v as a function of R,
Eq. (49). We can see that the velocity dispersion on scales
of "100h#1 Mpc is of order 15 km/s. Comparing this
dispersion with the single-stream bulk velocities on the
same scale (dashed line), we conclude that the velocity
dispersion corrections on those scales are small but, never-
theless, larger in relative terms than for the density power
spectrum, in agreement with the detailed calculation pre-
sented in Fig. 9.
In [51], it was argued that percent-level corrections from

orbit crossing to the density power spectrum are expected
at k ’ 0:1h Mpc#1 based on a model of ‘‘sticky dark
matter.’’ The effect discussed in that work is not an esti-

FIG. 9 (color online). Correction to the PPF approximation for
the velocity divergence (three top lines) and density power
spectrum (three bottom lines) due to velocity dispersion at red-
shifts z ¼ 0 (solid lines), z ¼ 0:5 (dashed lines) and z ¼ 1
(dotted lines). Note that the actual correction is negative in all
cases, we plot their absolute values. These corrections are
computed in linear theory, Eqs. (45) and (48), thus extrapolation
well beyond k" 0:1h Mpc#1 is only illustrative.

FIG. 10 (color online). Top panel: root mean square position
fluctuations, Eq. (50), induced by velocity dispersion smoothed
at scale R divided by R. Bottom panel: rms velocity dispersion,
Eq. (49), in solid lines compared to rms bulk motions (dashed
lines) smoothed on scale R. Note that velocity dispersion is
smoothed on scales of order 1h#1 Mpc, thus the solid line is an
underestimate at small scales. All the quantities in this figure are
evaluated at z ¼ 0.
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V. CONCLUSIONS

We studied the impact of orbit crossing in the large-scale
power spectra of density and velocity divergence fields,
which are usually described in the PPF approximation. We
presented a method to extend PT beyond the PPF approxi-
mation, based on measuring the stress tensor induced by
orbit crossing in numerical simulations. The stress tensor,
when decomposed into scalar and vector modes leads to
corrections associated with velocity dispersion and the
effects of vorticity. We found the effects due to the scalar
modes to be small, but not negligible at large scales (k ’
0:1h Mpc!1), particularly for the velocity divergence
power spectrum (see Fig. 9). The impact of vorticity on
large scales is much smaller; see Fig. 11. These two effects
appear at different orders in PT and have been included
separately as we are interested in large scales where the
induced corrections are small. Both lead to suppressions of
the power spectra predicted by the PPF approximation, as
expected physically since velocity dispersion and vorticity
should inhibit collapse. In this regard we emphasize that
neglecting orbit crossing has opposite effects on Eulerian
compared to Lagrangian PT. For Lagrangian PT, neglect-
ing orbit crossing leads to (much more severe) underesti-
mates of the density power spectrum (see e.g. [8] for a
recent example), since neglecting self-gravity in caustics

leads to artificial thickening of such structures when tra-
jectories cross without interacting.
A novel aspect of our calculation is the estimation of the

stress tensor and the vorticity and divergence power spectra
from numerical simulations. To estimate velocity fields, we
applied the Delaunay tessellation method, which we have
shown to be a more reliable estimator than traditional mass
weighting schemes. While estimates of the velocity diver-
gence are robust, we found that measurements of the
vorticity power spectrum are significantly more difficult,
due to aliasing during the measurement process and most
importantly lack of resolution in the simulations. For the
latter we have found that low resolution simulations can
overestimate the vorticity power spectrum by an order of
magnitude. This maybe be due to insufficient spatial reso-
lution in multistreaming regions, with the overestimate
perhaps related to aliasing effects during the PM part of
the force calculation, which may generate a vector mode.
In any event, for high enough resolution we find that the
vorticity power spectrum converges to a stable answer. On
the other hand, care must be taken that these spurious
effects are not present when using numerical simulations
to study nonlinear velocities, since artificial vorticity can
amplify the velocity power spectrum at small scales.
A nontrivial check of our numerical calculation of the

stress tensor, which we have done using an adaptive
method independent of the Delaunay tesselation, is that
its vector modes source the growth of vorticity. Therefore,
using linear PT from this vector source one should recover
at large scales the vorticity power spectrum measured by
the Delaunay method, as we do (see Fig. 8). This does not
test the scalar mode of the stress tensor though, which ends
up inducing the largest correction to the PPF approxima-
tion. In this respect, it would be interesting to test how
robust the scalar part of the stress tensor is to details of the
numerical simulations, as spurious effects due to discrete-
ness may amplify velocity dispersion in simulations
[52,53] (see also [54]). As far as we know, our work is
the first to make a quantitative connection between the
growth of velocity dispersion and that of the density power
spectrum, which will be useful to probe more in order to
make sure that simulations can correctly reproduce the
matter power spectrum to percent level, as required for
the next generation of weak lensing surveys designed to
probe cosmic acceleration [55].
The deviations we found from the PPF approximation at

large scales are small but not negligible, in particular, for
the velocity divergence power spectrum, for which correc-
tions are a factor of about three larger than for the density
power spectrum. Our estimate, being based on numerical
simulations, corresponds to fixed cosmological parameters
(e.g. !8 ¼ 0:9, !m ¼ 0:27 and ns ¼ 1). Given the strong
dependence on the growth factor of the correction ( / D2:25

