

2354-30

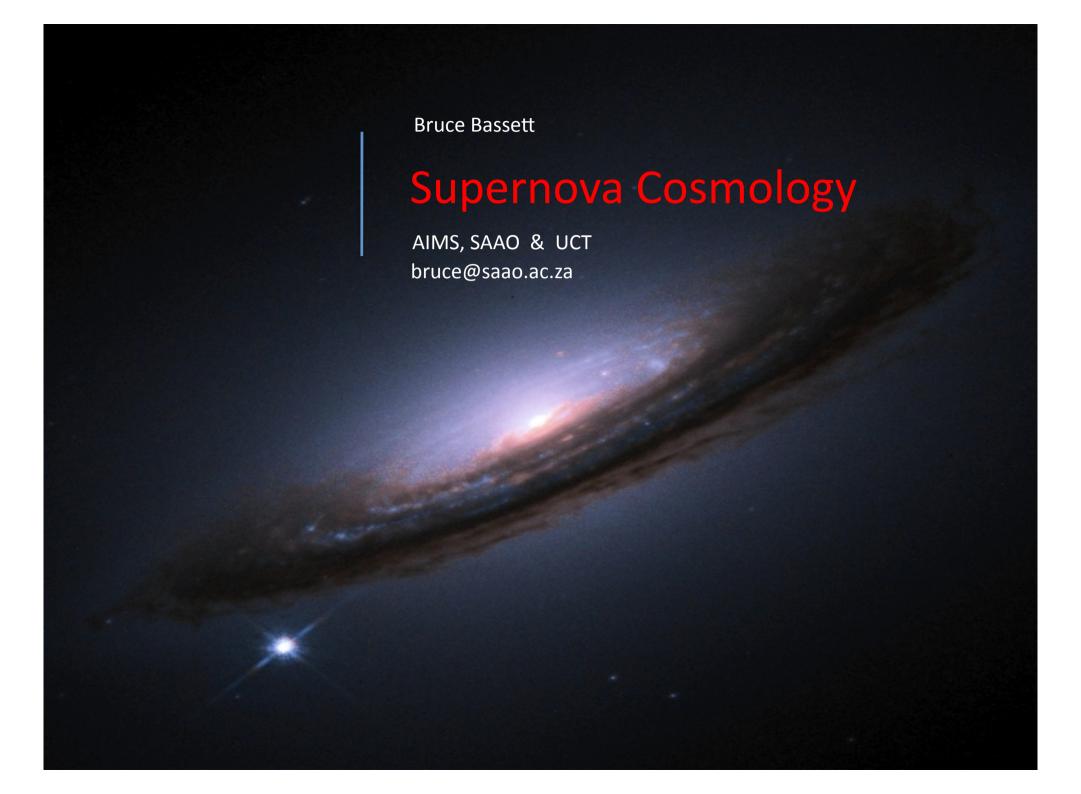
Summer School on Cosmology

16 - 27 July 2012

Supernova Cosmology

B. Bassett

AIMS, SAAO & UCT



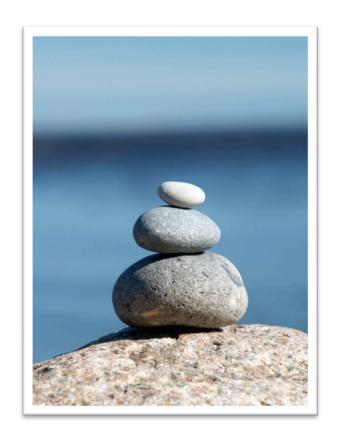
Parkinson Challenge

• Download the Union SNIa data online, write an MCMC algorithm in your favourite language and derive constraints on $\Omega_{\rm m}$, Ω_{λ} marginalising over H₀.

Time frame: finish before I stop talking.

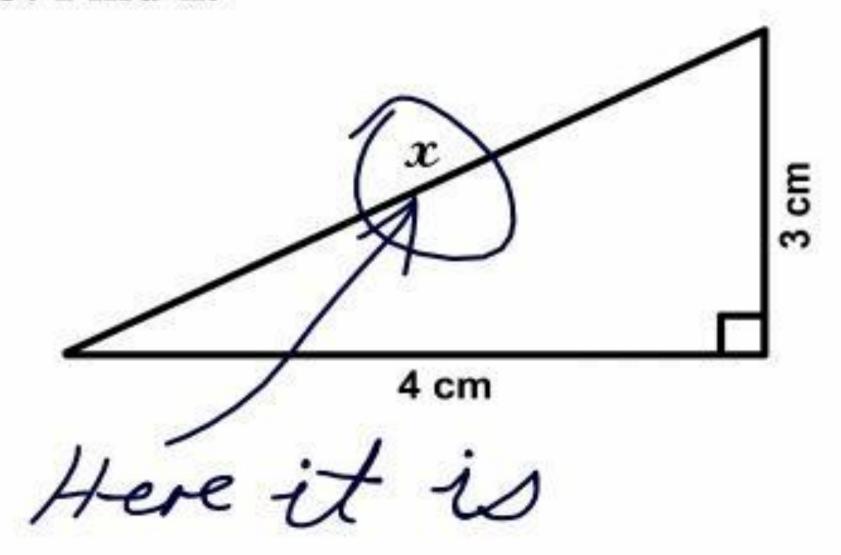
Overview

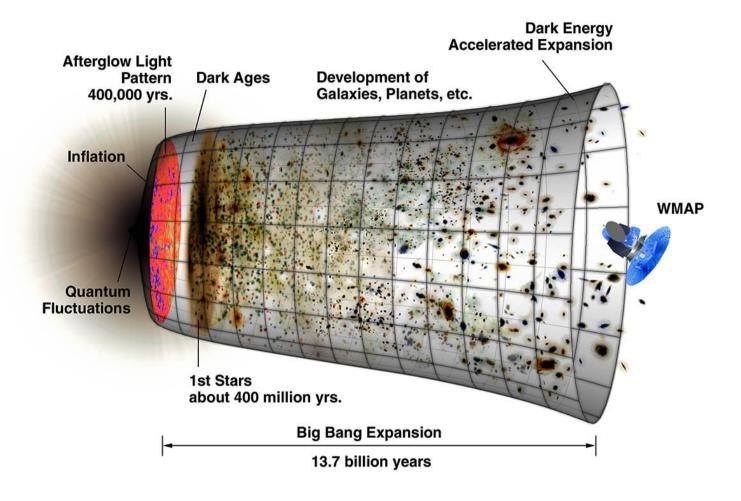
- What distances do
- The Good: SNIa and the Miracle
- The Ugly
- The Future



Our life is frittered away by detail. Simplify, simplify, simplify!

