

2354-19

Summer School on Cosmology

16 - 27 July 2012

Statistics and Data Analysis - Lecture 4

W. Percival ICG, Portsmouth

Review of BOSS

BOSS (part of the SDSS-III project)

- Duration: Fall 2009 Summer 2014, dark time
- Telescope: 2.5m Sloan
- Upgrade to SDSS-II spectrograph
 - 1000 smaller fibers
 - higher throughput
- Spectra:
 - $-3600^{\circ} \text{A} < \lambda < 10,000^{\circ} \text{A}$ New spectrograph
 - $\mathsf{R} = \lambda/\Delta\lambda = 1300 3000$
 - $-\left(\text{S/N}\right)$ at mag. limit
 - 22 per pix. (averaged over 7000-8500Å)
 - 10 per pix. (averaged over 4000-5500Å)
- Area: 10,000 deg2
- Targets:
 - -1.5×10^6 massive galaxies, z < 0.7, i < 19.9
 - -1.5×10^5 quasars, z>2.2, g<22.0 selected from 4×10^5 candidates
 - 75,000 ancillary science targets, many categories
- Measurements from Galaxies:
 - $-d_A(z)$ to 1.2% at z = 0.35 and 1.2% z = 0.6
 - H(z) to 2.2% at z = 0.35 and 2.0% at z = 0.6
- Measurements from Lya Forest:

 $-d_A(z)$ to 4.5% at z = 2.5 H(z) to 2.6% at z = 2.5

- Anderson et al. (alphabetical) arXiv:1203.6565 BAO measurement in power-spectrum and correlation function.
- **Reid et al.** arXiv:1203.6641- Anisotropic clustering, redshift-space distortion measurements.
- **Sanchez et al.** arXiv:1203.6616 Fits to the full shape of the correlation function.
- **Ross et al.** arXiv:1203.6499 Large-scale systematics.
- Manera et al. arXiv:1203.6609 600 PTHalo mocks.
- **Tojeiro et al.** arXiv:1203.6565 Enhanced redshift-space distortion measurements.
- Samushia et al. arXiv:1206.5309 Testing Λ & GR
- Plus more to come soon ...

A collaborative effort ...

Lauren Anderson¹, Eric Aubourg², Stephen Bailey³, Dmitry Bizyaev⁴, Michael Blanton⁵, Adam S. Bolton⁶, J. Brinkmann⁴, Joel R. Brownstein⁶, Angela Burden⁷, Antonio J. Cuesta⁸, Luiz N. A. da Costa^{9,10}, Kyle S. Dawson⁶, Roland de Putter^{11,12}, Daniel J. Eisenstein¹³, James E. Gunn¹⁴, Hong Guo¹⁵, Jean-Christophe Hamilton², Paul Harding¹⁵, Shirley Ho^{3,14}, Klaus Honscheid¹⁶, Eyal Kazin¹⁷, D. Kirkby¹⁸, Jean-Paul Kneib¹⁹, Antione Labatie²⁰, Craig Loomis²¹, Robert H. Lupton¹⁴, Elena Malanushenko⁴, Viktor Malanushenko⁴, Rachel Mandelbaum^{14,21}, Marc Manera⁷, Claudia Maraston⁷, Cameron K. McBride¹³, Kushal T. Mehta²², Olga Mena¹¹, Francesco Montesano²³, Demetri Muna⁵, Robert C. Nichol⁷, Sebastián E. Nuza²⁴, Matthew D. Olmstead⁶, Daniel Oravetz⁴, Nikhil Padmanabhan⁸, Nathalie Palanque-Delabrouille²⁵, Kaike Pan⁴, John Parejko⁸, Isabelle Pâris²⁶, Will J. Percival⁷, Patrick Petitjean²⁶, Francisco Prada^{27,28,29}, Beth Reid^{3,30}, Natalie A. Roe³, Ashley J. Ross⁷, Nicholas P. Ross³, Lado Samushia^{7,31}, Ariel G. Sánchez²³, David J. Schlegel^{*3}, Donald P. Schneider^{32,33}, Claudia G. Scóccola^{34,35}, Hee-Jong Seo³⁶, Erin S. Sheldon³⁷, Audrey Simmons⁴, Ramin A. Skibba²², Michael A. Strauss²¹, Molly E. C. Swanson¹³, Daniel Thomas⁷, Jeremy L. Tinker⁵, Rita Tojeiro⁷, Mariana Vargas Magaña², Licia Verde³⁸, Christian Wagner¹², David A. Wake³⁹, Benjamin A. Weaver⁵, David H. Weinberg⁴⁰, Martin White^{3,41,42}, Xiaoying Xu²², Christophe Yèche²⁵, Idit Zehavi¹⁵, Gong-Bo Zhao^{7,43}