þ
relative to PPF) we expect it to be smaller for lower
normalization amplitudes, as well for cosmological pa-

FIG. 11 (color online). Corrections to the density power spec-
trum at z ¼ 0 due to stress tensor vector modes (vorticity
effects); see Eqs. (67) and (68). Note that the "P13 contribution
(long dashed lines) is negative and larger in magnitude than the
"P22 contribution (short dashed lines). The total correction
(solid lines) is negative and reaches 1% of the linear spectrum
(top dotted lines) at k$ 1h Mpc!1, where further nonlinear
effects not included here should become important.

GENERATION OF VORTICITY AND VELOCITY . . . PHYSICAL REVIEW D 80, 043504 (2009)
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Bias: From Dark Matter to Galaxies

The process that gives rise to the luminous galaxies we see in galaxy surveys is 
complicated and not yet fully understood, involving nontrivial effects from 

hydrodynamics and radiative transfer, among other things. 

However, for the purpose of studying galaxy clustering there are many details of 
galaxy formation that are not needed, particularly if one is interested in the 

distribution at large scales (since gravity is the only long-range force).

- How different is the clustering of galaxies observed in surveys from the dark 
matter clustering we measure in numerical simulations?
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The Local Bias Model

Thus at large scales the relationship between galaxies and dark matter can then 
be approximated by,

δg ≈ b1δ +
b2

2!
δ
2 +

b3

3!
δ
3

When smoothed on sufficiently large scales R the relationship between galaxies 
and dark matter becomes a local mapping of fluctuations

δR
g (x) = f(δR(x))

and then one can use this to calculate galaxy correlation functions, e.g. the power 
spectrum,

Pg(k) = b2
1P (k) + . . .
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FIG. 11. The scatter plots from a “man-made” halo density field constructed using b1 = 2, b2 = 1.34 and γ2 = −0.5. Top-hat
window of smoothing scales 8, 16, 30, 50 and 100 Mpc/h are used. Two redshifts are considered: 0.97 (the first row) and 0
(the second row). Shown on top of the scatter plot is the best fit model using local bias. The best fit bR

1 agrees with the input
parameter for all the smoothing scales, while the best fit bR

2 agrees with the naive estimated value 2.01 only for large smoothing
scales.

ter plots.

The nonlocal bias perturbative results agree very well

with the original man-made model results for large scales

(the first row in Fig. 12). However, as the smooth-

ing scales decreases, the agreement deteriorates as the

smoothing scale decreases, especially for 16 and 8 Mpc/h.

The agreement is also better for z = 0.97 than for z = 0.

This is consistent with larger nonlinearity in the con-

structed field when the smoothing scale is small or the

redshift is low, and so perturbation theory is not as ac-

curate.

After shuffling (middle panels in Fig. 12), the results

are indeed biased, especially for small smoothing scales,

and the perturbation results using the effective local

model (bottom panels) share qualitatively similar trends

as the shuffling results although sometimes it is not clear-

cut. Let us first apply the insights from the local model,

especially the behavior of the effective bias parameters,

to interpret the shuffling results. For the smoothing scale

as large as 100 Mpc/h, the loop correction is negligible,

and so its value is mainly determined by the best fit bR
1 .

As the smoothing scale decreases, the loop corrections

become more important. As we saw in Section V A, the

corrections due to the nonlocal term are significant only

for k � 0.1 h/Mpc, while the local correction, especially

Eq. (13), which is approximately proportional to PL(k), is

already significant at large scales. As a result of a system-

atically enhanced bR
2 due to G2, the shuffling power spec-

trum is higher than the original one for R ≤ 50 Mpc/h.

However, we see that in Fig. 11 for small R such as 16

and 8 Mpc/h as R decreases the effective bR
2 also de-

creases, this effect is especially significant at z = 0. This

reduction in bR
2 for small R can explain why the shuf-

fled power spectrum at z = 0 suddenly plummets for

R = 8 Mpc/h. The 1-loop results based on the effective

local model are consistent with the trends discussed for

the shuffled halo power spectrum, but generally the ef-

fects are stronger. Again perturbation theory fairs badly

for fields constructed using small smoothing scales or at

low redshift. In some sense, shuffling is the best local bi-

asing prescription can achieve because all the information

in the whole scatter plot is used, and the power spectrum

is computed numerically.