3. Find x.



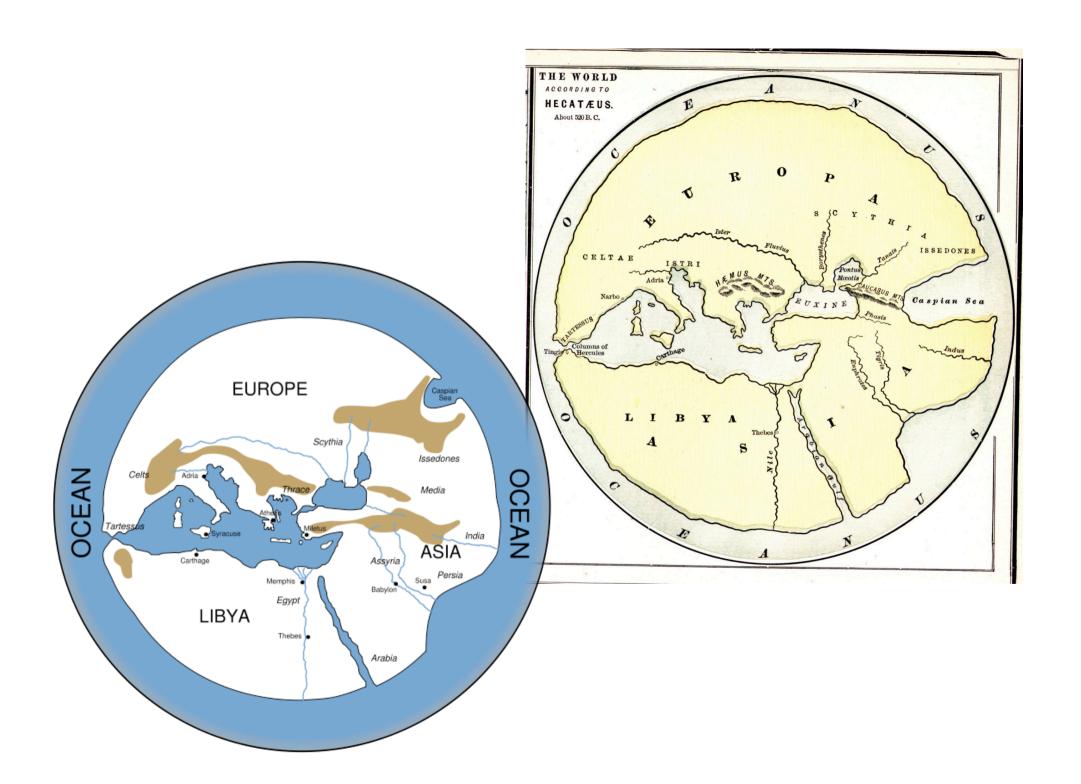


Redshift, colours, spectra, fluxes

Dynamics, scale and content of the cosmos

NASA/WMAP Science Team

$$H_0$$
, Ω_{DE} , Ω_m , Ω_k etc...



How do we measure distances in everyday life?

"The real benefit is the fact that it's easier for others to figure out how far away you are... I can say that, after putting two headlinghts on one of my bikes, I had much fewer near-incidence of people stepping out right in front of me"

www.bikeforums.net

A tale of two distances

• Two main distances in cosmology: Luminosity distance (d_L) and angular-diameter distance (d_A)

Photon Flux
$$\alpha d_{L}^{-2}$$

They are related by distance duality:

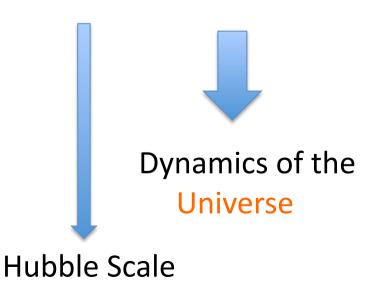
$$d_L(z) = (1+z)^2 d_A(z)$$

This is true in any metric theory of gravity with photon conservation and any metric

Let's assume the Universe is flat ($\Omega_k = 0$) to start with. Then...

$$d_L(z) = (1+z)$$

Distance we will Measure somehow



Let's assume the Universe is flat ($\Omega_k = 0$) to start with. Taylor expanding to second order gives...

$$d_L(z) = \frac{c}{H_0} \left[z \right]$$

 H_0 sets the overall *scale* for *all* Distances (Hubble's law is true for all models)

Let's assume the Universe is flat ($\Omega_k = 0$) to start with. Taylor expanding to second order gives...

$$d_L(z) = \frac{c}{H_0} \left[z + \frac{1}{4} (1 + 3\Omega_{\Lambda}) z^2 \dots \right]$$

 H_0 sets the overall *scale* for *all* Distances (Hubble's law is true for all models)

The shape of the Hubble Diagram depends on Ω_{Λ}

What happens when we don't assume flatness?

$$d_L(z) = \frac{(1+z)}{H_0} \frac{c}{\sin\left(\sqrt{-\Omega_K} \int \frac{dz'}{E(z')}\right)}$$

Encodes the effect of the curved null geodesics ...

What happens when we don't assume flatness?

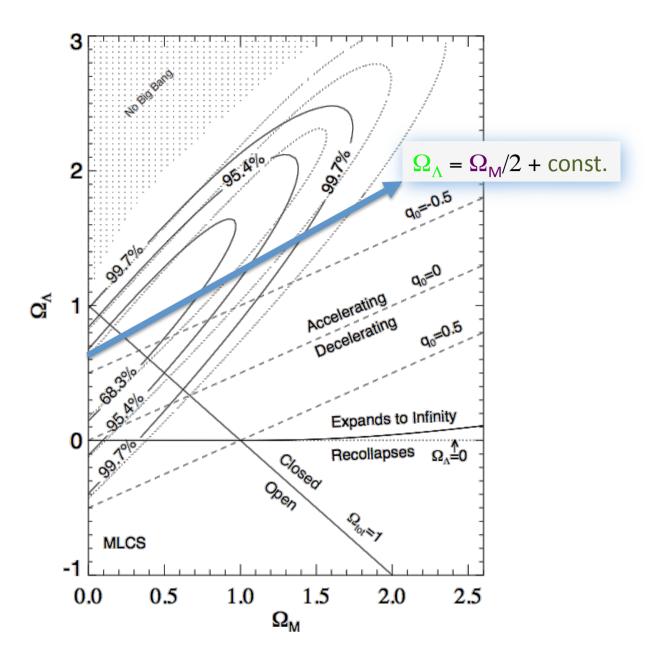
Taylor expanding to second order gives...