- 600 mocks created by populating 2LPT field using the CMASS HOD
- Redshift-space effects added based on 2LPT velocities
- Matches simulation large-scale clustering at 10% level
- Used to test method and estimate covariances
- See Manera et al. for details

BAO results

- Fit the observed acoustic feature using some way to parametrize over nuisance broad-band features (different approaches for P(k) and ξ(r))
- Use a fiducial model to compare against observed features in spherically averaged statistics. Departures quantified by dilation scale α:

 $P(k/\alpha) = \xi(\alpha r)$

The dilation scale α depends on cosmology through:

$$D_V / r_s = \alpha (D_V / r_s)_{fid}$$

 $D_V = [cz(1 + z)^2 d_{\Delta}^2 H^{-1}]^{1/3}$

BOSS CMASS clustering measurements

Reconstruction on CMASS

Reconstruction: error on a

Reconstruction: a

Comparison of $\xi(r) \& P(k)$ measurements

Key BAO measurements

	α	χ^2/dof	$D_V/r_s(z=0.57)$				
Before Reconstruction							
$\overline{\xi(r)}$	1.016 ± 0.017	30.53/39	13.44 ± 0.22				
P(k)	1.022 ± 0.017	81.5/59	13.52 ± 0.22				
After Reconstruction							
$\overline{\xi(r)}$	1.024 ± 0.016	34.53/39	13.55 ± 0.21				
P(k)	1.042 ± 0.016	61.1/59	13.78 ± 0.21				
Consensus	1.033 ± 0.017		13.67 ± 0.22				

- ξ(r) and P(k) based estimations are appropriate and unbiased, but they include the noise from small scales and shot noise differently
- We average the two results, and compute the error bar using the observed scatter of the average value in the mocks. This shows no significant departure from a Gaussian distribution