We would like to clarify the relation between the man-
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Bias parameters measured from halo-matter scatter plots:

- go to constants in the large-scale (large R) limit

- “run” with R at small scales

Alternatively, one can measure the bias parameters in Fourier space, by using 
higher-order correlations (comparing the tracer bispectrum to the matter 
bispectrum)

This is more practical than scatter plots for observations (where no scatter plot 
can easily be constructed)
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Bias Parameters from Large-Scale Correlations

B123 ∝

∫
d
3
x δk1

(x)δk2
(x)δk3

(x)

QB =
B123

P1P2 + P2P3 + P3P1

One can use higher-order correlation functions to determine the bias 
parameters. The three-point function (bispectrum) can be estimated by,

When suitably normalized, it depends only on galaxy bias and spectral index, 

Qg
B =

1

b1

QB +
b2

b2
1
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the bias relation up to second order, we thus include only
local quadratic bias b2 and the amplitude of the non-local
effect through G2. As we found in the previous section,
there is no significant detection of a G3 dependence, and
the (quadratic) dipole dependence is only significant for
the most biased samples, which correspond to extremely
rare halos. Thus we study the bias relation given by

δh = b1 δ +
b2

2
δ2 + γ2 G2, (122)

where we recall that for γ2 = −2(b1 − 1)/7, this corre-
sponds to assuming local Lagrangian bias (ie. y → ∞
in our simple model). In this way we can simultane-
ously test for local Eulerian (γ = 0), local Lagrangian
(γ = −2(b1 − 1)/7) and more generic non-local bias. We
note that a similar test (of local Eulerian vs Lagrangian
bias) was performed in the PSCz galaxy survey bispec-
trum [9] with the result that Eulerian local bias was a
slightly better fit to the galaxy bispectrum. Our tests in
this paper are in a very different regime, as PSCz galax-
ies are anti-biased while our halos are positively biased
(see Table I).

To avoid dealing with the complications of the inac-
curacy of Poisson shot-noise subtraction for halos (see
appendix A in [81]) that complicates interpreting devia-
tions from the local bias description, here we just study
the halo-matter-matter bispectrum bhmm rather than the
the halo bispectrum [83, 84],

�δh(k1)δ(k2)δ(k3)� = δD(k123) bhmm(k1, k2, k3). (123)

Note that this is not a symmetric function of the wavec-
tors. We thus define a symmetrized quantity [83],

Bhmm ≡ 1
3
(bhmm + bmhm + bmmh), (124)

which from Eq. (122) obeys

Bhmm = b1 B123 +
b2

3
Σ123 +

2
3
γ2K123 (125)

where B123 is the matter bispectrum and

Σ123 = P1 P2 + cyc., K123 = (µ2
12 − 1) P1 P2 + cyc.,

(126)
with µ12 the cosine of the angle between k1 and k2. The
kernel K123 vanishes for colinear trianges where µij =
±1, thus the non-local correction is most important for
isosceles triangles.

We measured the halo-matter-matter bispectrum
Bhmm and matter bispectrum B123 from the 50 realiza-
tions of the simulations at the three redshift outputs.
The triangles included in the bispectrum analysis corre-
spond to all triangles with sides from twice the fundamen-
tal mode (2kf � 0.01 h Mpc−1) up to k ≤ 0.1 h Mpc−1,

TABLE II. Local Eulerian bias parameters b1 and b2 obtained

from halo-matter-matter bispectrum fits for all triangles with

k < 0.1 h Mpc
−1

. We also include the large-scale bias b× ob-

tained from the halo-matter power spectrum, to be compared

with b1. The last column indicates the goodness of the fit

assuming a diagonal covariance matrix (Ndof = 148).

Sample b× b1 b2 χ2
/dof

LMz0 1.43 1.42± 0.01 −0.91± 0.03 1.86

MMz0 1.75 1.71± 0.01 −0.55± 0.03 1.29

HMz0 2.66 2.37± 0.02 2.98± 0.07 3.74

LMz0.5 1.88 1.77± 0.01 −0.15± 0.03 0.91

MMz0.5 2.26 2.13± 0.01 0.67± 0.03 0.87

HMz0.5 3.29 2.84± 0.03 5.89± 0.10 3.77

LMz1 2.43 2.22± 0.01 1.27± 0.04 0.89

MMz1 2.86 2.62± 0.02 2.77± 0.06 1.07

HMz1 3.99 3.41± 0.05 9.98± 0.14 3.42

binned in units of 2kf , yielding 150 binned triangles (cor-
responding to ∼ 1.2× 108 fundamental triangles of sides
inside the prescribed bins and all possible orientations).
This together with the measured matter power spectrum
can be used in Eq. (125) to fit for the parameters b1, b2

and γ2. In what follows we discuss such constraints for
all the halo samples.