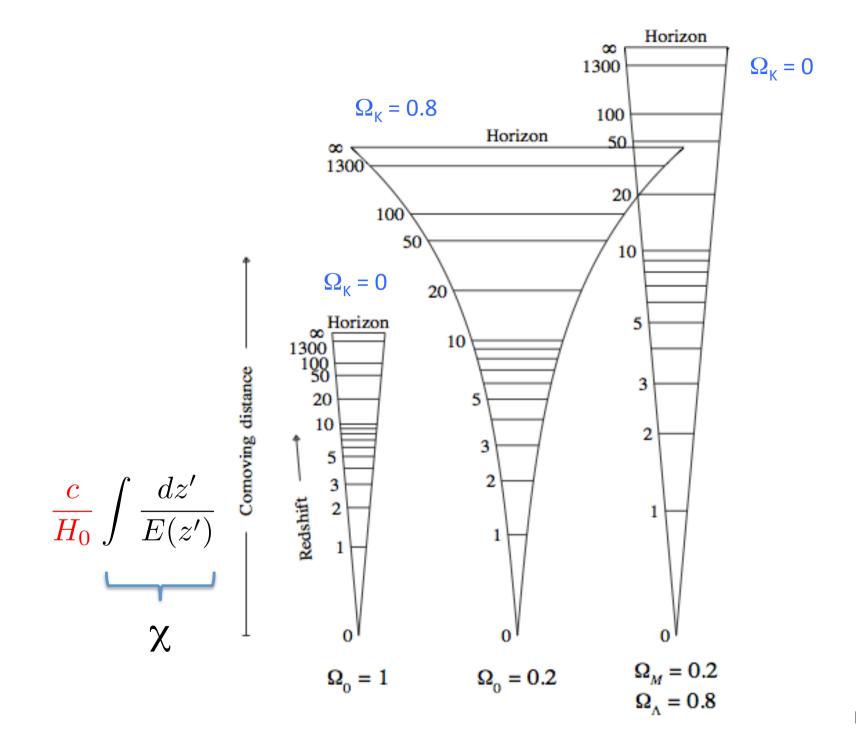
$$d_L(z) = \frac{c}{H_0} \left[z + \frac{1}{4} (1 + \Omega_K + 3\Omega_{\Lambda}) z^2 \dots \right]$$

2nd order term is degenerate on the line:

$$\Omega_{\Lambda} = \Omega_{\rm M}/2 + {\rm const.}$$

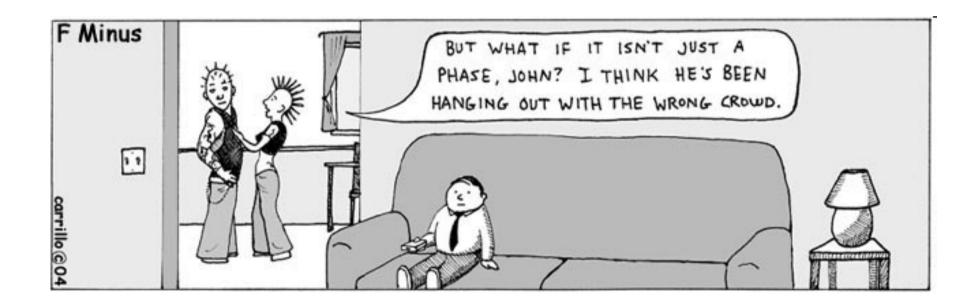
The *curvature* of the Hubble Diagram now depends on the Amount of dark energy AND the spatial curvature, $\Omega_{\rm K}$





So how do we measure a luminosity distance?

Or "why cosmologists care about stars"



Distance modulus and magnitudes

Apparent

Magnitude

$$\mu = m - M \equiv 5\log_{10}\left[\frac{d_L(z)}{1Mpc}\right] + 25$$

Distance Absolute

Modulus Magnitude

 d_L converts M \rightarrow m Common in Supernova cosmology to plot μ or m_R vs redshift

d_L Wish list...

We want objects that are:

- Very Bright...so we can see them across the observable universe
- Known: We know each object's intrinsic luminosity.
- Standard: no environmental dependence of the intrinsic luminosity
- Time-invariant: their intrinsic luminosity doesn't change with redshift
- Easy to find...
- Emit most of their light in the optical (counter example: binary black holes as GW sirens)

Problem: if we don't know M What can we do?

$$m = M + 25 + 5\log_{10} d_L(z)$$

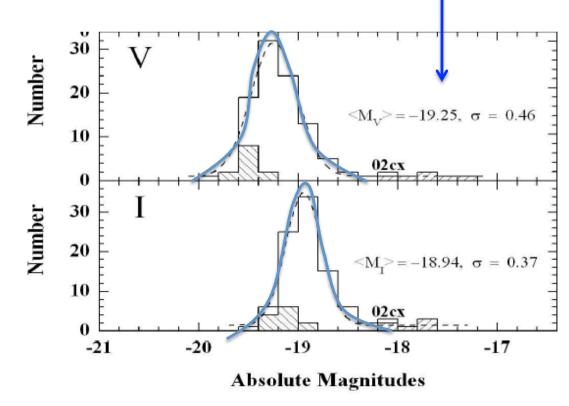
$$= M + 25 + 5\log_{10} \left(\frac{c}{H_0\sqrt{-\Omega_k}}\right) + 5\log_{10}(1+z) + 5\log_{10}\left(\sin(\sqrt{-\Omega_k} \cdot \chi(z))\right)$$
Constants

Redshift dependent

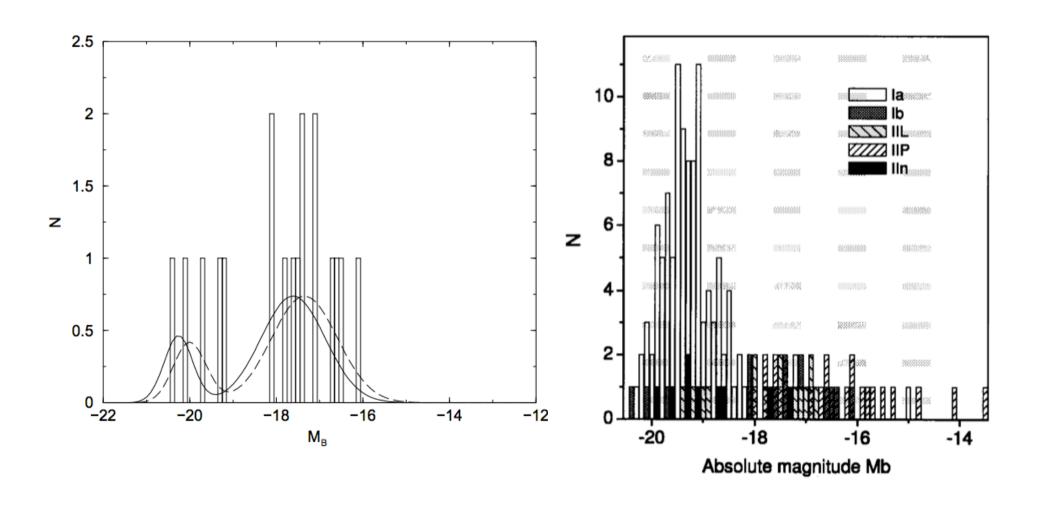
If we subtract the apparent magnitudes of two objects with the same M at different redshifts, all the unknown constants disappear...