Comparison of SDSS-II & CMASS results

Cosmological results

Cosmological Model	Data Sets ¹	$\Omega_{ m m}h^2$	$\Omega_{ m m}$	H ₀ km/s/Mpc	$\Omega_{\rm K}$	w_0	wa
ΛCDM	CMB	0.1341(56)	0.268(29)	71.0(26)			
ΛCDM	CMB+CMASS	0.1392(36)	0.298(17)	68.4(13)			
ΛCDM	CMB+LRG	0.1362(33)	0.280(14)	69.8(12)			
ACDM	CMB+LRG+CMASS	0.1384(31)	0.293(12)	68.8(10)			
ΛCDM	CMB+LRG+CMASS+6dF	0.1384(31)	0.293(12)	68.7(10)			
ACDM	CMB+LRG+CMASS+SN	0.1373(30)	0.287(11)	69.2(10)			
ΛCDM	CMB+LRG+CMASS+SN+6dF	0.1373(30)	0.288(11)	69.1(10)			
oCDM	CMB	0.1344(55)	0.423(175)	60.0(123)	-0.039(44)		
oCDM	CMB+CMASS	0.1340(53)	0.299(16)	67.0(15)	-0.008(5)		
oCDM	CMB+LRG	0.1333(53)	0.278(15)	69.3(16)	-0.004(5)		
oCDM	CMB+LRG+CMASS	0.1336(51)	0.288(12)	68.1(11)	-0.006(5)		
oCDM	CMB+LRG+CMASS+6dF	0.1336(50)	0.288(12)	68.1(11)	-0.006(5)		
oCDM	CMB+LRG+CMASS+SN	0.1322(51)	0.284(12)	68.3(12)	-0.006(5)		
oCDM	CMB+LRG+CMASS+SN+6dF	0.1321(50)	0.284(12)	68.2(11)	-0.007(5)		
wCDM	СМВ	0.1342(58)	0.263(105)	75.4(138)		-1.12(41)	
wCDM	CMB+CMASS	0.1358(59)	0.323(43)	65.4(60)		-0.87(24)	
wCDM	CMB+LRG	0.1349(57)	0.285(25)	69.0(39)		-0.97(17)	
wCDM	CMB+LRG+CMASS	0.1370(58)	0.294(27)	68.6(44)		-0.99(21)	
wCDM	CMB+LRG+CMASS+6dF	0.1363(51)	0.298(20)	67.8(31)		-0.95(15)	
wCDM	CMB+LRG+CMASS+SN	0.1399(37)	0.280(13)	70.8(18)		-1.09(8)	
wCDM	CMB+LRG+CMASS+SN+6dF	0.1396(37)	0.282(13)	70.4(17)		-1.08(8)	
owCDM	CMB+LRG+CMASS	0.1345(53)	0.250(42)	74.1(70)	-0.008(5)	-1.31(34)	
owCDM	CMB+LRG+CMASS+6dF	0.1334(52)	0.271(31)	70.5(43)	-0.007(6)	-1.14(23)	
owCDM	CMB+CMASS+SN	0.1338(53)	0.280(17)	69.2(21)	-0.009(5)	-1.10(8)	
owCDM	CMB+LRG+CMASS+SN	0.1337(53)	0.275(14)	69.8(18)	-0.007(5)	-1.09(8)	
owCDM	CMB+LRG+CMASS+SN+6dF	0.1333(52)	0.276(13)	69.6(17)	-0.008(5)	-1.09(8)	
$w_0 w_a CDM$	CMB+LRG+CMASS	0.1377(58)	0.282(52)	70,7(68)		-1.11(51)	0.18(122)*
$w_0 w_a CDM$	CMB+LRG+CMASS+6dF	0.1369(55)	0.292(41)	68.9(48)		-1.02(42)	0.44(113)*
$w_0 w_a CDM$	CMB+CMASS+SN	0.1389(62)	0.281(17)	70.3(23)		-1.07(16)	-0.85(96)*
$w_0 w_a CDM$	CMB+LRG+CMASS+SN	0.1392(59)	0.280(14)	70.6(19)		-1.08(15)	0.10(87)
$w_0 w_a CDM$	CMB+LRG+CMASS+SN+6dF	0.1385(58)	0.281(14)	70.2(17)		-1.08(15)	0.08(81)
owowaCDM	CMB+LRG+CMASS	0.1347(54)	0.263(54)	72,7(79)	-0.009(6)	-1.13(54)	-0.70(139)*
$ow_0 w_a CDM$	CMB+LRG+CMASS+6dF	0.1341(53)	0.284(40)	69.2(50)	-0.009(7)	-0.93(41)	-0.93(130)*
$ow_0 w_a CDM$	CMB+CMASS+SN	0.1344(54)	0.280(17)	69.5(21)	-0.012(6)	-0.91(17)	-1.31(102)*
$ow_0 w_a CDM$	CMB+LRG+CMASS+SN	0.1348(53)	0.277(14)	69.8(18)	-0.012(5)	-0.89(16)	-1.44(93)*
$ow_0 w_a CDM$	CMB+LRG+CMASS+SN+6dF	0.1343(52)	0.278(14)	69.5(17)	-0.012(5)	-0.88(15)	-1.40(94)*
$ow_0 w_a CDM$	CMB+LRG+CMASS+SN+H0	0.1364(51)	0.270(12)	71.1(15)	-0.010(5)	-0.93(16)	-1.46(95)*
ow_0w_aCDM	CMB+LRG+CMASS+SN+H0+6dF	0.1359(50)	0.270(12)	70.8(14)	-0.010(5)	-0.93(16)	-1.39(96)*

Constraints on Friedman equation

$$H^{2}(a) = H_{0}^{2} \left[\Omega_{R} a^{-4} + \Omega_{M} a^{-3} + \Omega_{k} a^{-2} + \Omega_{DE} \exp \left\{ 3 \int_{a}^{1} \frac{da'}{a'} \left[1 + w(a') \right] \right\} \right]$$

Anisotropic clustering results

Anisotropic clustering measurements

Reid et al.

 Including the quadrupole allows us to measure H and d_A separately (or include an additional measurement of F)

 $\mathsf{F} = (1\!+\!z) \; \mathsf{d}_\mathsf{A}(z)\mathsf{H}(z)/\mathsf{c}$

- F is sometimes called the Alcock-Paczynski parameter
- Can also measure the growth rate from the RSD contribution

 $f\sigma_8(z=0.57)$

• These are degenerate, but that degeneracy is not perfect

Results of the anisotropic fit

Dotted: free growth, geometry, Λ CDM prior on large-scale linear P(k) shape at z=0.57 Solid: F forced to match Λ CDM model Dashed: WMAP Λ CDM+GR prediction

Reid et al.

CMASS F measurements in context

z

Samushia et al. (in prep), Reid et al.

CMASS RSD measurements in context

Samushia et al. (in prep), Reid et al.

Using passive evolution to enhance RSD measurements

Tojeiro et al. 2012; arXiv:1202.6241

Using passive evolution to enhance RSD measurements

Tojeiro et al.