Table II shows the results from fitting Eulerian local
bias (γ2 = 0) to the relation in Eq. (125). For compari-
son, in this and other tables, we reproduce the value of
the large-scale linear bias obtained from the halo-matter
cross spectrum b×. Note that for the lowest biased ob-
jects in our sample, LMz0, the linear bias obtained from
the bispectrum b1 agrees with b×, but this agreement
disappears for all other samples, giving a significantly
smaller b1 than the large-scale linear bias b× shown by
the power spectrum, increasingly so for more biased ob-
jects. Recently, [83] found a similar result for halos with
more than 20 particles at z = 0. Here, we highlight the
mass and redshift dependence of this issue in more detail.
As shown in [83], had we used the reduced bispectrum
Q = B/Σ rather the bispectrum itself to find the bias pa-
rameters, then we would have found the opposite result,
i.e. a linear bias b1 smaller than b×. To explain why, let
us for definiteness define a reduced halo-matter-matter
bispectrum by

Qhmm ≡ Bhmm

(P×(k1)P×(k2) + cyc.)
=

Bhmm

b2
×Σ123

. (127)

Thus, while the halo-matter-matter bispectrum fits yield
b1B and b2B with Bhmm = b1BB + b2BΣ/3, the reduced
bispectrum yield parameters b1Q and b2Q with Qhmm =
Q/b1Q + b2Q/3b2

1Q. These are related by

b1Q = b×
� b×

b1B

�
, b2Q = b2B

� b×
b1B

�2
; (128)

Bispectrum analysis of local bias

Tuesday, July 17, 2012



G2(Φv) = (∇ijΦv)2 − (∇2Φv)2,
G3(Φv) = (∇2Φv)3 + 2∇ijΦv∇jkΦv∇kiΦv − 3(∇ijΦv)2∇2Φv.

δNloc
g = γ2 G2 (Φv)(1 + β δ)

+ γ3

�
G3(Φv) +

6
7
G2(Φ(1)

v ,Φ2LPT)
�

+ . . .

Is local bias stable under time evolution? 

Suppose at some time t*, objects form with local bias,

δ∗g = b∗1 δ∗ +
b∗2
2!

δ2
∗ +

b∗3
3!

δ3
∗ + . . .

As time goes on, does bias stay local?

The answer is (a resounding) no!
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FIG. 5. Same as Fig. 4 but for low-mass halos at z = 0 (see

LMz0 in Table I). For the least biased objects in our samples,

bias becomes local.

simulation box we have four fields smoothed at large-
scales (Rs = 40h−1 Mpc): δ, G2, G3 and δh. If large-
scale bias were local, δh would depend only on δ, and
thus surfaces of constant δh should agree with those of
constant δ, in other words, ∇δh in this three-dimensional
space (δ,G2,G3) should be parallel to the δ-axis. Figure 4
shows this construction for the highest mass bin at z = 1,
where the effects of non-local bias are the strongest: there
is a clear tilt of the surfaces of constant δh in the G2 direc-
tion, but no discernible dependence on G3. Therefore, in
cells of fixed δ, where local bias would predict a constant
δh, we see significant variations in δh that scale with the
value of G2. Note that at fixed δ, δh is a decreasing func-
tion of G2, as predicted by our simple arguments in the
previous sections.

Figure 5 shows what happens in the lowest-mass bin at
z = 0, for which the large-scale linear bias is the smallest
among our halo samples. We see now that bias does be-
come local: planes of constant δ agree with constant δh,
and ∇δh points along the δ-axis. This is also in qualita-
tive agreement with our simple model developed in the
previous sections.

In Figure 6 we show the same plot for high-mass halos
at z = 0, demonstrating that indeed more biased objects
at fixed z do show more non-local large-scale bias. Again,
∇δh has a significant component in the G2-direction, and
little (if anything) in the G3-direction, showing that the
results presented in Fig. 4 are generic. Our model in
the previous section does predict the dependence on G2

to be stronger than that on G3 but only by a factor of
about two or so (the precise value depends on “forma-
tion” time); the results from the simulations suggest that

FIG. 6. Same as Fig. 4 but for high-mass halos at z = 0 (see

HMz0 in Table I).

the suppression of the G3 amplitude is even greater.
It is rather common (see e.g. [42, 81–83] for recent ex-

amples) to present the bias relation from simulations in
terms of a scatter plot of δh and δ, which corresponds to
projecting out the G2 and G3 directions in our Figs. 4-
6. Because of the tilt in the G2 direction, a bias that is
completely deterministic in δ, G2 and G3 will lead, when
projected into the δ-axis, to a stochastic δh vs δ relation
with the scatter simply coming from points with the same
δ that have different G2. The question which arises is if
the scatter seen in the δh vs δ relation can be explained
by this projection effect, at least partially? One way
to address this is to ask whether the scatter about the
tilted planes with constant δh in the three-dimensional
space (δ,G2,G3) is significantly less than that seen in the
1D scatter plot of δh vs δ. We find that indeed the mul-
tidimensional scatter is smaller than the 1D scatter, but
only marginally so (with one exception, which we discuss
in the next paragraph). This indicates that most of the
scatter of the δh vs δ relation is not due to the depen-
dence of δh on the “hidden variables” G2 and G3. In fact,
this scatter can be explained [24, 25] in the context of
the excursion-set model of halo formation by noting that
the small-scale density field (whose excursions above the
collapse threshold correspond to halo formation) has a
stochastic relation to the large-scale density field δ.