Type la Supernovae (SNIa)

- Very Bright...at peak they can outshine their host galaxies
- Stable: Don't seem to evolve with redshift
- Fairly standard: $\sigma = 0.4 \text{ mag}$
- Easy to find...~ 1 per century per galaxy



Non-la diversity



Total incineration of a white dwarf when it exceeds the Chandrasekhar limit of 1.4 M_{sun} **→** Bright *and* standard www.astroart.org

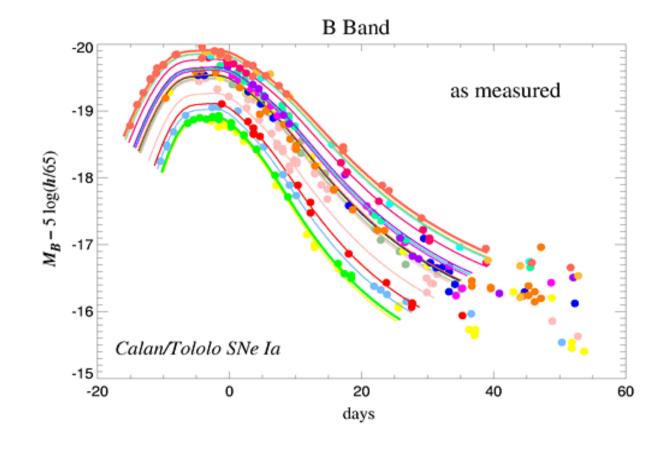
Artist's randition of a white dwarf accumulating mass from a nearby

But wait, there's more...

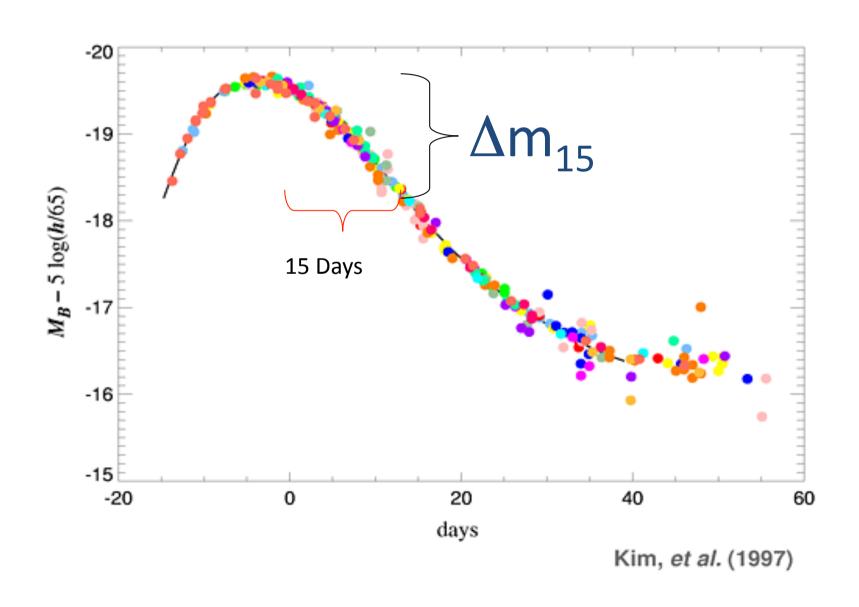
 We can make SNIa even more standard reducing variation in peak brightness to

 σ = 0.12 mag

 Exploit observed correlation between peak brightness, colours and shape of the lightcurve (Phillips, 1993).

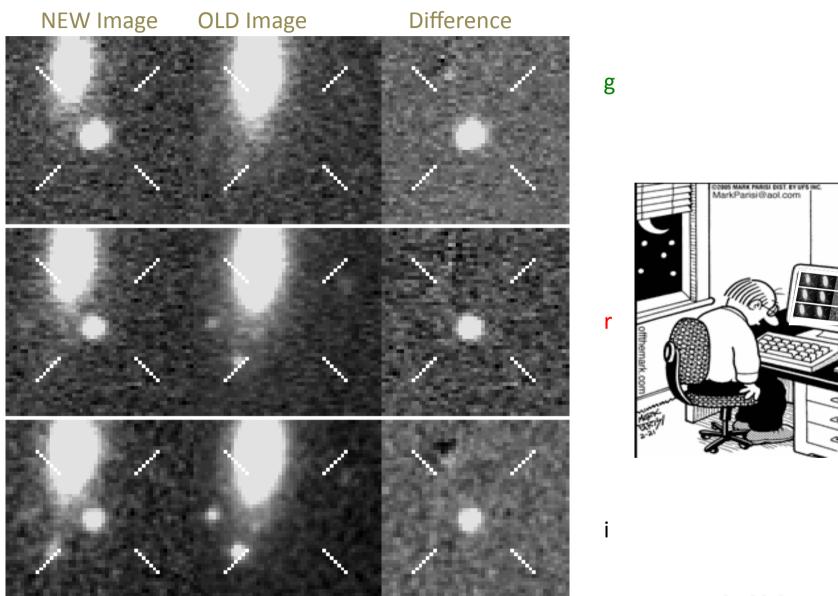


After Standardisation...

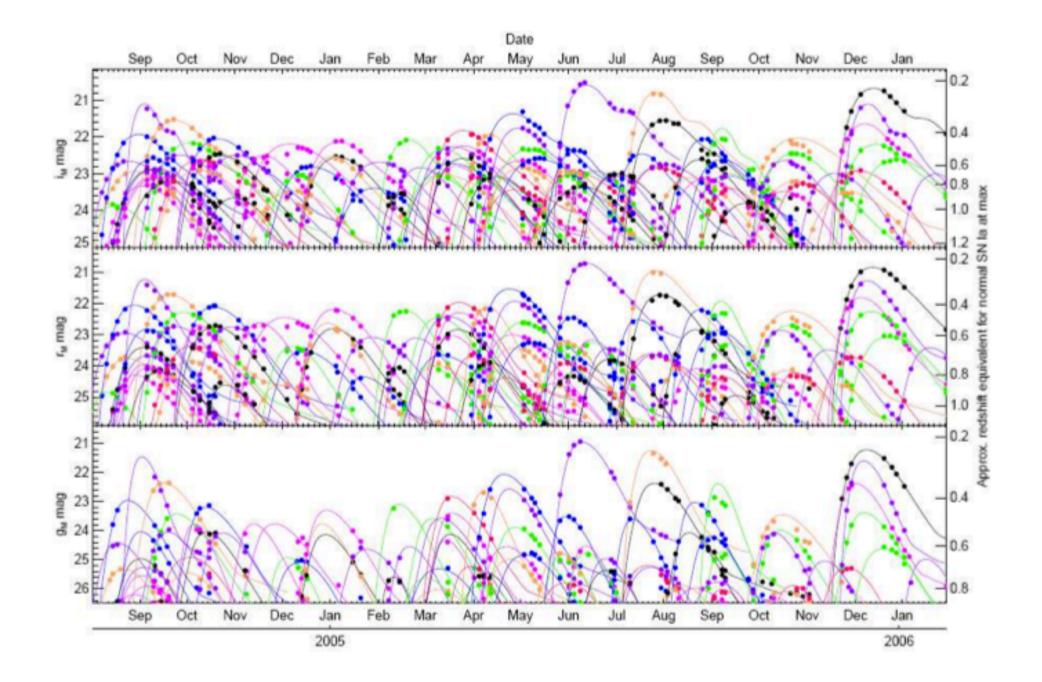


Why does intrinsically brighter → slower decline?