Converting to σ_8 measurements

Tojeiro et al.

Fitting the full clustering signal

Fitting the full shape of the correlation function

Cosmological constraints from full fit

Sanchez et al.

Wo

The Future ...

Dark Energy Survey (DES)

- New wide-field camera for the 4m Blanco telescope
- Currently being assembled on site, Survey due to start December 2012
- Ω = 5,000deg2
- multi-colour optical imaging (g,r,i,z) with link to IR data from VISTA hemisphere survey
- 300,000,000 galaxies
- Aim is to constrain dark energy using 4 probes LSS/BAO, weak lensing, supernovae cluster number density
- Redshifts based on photometry weak radial measurements weak redshift-space distortions
- See also: Pan-STARRS, VST-VISTA, SkyMapper

eBOSS

- Use the Sloan telescope and MOS to observe to higher redshift
- Basic parameters
 - $-\Omega = 3,000 \text{deg}^2$
 - 1,000,000 galaxies (direct BAO)
 - 60,000 quasars (BAO from Ly- α forest)
- Distance measurements
 - 1.6% at z=0.7 (LRGs)
 - 1.5% at z=0.9 (ELGs)
 - 3.0% at z=1.5 (QSOs)
 - -2.3% at z=2.5 (Ly- α forest)
- Survey would start 2014, and would last 4—6 years (depending on funding)
- Currently at the stage of requesting funding

MOS on 4m-telescope

- New fibre-fed spectroscopes proposed for 4m telescopes
 - Mayall (BigBOSS)
 - Blanco (DESpec)
 - WHT (WEAVE)
 - VISTA (4MOST)
- Various stages of planning & funding
- All capable of observing
 - $-\Omega = 10,000 \text{deg}^2$
 - 10,000,000 galaxies (direct BAO)
 - 600,000 quasars (BAO from Ly- α forest)
- Cosmic variance limited to z ~ 1.4

The ESA Euclid Mission

Space-based Vis and NIR observations of galaxies

The ESA Euclid Mission

SURVEYS						
	Area (deg2)		Description			
Wide Survey	15,000 (required) 20,000 (goal)	Step and stare with 4 dither pointings per step.				
Deep Survey	40	In at least 2 patches of $> 10 \text{ deg}^2$ 2 magnitudes deeper than wide survey				
		PAYLO	AD	•		
Telescope		1.2 m Korsel	n, 3 mirror anasti	gmat, f=24.5	m	
Instrument	VIS		NISP			
Field-of-View	$0.787 \times 0.709 \text{ deg}^2$		$0.763 \times 0.722 \text{ deg}^2$			
Capability	Visual Imaging	NIR	NIR Imaging Photometry N			
Wavelength range	550– 900 nm	Y (920- 1146nm),	J (1146-1372 nm)	H (1372- 2000nm)	1100-2000 nm	
Sensitivity	24.5 mag 10σ extended source	24 mag 5σ point source	24 mag 5σ point source	24 mag 5σ point source	$3 10^{-16}$ erg cm-2 s-1 3.5 σ unresolved line flux	
Detector	36 arrays	16 arrays				
Technology	4k×4k CCD	2k×2k NIR sensitive HgCdTe detectors				
Pixel Size Spectral resolution	0.1 arcsec	0.3 arcsec 0.3 arcsec R=250				
SPACECRAFT						
Launcher	cher Soyuz ST-2.1 B from Kourou					
Orbit	Large Sun-Earth Lagrange point 2 (SEL2), free insertion orbit					
Pointing	25 mas relative pointing error over one dither duration 30 arcsec absolute pointing error					
Observation mode	Step and stare, 4 dither frames per field, VIS and NISP common $FoV = 0.54 \text{ deg}^2$					
Lifetime	7 years					
Operations	4 hours per day contact, more than one ground station to cope with seasonal visibility variations;					
Communications	maximum science data rate of 850 Gbit/day downlink in K band (26GHz), steerable HGA					

Hardware

NIR FPA: 16 H2RG

0.5deg² FOV in optical/NIR

Thales

- The dark energy equation of state is the ratio of the pressure to density of dark energy $p(a) = w(a) \times p(a)c^2$.
- This dependence can be parameterised using a first order Taylor expansion with respect to the scale factor a=1/(1+z),
 w(a)= w_p+(a_p-a)w_a.
- Detecting w(a)≠–1 at any redshift would demonstrate that dark energy is not a cosmological constant, but rather a dynamical field
- Define a Figure-of-Merit (FoM) FoM = $1/(\Delta wp \times \Delta wa)$
- Primary Euclid probes give a FoM>4

 with subdominant systematic
 uncertainties, matching the DETF
 definition of a stage-IV mission