Having seen that there is little, if any, non-locality
coming from G3 we look for the possible effects of ve-
locity bias. From our model we expect that if there is
velocity bias at the smoothing scale we consider (Rs =
40 h−1 Mpc), then a dipole non-local term D will appear
in the bias relation. As discussed before, a statistical

linear bias ~ 1.4

planes of constant δh
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TABLE I. Halo Samples used in this paper

Halo Sample z b× Mass bin [10
13M⊙/h]

LMz0 0 1.43 4− 7

MMz0 0 1.75 7− 15

HMz0 0 2.66 > 15

LMz0.5 0.5 1.88 3− 5

MMz0.5 0.5 2.26 5− 10

HMz0.5 0.5 3.29 > 10

LMz1 1 2.43 2− 3.1

MMz1 1 2.86 3.1− 5.7

HMz1 1 3.99 > 5.7

index ns = 1 and normalization σ8 = 0.9. The simula-

tions were run using Gadget2 [77] with initial conditions

set at zi = 49 using 2nd order-Lagrangian Perturbation

Theory (2LPT) [49, 78]. The halos are identified using

the friends-of-friends algorithm with linking length equal

to 0.2 times the mean inter-particle separation. We di-

vide our halo sample into three mass bins at each redshift

z = 0, 0.5, 1. Table I shows the main features of each

of these, including the large-scale (linear) bias obtained

from measuring the cross-power spectrum between halos

and matter, i.e. b× = Phm/Pmm, and averaging over

scales k ≤ 0.05 h Mpc
−1

.

To assess the locality of large-scale halo bias in the sim-

ulations we proceed as follows. We build the smoothed

matter fluctuations by interpolating the dark matter par-

ticles in the simulation to a grid of size Ngrid = 180 (cor-

responding to a grid separation of � 7 h−1
Mpc), Fourier

transforming using FFT’s, multiplying by the Fourier

transform of a real-space top-hat window function of ra-

dius Rs = 40h−1
Mpc, and Fourier transforming back to

real space. We build the smoothed halo overdensity field

similarly. We build the smoothed Galileon fields G2 and

G3 from the velocity field by first constructing the velocity

potential Φv (and velocity divergence θv = ∇2Φv) by us-

ing a Delaunay tessellation to build the volume weighted

velocity field on the grid (see [79] for details), construct-

ing the Galileon fields on the grid and then smoothing

them as one does for any scalar field (δ or δh) as ex-

plained above. That is,

G2(x) =

�
e
−ik12·x

(µ2
12 − 1) θv(k1)θv(k2) W12 d3k1d

3k2

(117)

where W12 ≡W (k12Rs), µij ≡ k̂i · k̂j and

G3(x) =

�
e
−ik123·x

(1 + 2µ12µ23µ31 − µ2
12 − µ2

23 − µ2
31)

× θv(k1)θv(k2)θv(k3)W123 d3k1d
3k2d

3k3. (118)

We ignore, for simplicity, the extra non-local term de-

pending on the 2LPT potential (see Eq. 110). Including

this term into the plots we present in this section does

not change the results.

FIG. 4. Illustration of non-local large-scale bias in numer-

ical simulations for high-mass halos at z = 1 (see HMz1

in Table I). The plot shows surfaces of constant δh =

−0.3, 0.1, 0.5, 0.9 (from left to right, or red, blue, yellow, and

green, respectively) as a function δ, G2 and G3. If large-scale

bias were a local function of δ, surfaces of constant δh would be

δ = const. planes (see next figure). Instead, there is significant

tilt (∇δh is not parallel to the δ-axis) showing a non-negligible

dependence on G2. All fields (δ, G2, G3 and δh) have been

smoothed with a top-hat window of radius Rs = 40 h−1
Mpc.

Note that since the Galileon fields are non-linear com-

binations of (derivatives of) the velocity potential, this

procedure is not the same as building the Galileon fields

of the smoothed velocity potential, which would remove

mode-couplings of the smoothing scale to smaller scales.

This means that our smoothed Galileon fields depend to

some extent on the choice of grid size (which effectively

determines up to what scale we allow mode-couplings; in

our case this is down to� 7 h−1
Mpc). However, since the

velocity power spectrum is suppressed compared to the

density at small scales [80], the dependence is not very

strong, particularly because, in G2, the coupling to small-

scale modes requires wave vectors to be anti-colinear in

which case their contribution to G2 vanishes. We have

studied what happens if we increase Ngrid and we see no

significant change to the results presented below except

for an increase in noise (from coupling to even smaller-

scale modes). This is somewhat expected as one starts

to probe couplings to scales comparable or smaller than

the Lagrangian size halos. Ideally, one would use a grid

size different for each halo sample so only scales larger

than the respective Lagrangian radius are included in

Eqs. (117-118).

As a result of this procedure, at each grid point in the

linear bias ~ 4

planes of constant δh
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TABLE III. Eulerian bias parameters b1 and b2 obtained from

doing a Lagrangian local bias model fit to the bispectrum.