How are SNe found these days?



SDSS SN search



Distance modulus and magnitudes

Apparent

Magnitude

$$\mu = m - M \equiv 5\log_{10}\left[\frac{d_L(z)}{1Mpc}\right] + 25$$

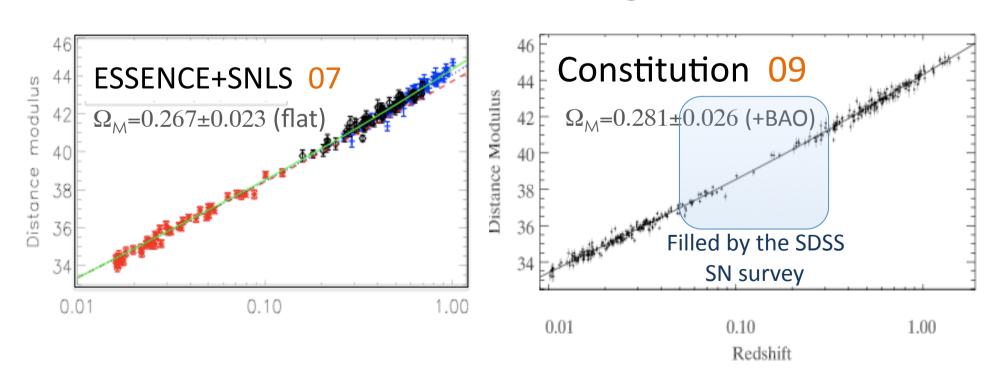
Distance Modulus

Distance Absolute

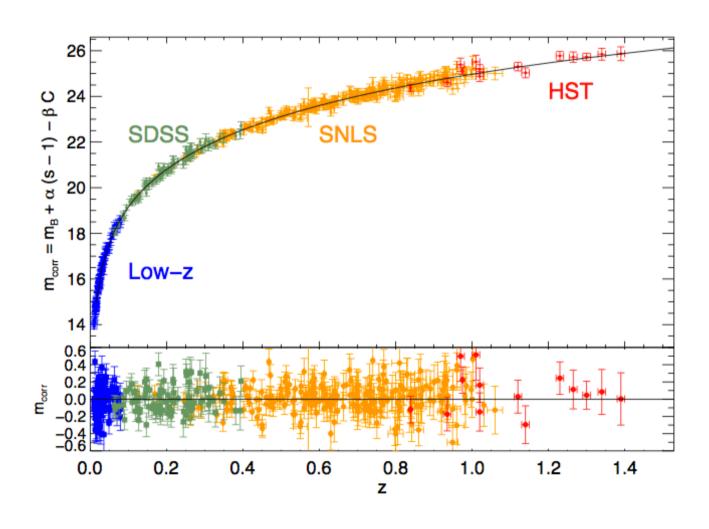
Magnitude



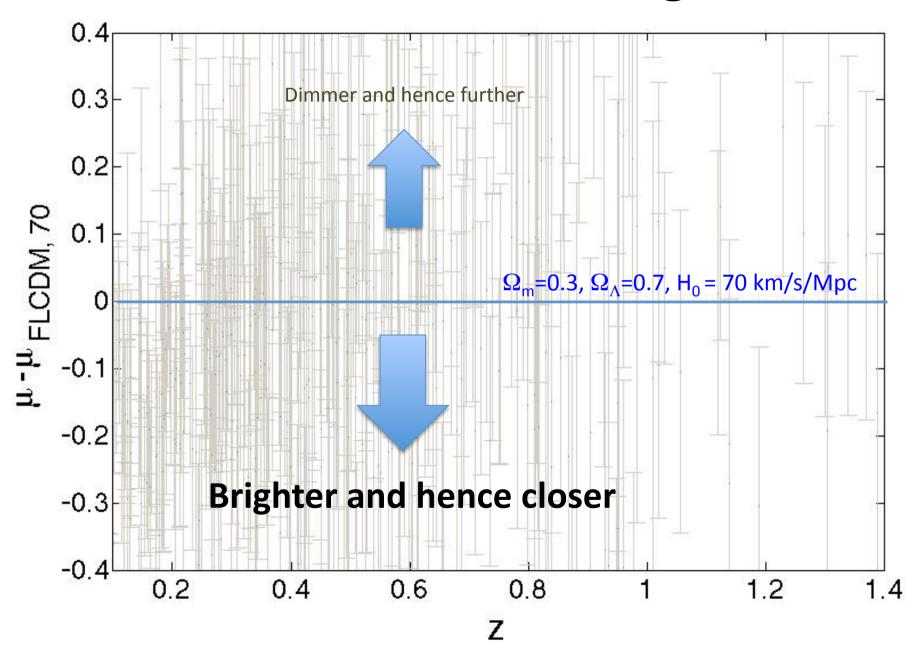
Evolution of the Hubble Diagram 1996-2009