- The growth factor [or its derivative, the growth rate f(z)] quantifies the efficiency with which cosmological structure is built.
- A detection of γ≠0.55 would indicate a deviation from General Relativity, and thus a completely different origin of cosmic acceleration, rather than dark energy.
- The growth rate well described by $f(z)=\Omega_m(z)^{\gamma}$.
- Euclid can constrain this parameter to 0.01 (where ΛCDM corresponds to γ=0.55).
- the γ-parameterisation is merely an example. In general, Euclid will provide tight constraints on the cosmological growth rate.

- Concordance cosmology assumes an initial Gaussian random field of perturbations, with power-law index n_s
- Euclid + Planck will provide a factor ~2 improved n_s measurement over Planck alone
- A detection of non-Gaussianity would signify a departure from this central assumption of the current standard model. The f_{NL} parameter is a way to quantify the amplitude of this effect.
- Euclid will measure f_{NL} with an accuracy of 2, compared to Planck which measures f_{NL} to an accuracy 5 with a complementary approach

- The total neutrino mass is the sum of the masses of the three known species (electron, muon and tau neutrinos).
- Massive neutrinos damp structure growth on small scales. The larger the mass, the more damping occurs, leaving a clear signature in the matter power spectrum observed by Euclid.
- particle physics experiments have established that at least two of the three neutrino species have non-zero mass, with the larger mass difference of the order of 0.06 eV
- Euclid will measure Δm_v < 0.03eV, sufficient to determine the neutrino mass hierarchy, if the total mass turns out to be small, m_v <0.1 eV.
- i.e. will show if neutrinos obey a normal (two light neutrinos, one massive neutrino) or inverted (two massive neutrinos, one light neutrino) hierarchy; understanding this will give indications about the mechanism that gave neutrinos their mass.

	Modified Gravity	Dark Matter	Initial Conditions	Dark Energy		y
Parameter	γ	m√eV	f _{NL}	w_p	Wa	FoM
Euclid Primary	0.010	0.027	5.5	0.015	0.150	430
Euclid All	0.009	0.020	2.0	0.013	0.048	1540
Euclid+Planck	0.007	0.019	2.0	0.007	0.035	4020
Current	0.200	0.580	100	0.100	1.500	~10
Improvement Factor	30	30	50	>10	>50	>300

- Wide survey 15,000 deg2 YJHAB=24 would take 680 years with VISTA or 66 years with SASIR (2017)
- Deep survey 40 deg2 YJHAB=26 would take 72 years with VISTA or 7 years with SASIR
- The Euclid surveys are >100 times more ambitious than anything underway and at least >10 times more ambitious than anything else currently conceived

Euclid Legacy in numbers

What	Euclid	Before Euclid	
Galaxies at 1 <z<3 estimates<="" good="" mass="" td="" with=""><td>~2x10⁸</td><td>~5x10⁶</td></z<3>	~2x10 ⁸	~5x10 ⁶	
Massive galaxies (1 <z<3) spectra<="" td="" w=""><td>~few x 10³</td><td>~few tens</td></z<3)>	~few x 10 ³	~few tens	
Hα emitters/metal abundance in z~2-3	~4x10 ⁷ /10 ⁴	~10 ⁴ /~10 ² ?	
Galaxies in massive clusters at z>1	~2x10 ⁴	~10 ³ ?	
Type 2 AGN (0.7 <z<2)< td=""><td>~10⁴</td><td><10³</td></z<2)<>	~10⁴	<10 ³	
Dwarf galaxies	~10 ⁵		
T _{eff} ~400K Y dwarfs	~few 10 ²	<10	
Strongly lensed galaxy-scale lenses	~300,000	~10-100	
z > 8 QSOs	~30	None	

SDSS-II LRG clustering

Percival et al. 2009; arXiv:0907.1660

BOSS CMASS DR9 galaxy clustering

Predicted Euclid galaxy clustering

Distance measurements for future surveys

SDSS-II LRG BAO vs other data

Percival et al. 2009; arXiv:0907.1660

SDSS-II BAO Constraint on $r_s(z_d)/D_v(0.2) \& r_s(z_d)/D_v(0.35)$

flat wCDM models

- WMAP 5year
- SDSS-II BAO Constraint on $r_s(z_d)/D_V(0.2) \& r_s(z_d)/D_V(0.35)$