Sample b× b1 b2 χ2
/dof

LMz0 1.43 1.48± 0.01 −1.26± 0.04 2.12

MMz0 1.75 1.81± 0.01 −1.15± 0.03 1.36

HMz0 2.66 2.59± 0.02 1.78± 0.07 2.73

LMz0.5 1.88 1.87± 0.01 −0.79± 0.04 0.94

MMz0.5 2.26 2.30± 0.01 −0.26± 0.04 0.72

HMz0.5 3.29 3.12± 0.03 4.34± 0.11 2.91

LMz1 2.43 2.40± 0.02 0.27± 0.05 0.77

MMz1 2.86 2.85± 0.02 1.45± 0.06 0.82

HMz1 3.99 3.77± 0.05 7.97± 0.16 2.74

therefore, if b1B > b×, then b1Q < b×. Similarly, for
halo bispectra (rather than halo-matter-matter), the re-
lationship between reduced and un-reduced bispectra lin-
ear bias is instead b1Q = b× (b×/b1B)3, an even bigger
difference (i.e. the relative deviation of b1Q from b× is
three times larger than for b1B). These disagreements
will be resolved shortly by including non-local bias.

Table III shows the analogous results when the bias
is assumed to be local in Lagrangian space, equivalent
to assuming γ2 = −2(b1 − 1)/7 in Eq. (122). The re-
sults in this case are somewhat mixed. At z = 0 the
results are worse than for the Eulerian case, except at
high mass. At higher redshifts, the Lagrangian results
show improvement, particularly at z = 1, but there are
still some significant discrepancies between b1 and b×,
and in any case the χ2/dof are not very convincing.

Finally, Table IV shows the results for the non-local
bias model with the amplitude of G2 being fit for. The
results show now a significant improvement, in particular
b1 is always within two-sigma of the b× values, for all
redshifts and halo masses considered. We note that the
average (over all halo samples) deviations of b1 from b×
are 11σ, 4.5σ and 1.5σ for Eulerian, Lagrangian and non-
local bias fits to the bispectrum, respectively. Thus we
reject local Eulerian and Lagrangian bias models at high
significance. The price to pay in fitting for γ2 as well is
an increase in the b1 error bars, by a factor of almost two.

The values for γ2 in Table IV show a clear dependence
with linear bias, which is plotted in Fig. 9 (using the
more precise value of b× as linear bias). We see that the
results fall mostly along along a “universal” line given by
−2(b1−1.43)/7 (solid line), except for the most biased ha-
los at each redshift which fall below this line (closer to the
Lagrangian bias result, shown in dashed line). However
it is precisely these highly biased objects that may have
extra non-local contributions (such as a dipole, as dis-
cussed in the last section), so it is not clear at this point
how reliable this behavior is. On the other hand, note
that the solid line in Fig. 9 is not a fit to the data, but it
serves to illustrate deviations from local Lagrangian bias
for our least biased samples. More work is needed to see

TABLE IV. Eulerian bias parameters b1 and b2 and non-local

γ2 parameter obtained from doing a quadratic non-local bias

model fit to the bispectrum. For comparison purposes, note

that a non-zero γ2 gives an effective −(4/3)γ2 contribution to

b2 (see top panel in Fig. 8). Here Ndof = 147.

Sample b× b1 b2 γ2 χ2
/dof

LMz0 1.43 1.42± 0.02 −0.92± 0.08 −0.01± 0.03 1.87

MMz0 1.75 1.76± 0.02 −0.81± 0.08 −0.10± 0.03 1.19

HMz0 2.66 2.61± 0.04 1.71± 0.18 −0.48± 0.06 2.74

LMz0.5 1.88 1.83± 0.02 −0.46± 0.09 −0.12± 0.03 0.84

MMz0.5 2.26 2.24± 0.02 0.05± 0.09 −0.24± 0.03 0.67

HMz0.5 3.29 3.16± 0.06 4.10± 0.28 −0.70± 0.10 2.91

LMz1 2.43 2.35± 0.03 0.57± 0.13 −0.28± 0.05 0.74

MMz1 2.86 2.80± 0.03 1.70± 0.16 −0.42± 0.06 0.80

HMz1 3.99 3.84± 0.08 7.55± 0.41 −0.96± 0.16 2.73

whether one could understand these results from theoret-
ical arguments. We note however that it is not surprising
that bias is not local in Lagrangian space, even in simple
extensions of the excursion set of halo formation the bar-
rier for collapse is known to depend on other quantities
than the overdensity δ, mostly on the ellipticity param-
eter e [32]. Appendix B shows the relationship between
ellipticity e, prolateness p and the invariants of the de-
formation tensor or Galileons.

We see then that the presence of non-local bias (G2) re-
quired from the multi-dimensional plots in the previous
section is confirmed by the bispectrum analysis, which
shows that including such terms solves a systematic er-
ror in the determination of the linear bias, increasing
for more biased objects. This is important because this
systematic error would otherwise affect the determina-
tion of cosmological parameters from a bispectrum anal-
ysis (see [85]), particularly for luminous galaxies (such as
LRGs in SDSS) that populate high-mass halos. The extra
dependence on G2 is also important in at least two more
aspects: it introduces a dependence on triangle shape
that is degenerate with brane-induced modifications of
gravity [86, 87], and also mimics an equilateral-type pri-
mordial non-Gaussianity signature (see Fig. 1 in [88]).
Therefore, for all these reasons, it is important that such
dependencies are taken into account when doing bispec-
trum analyses in galaxy surveys, extending what was
done already in [9] by considering both Eulerian and La-
grangian local bias models.