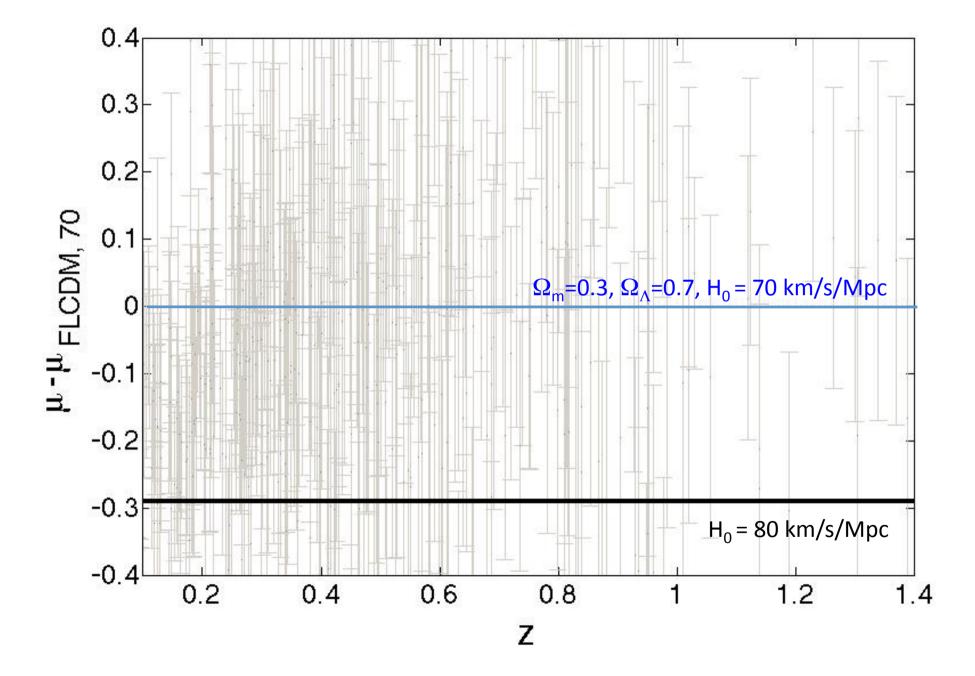


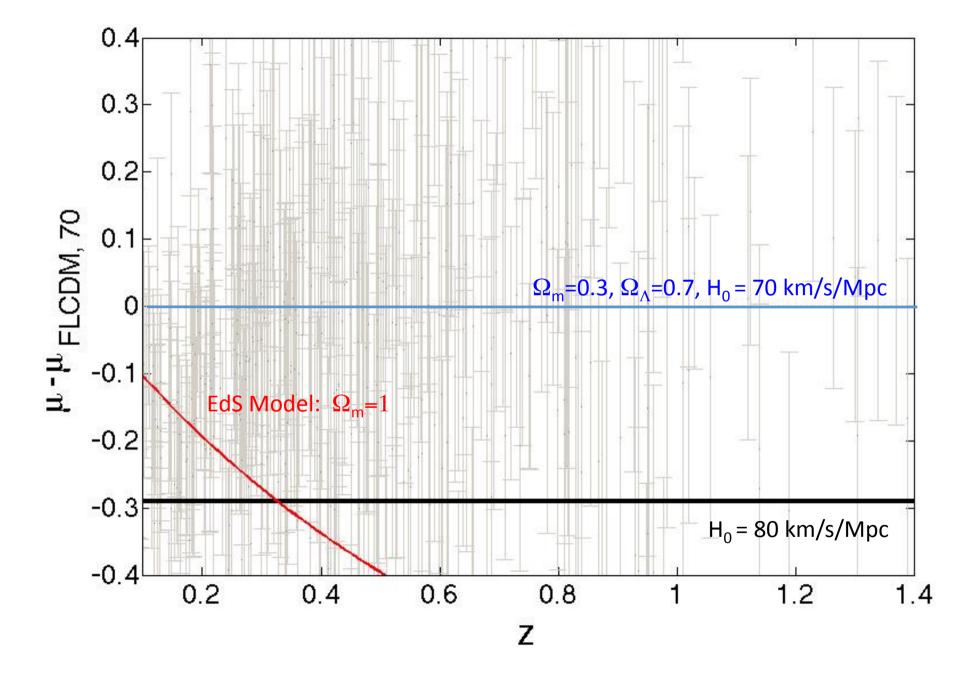
Current state-of-the art

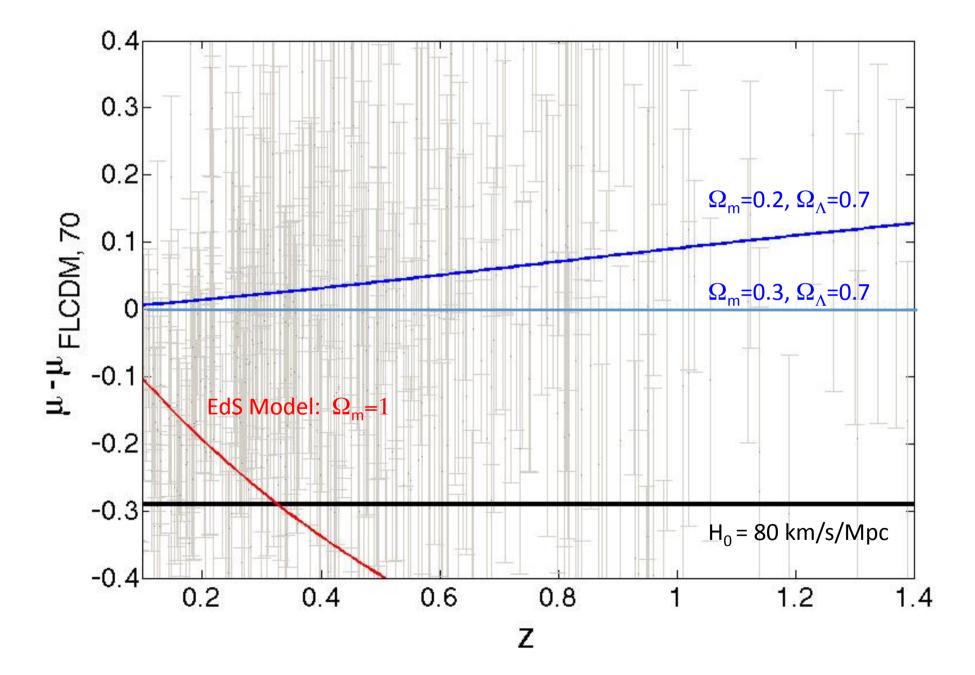


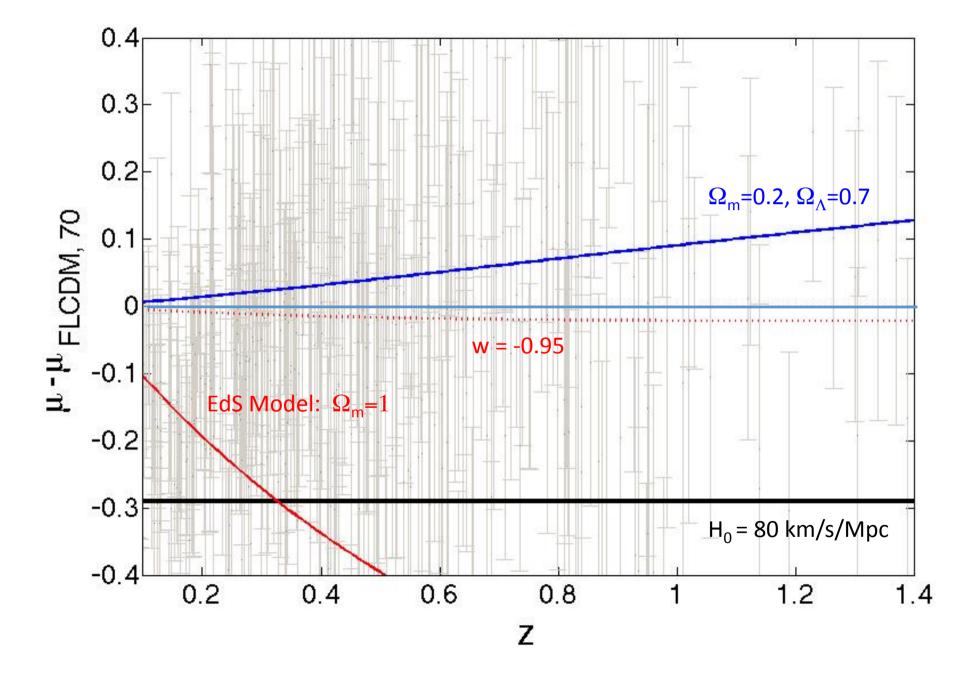
Relative Hubble Diagram

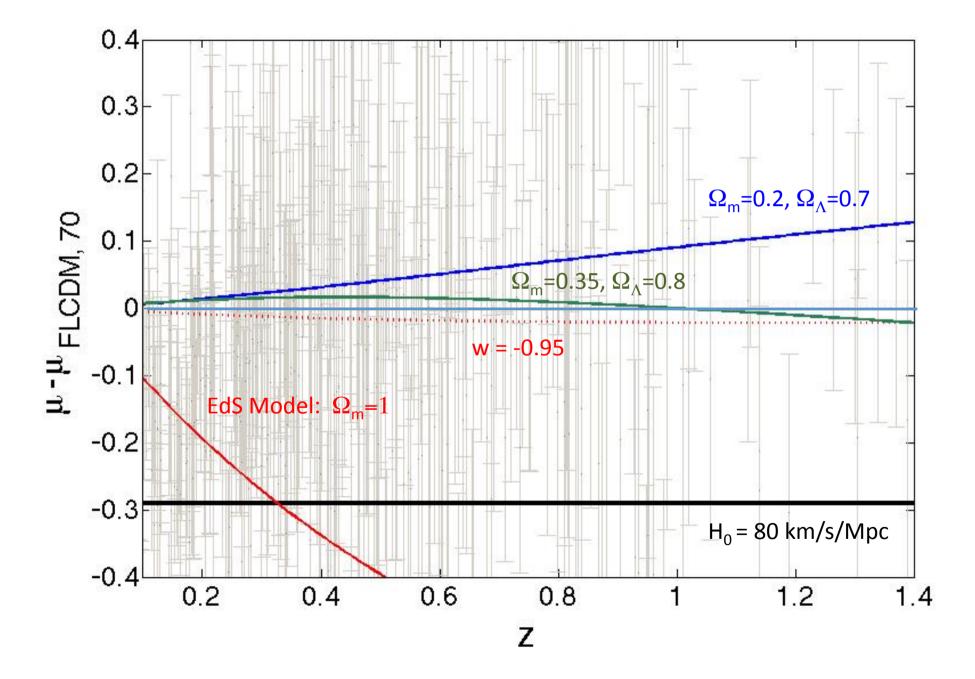


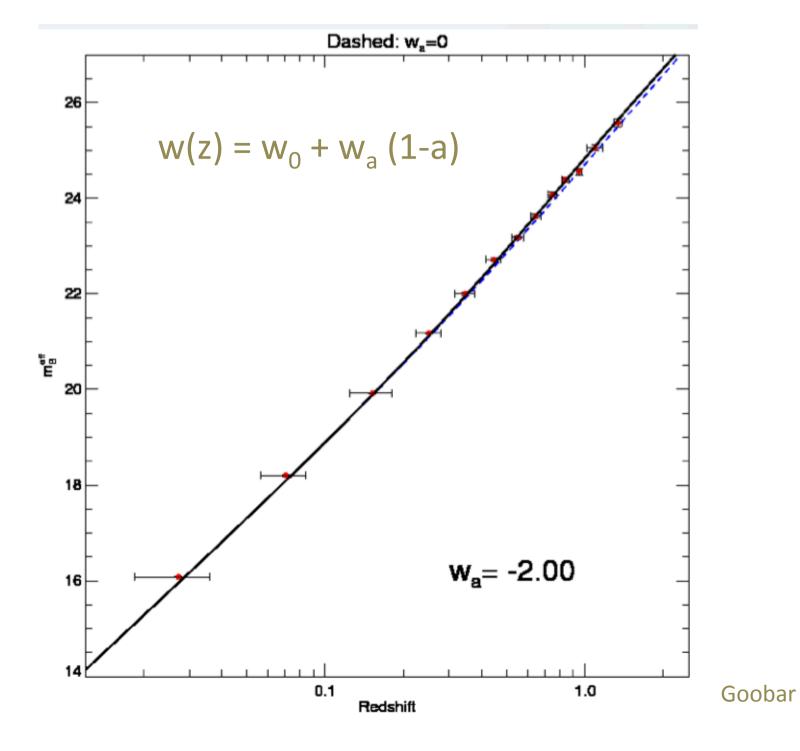




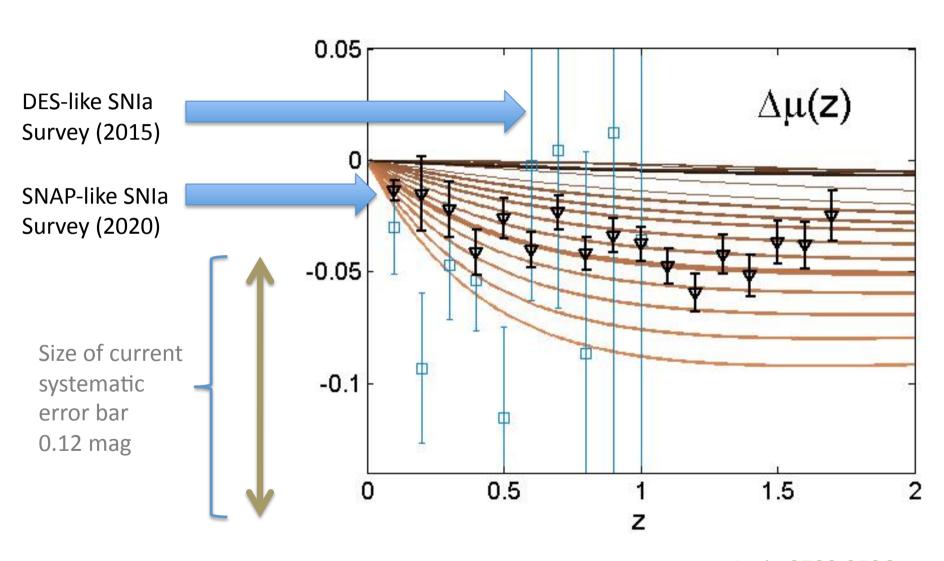








It is very hard to distinguish tracking quintessence and $\Lambda \text{CDM}...$



Arxiv:0709.0526

Other difficulties...