VIII. CONCLUSIONS

In this paper we studied the non-localities induced
in the bias relation by gravitational evolution, provid-
ing results under a number of different scenarios. In the
simplest case, galaxies form at a single time and evolve
conserving their comoving number density (no merging)
following the dark matter (no velocity bias). In this

Bispectrum analysis of non-local bias
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clustering in redshift-space is 
anisotropic!

Anisotropy has info on 
velocities, thus gravity
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An exact relationship between real and redshift-space clustering:

Everything is encoded in the pairwise velocities PDF.

real-space
separationredshift-space

 separation

R.S. (2004)

Tuesday, July 17, 2012



scale, both formulations are equivalent, when there is
scale dependence (as expected in any realistic scenario)
the first term in the integral for P does not give unity, thus
one should use Eq. (12) instead. In fact, this contribution
to !s has a simple physical interpretation: it corresponds
to redshift-space density fluctuations generated by veloc-
ity fluctuations in a uniform (real-space) density, i.e.,
when ! ! 0. If P did not depend on scale, random pairs
are mapped into random pairs, scale dependence means
that redshift-space correlations are created by taking
random pairs in real-space and mapping them to
redshift-space differently at different scales.

The streaming model has been mostly used at small
nonlinear scales by assuming P to be an exponential with
zero streaming velocity and a scale-independent isotropic
velocity dispersion [37]. At large scales, [21] showed that
if one assumes the streaming model in phase space (with
density and velocity fields coupled as in linear dynamics),
it is possible to recover the Kaiser limit for the correlation
function.We will stress in Sec. IV, however, that the large-
scale limit uses an additional assumption—that sk be
much larger than the pairwise velocity dispersion.
Fisher [21] also claims that in the linear regime the
relationship between !s and ! can be reduced to the
standard streaming model, i.e., as in Eq. (12) with
1" !’s replaced by !’s [see his Eq. (26)]. This is incorrect;
it suffices to say that if this were true all terms in !s
would be proportional to !, in particular, such a result
does not admit redshift distortions generated by corre-
lated velocity fluctuations (where P depends on r) in an
unclustered distribution (! ! 0).

The power spectrum and two-point correlation func-
tion in redshift-space can be written in a similar form

Ps#k$ !
Z d3r

#2"$3 e
%ik&r'Z##; r$ % 1(; (13)

!s#sk; s?$ !
Z drkd$

2"
e%i$#rk%sk$'Z##; r$ % 1(; (14)

where # ! ifkz; if$ respectively and

Z ##; r$ ) '1" !#r$(M##; r$: (15)

It is important to note that the two-point correlation
function is affected by redshift distortions for all con-
figurations, even those perpendicular to the line of sight,
since they are coming from different scales through the
dependence of P on rk. It is, however, possible to project
out redshift distortions by integrating along the line of
sight

!p#r?$ )
2
r?

Z 1

0
dsk!s#sk; r?$;

! 2
r?

Z 1

0
drk!

! """""""""""""""""
r2k " r2?

q #
;

! "
Z

P#k$ J0#kr?$
kr?

d3k; (16)

which sets $ ! 0 in Eq. (14). This is only true in the
plane-parallel approximation where the concept of ‘‘line
of sight’’ is applicable. On the other hand, the
redshift-space power spectrum has the nice property, in
the plane-parallel approximation, that transverse modes
are unaffected by redshift distortions (a wave in
the k? direction is uniform in z and thus unperturbed
by the real-to-redshift-space mapping), therefore
Ps#kz ! 0; k?$ ! P#k?$.

Figure 1 shows the pairwise velocity distribution P for
pairs separated by distance r along the line of sight,
measured from the very large simulation of the Virgo
consortium [38]. This has 5123 dark matter particles in
a 479 Mpc=h box with a linear power spectrum corre-
sponding to !m ! 0:3 (including !b ! 0:04 in baryons),
!" ! 0:7, h ! 0:7, and %8 ! 0:9. Because of the large
number of pairs (in our measurements we use 32* 1012

total pairs at scales between 0.1 and 300 Mpc=h) and

FIG. 1 (color online). The parallel to the line of sight pair-
wise velocity PDF at redshift z ! 0 for pairs separated by
distance r, measured in the N-body simulations. In the bottom
left panel, the discontinuous at the origin PDF (thin solid line)
corresponds to that given by the dispersion model, Eq. (19)
(ignoring the delta function at the origin). In the bottom right
panel, the narrow distribution (thin solid line) corresponds to
the prediction of linear dynamics, Eq. (44).
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r ! 10 Mpc=h. We have fitted the value of !p, as it is
normally done, to the measured quadrupole to monopole
ratio of the redshift-space power spectrum. Despite this
fit to the power spectrum, the resulting PDF does not fit
the simulation results. This is hardly surprising since the
dispersion model Eq. (1) makes unphysical predictions
for the pairwise velocity PDF—see Eq. (19).