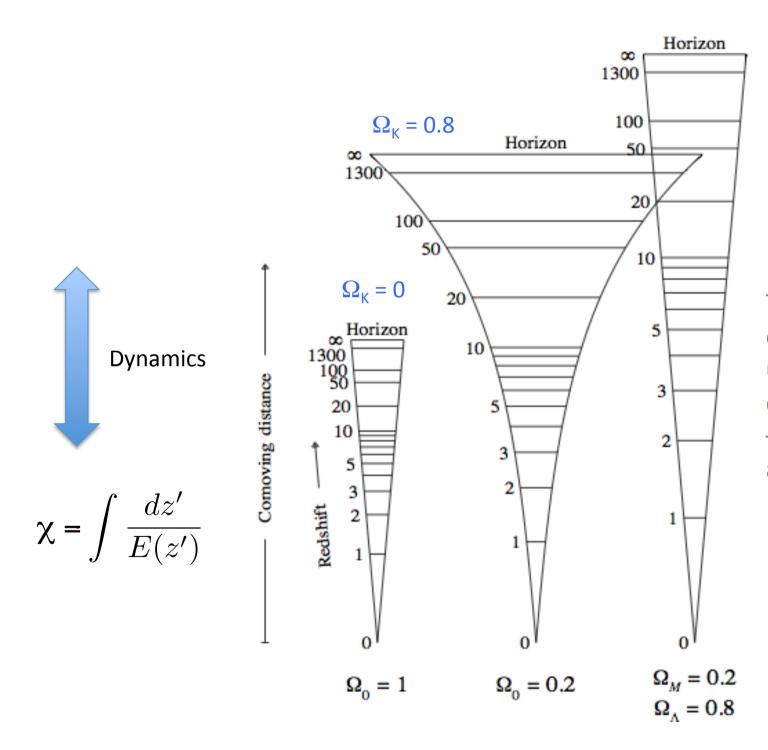
- Degeneracies...
- Gravitational lensing...
- Dust obscuration...
- Peculiar objects...
- Host dependence...
- UV evolution...
- The Spectroscopic desert
- The future...

Geometry – Dynamics Degeneracy

• Even with perfect **distance** measurements there is a perfect degeneracy between the curvature (Ω_k) and H(z) (Weinberg, '73)

$$d_L(z) = \frac{(1+z)}{H_0\sqrt{-\Omega_k}} \sin\left(H_0\sqrt{-\Omega_k}\int \frac{dz'}{H(z')}\right)$$

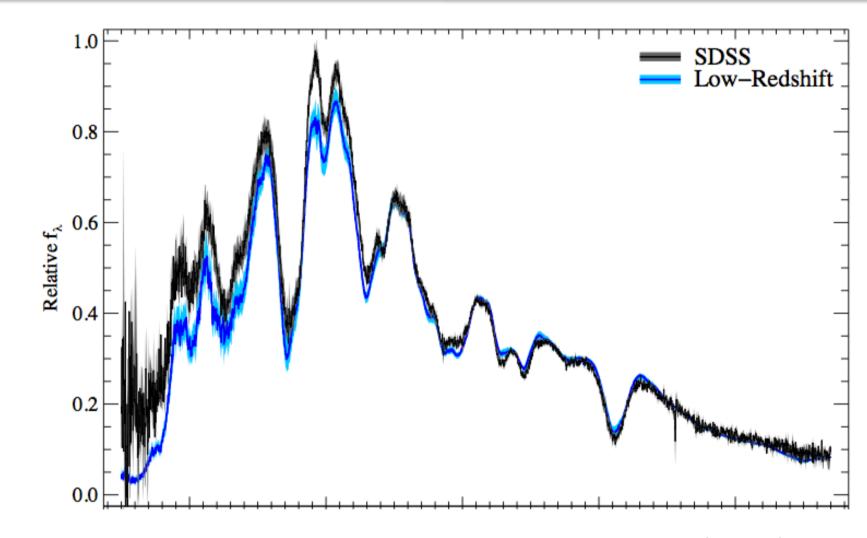
$$\Omega_{k} = \frac{[H(z)D'(z)]^{2} - 1}{[H_{0}D(z)]^{2}}$$



$$\Omega_{\rm K} = 0$$

The size of an object is not uniquely determined by χ – curvature must also be known

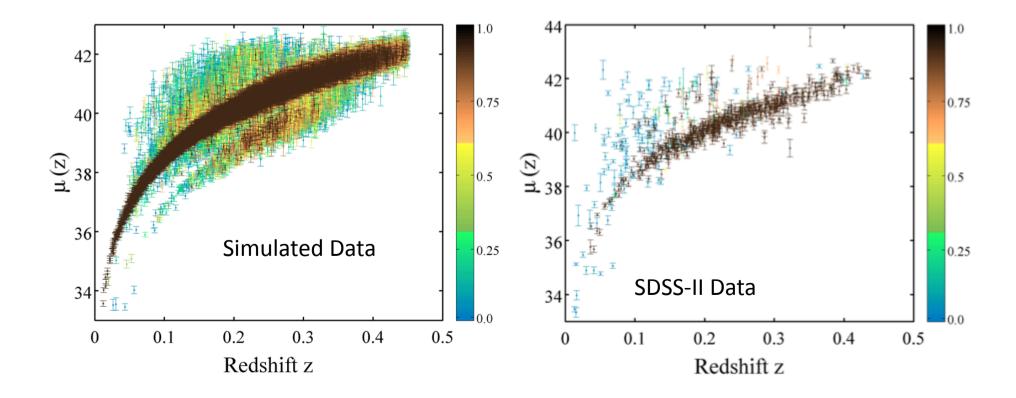
Evolution in the UV?



Foley et al. 2011

Future Surveys

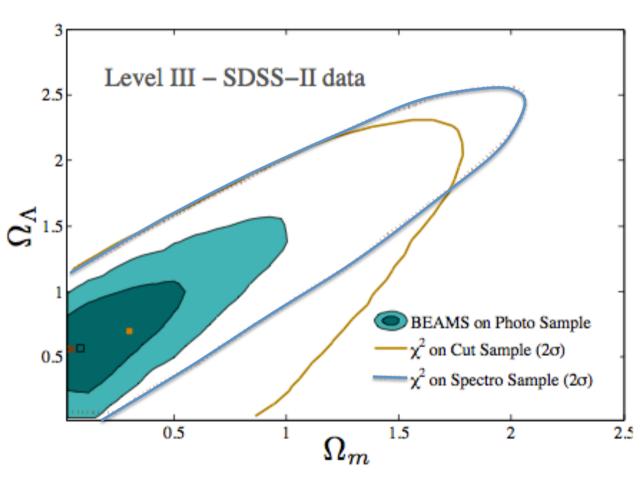
- Current surveys are already spectroscopy limited
- LSST will discover up to 10⁶ SNIa...only a fraction will have spectroscopic confirmation.
- Entering the era of photometric supernova cosmology
- Contamination from non-las will be unavoidable.



Photometric Supernova Cosmology

Basic Idea: use the lightcurves to work out the probability that an object is a SNIa...

Can use Bayesian
Methods (BEAMS) to do
Cosmological
Parameter estimation
with these probabilities.



Hlozek et al Arxiv:1111.5328

Conclusions

- SNIa are arguably still the best evidence for dark energy that we have...
- But distances are fundamentally limited by the curvature-dynamics degeneracy. Requires additional H(z) data to break.

Conclusions II

 As with all methods, SNIa have a hard systematics floor that will need lots of work to break through...

 We are now entering an exciting new era of massive data and a switch to *photometric* supernova cosmology