C. Recovery of the Pairwise Velocity PDF from
Redshift-Space Two-Point Statistics

Given the relationship between the redshift-space and
real-space correlation function through the pairwise ve-
locity PDF, Eq. (12), it is natural to ask whether one can
recover information about the PDF from clustering mea-
surements. The problem is that there is no single PDF
involved in Eq. (12) but rather an infinite number of
PDF’s corresponding to different scales and angles of
the velocities with respect to the line joining the pair. If
there was no scale dependence and anisotropy, all the
PDF’s are the same and Eq. (12) becomes a convolution,
thus, one can find the PDF by deconvolution. In other
words, due to the scale dependence of the pairwise ve-
locity PDF, Eq. (12) is not really a convolution; this
implies that the redshift-space power spectrum for modes
parallel to the line of sight is not the real-space power
spectrum multiplied by the generating function M.
Instead, from Eq. (13) we get

Ps"k# ! P"k# $ fM"ifkz; k#

$
Z

d3qfM"ifkz;k% q#P"q#; (20)

where fM [recall that M"ifkz; r# !
RP "v; r#eivkzdv] is

basically the double-Fourier transform of P "v; r#

fM""; p# &
Z d3r

"2##3 e
%ip'r(M""; r# % 1);

!
Z h"e"!uz % 1#"1$ $#"1$ $0#i

1$ %
;

* e%ip'r d3r
"2##3 ; (21)

except that we substract the zero mode M"0; r# ! 1, thus
fM"0;p# ! 0. For example, in the Kaiser limit we have

fM"ifkz;p# ! 2f
kzpz

p2 P$&"p# $ f2
k2zp2

z

p4 P&&"p#; (22)

where P$& denotes the density-velocity divergence power
spectrum and P&& is the velocity divergence power spec-
trum. In linear perturbation theory (PT) P ! P$$ !
P$& ! P&&, but we will keep the distinction because
weakly nonlinear corrections are significant at large
scales (see Sec. V.)

If we assume that all pairwise moments have no scale
dependence and are isotropic, which implies that odd
moments vanish (since they must be anisotropic, by sym-
metry odd moments vanish when r ' ẑ ! 0),
fM"ifkz;p# ! (M"ifkz# % 1)$D"p# and thus Ps"kẑ# !
P"k#M"ifk#. Note that in this case M"ifk# is real be-
cause odd moments vanish, however, in general M"ifk#
is complex. By taking (even number of) derivatives with
respect to " of Ps"

!!!!!!!!!!
%"2

p
ẑ#=P"

!!!!!!!!!!
%"2

p
# ! M""# one can

generate all (even) moments and thus find the (symmetric
by assumption) PDF by inverse Fourier transform.

Galaxy redshift surveys show that Ps"kẑ#=P"k# is very
close to a Lorentzian, and this has been interpreted as
evidence for an exponential pairwise velocity PDF
[26,27]. However, realistically one cannot neglect anisot-
ropy, since we know that odd moments must be nonzero,
in particular, there are infall velocities (v12 ! 0) and
skewness. The infall velocities are small compared to
the dispersion at small, nonlinear scales, however the
skewness is expected to be significant except in the highly
nonlinear regime —see Fig. 3 below [24,40–42]. By con-

h/Mpc

FIG. 3 (color online). Moments of pairwise velocities parallel
to the line connecting the pair as a function of scale. Top panel:
pairwise dispersion !12 (squares) as a function of scale, its
connected piece !c

12 (solid line), and the mean infall v12

(triangles). The dashed line denotes the predicted !12 in linear
dynamics. Middle panel: dimensionless measure of infall
(jv12j=!c

12, triangles) compared to the skewness of the pairwise
velocity PDF (squares); the skewness dominates at most scales.
Bottom panel: kurtosis as a function scale, note that it does not
vanish at large scales and s4 > 1 at all scales; the pairwise
velocity PDF is strongly non-Gaussian at all scales, see Fig. 1.
For reference, an exponential distribution has s3 ! 0 and s4 !
3.
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Ps(k, µ) = Pg(k) (1 + βµ2)2
1

1 + k2µ2σ2
p/2

,

These are incorporated into the so-called “dispersion model”, for the power 
spectrum, 

which is used to constrain cosmological parameters from redshift surveys. 
Anisotropy depends on degenerate combination, at large scales

- f is the most interesting part: it depends on gravity (but not only!), e.g.

- b1 is the linear bias (that relates matter to galaxy clustering). From latest BOSS 
data, after using CMB, f=0.41+-0.03 (z=0.57) consistent with LCDM+GR: f 
=0.45+-0.02  (Reid et al 2012)

β =
f

b1
, kµ = kz, σ2

p = pairwise velocity dispersion

f = Ωγ
m, γ ≈ 0.56 (GR), 0.68 (DGP)
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effect of redshift-space distortions on higher-order moments
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