

2354-3

Summer School on Cosmology

16 - 27 July 2012

Dark Matter

M. Cirelli CERN & CNRS Saclay

July 2012 ICTP summer school in cosmology - Trieste

Dark Matter (slides are for support only)

Marco Cirelli (CERN-TH & CNRS IPhT Saclay)

in collaboration with: A.Strumia (Pisa) N.Fornengo (Torino) M.Tamburini (Pisa) R.Franceschini (Pisa) M.Raidal (Tallin) M.Kadastik (Tallin) Gf.Bertone (IAP Paris) M.Taoso (Padova) C.Bräuninger (Saclay) P.Panci (L'Aquila + Saclay + CERN) F.Iocco (Saclay + IAP Paris) P.Serpico (CERN)

Reviews on Dark Matter:

Jungman, Kamionkowski, Griest, Phys.Rept. 267, 195-373, 1996 Bertone, Hooper, Silk, Phys.Rept. 405, 279-390, 2005 Einasto, 0901.0632 Cirelli, Strumia arXiv: yymm.nnnn (upcoming)

Evidences & 'cosmology'

Dark Matter Ring in CI 0024+17 (ZwCl 0024+1652) HST • ACS/WFC

Outster of ook

Massey et al, Nature 2007

2 10⁶ CDM particles, 43 Mpc cubic box

Andrey Kravtsov, cosmicweb.uchicago.edu

2 10⁶ CDM particles, 43 Mpc cubic box

Aquarius project of the VIRGO coll.: 1.5 10⁹ CDM particles, single galactic halo

Of course, you have to infer galaxies within the DM simulation

Springel, Frenk, White, Nature 440 (2006)

Millennium: 10¹⁰ particles, 500 h⁻¹ Mpc

CMB & Large Scale Structure

LSS matter power spectrum

CMB & Large Scale Structure

LSS matter power spectrum

CMB spectrum

LSS matter power spectrum

Neutrino HDM in LSS

$\sum m_{\nu} = 0$

 $\sum m_{\nu} = 6.9 \text{ eV}$

 $\Lambda CDM - Gadget 2 - 768 Mpc^{3}$

T.Haugboelle, S.Hannestad, Aarhus University

Neutrino HDM in LSS

Z=32.33

 $\sum m_{\nu} = 0$

 $\sum m_{\nu} = 6.9 \text{ eV}$

 ΛCDM - Gadget2 - 768 Mpc³

T.Haugboelle, S.Hannestad, Aarhus University

MOND? TeVeS?

fits rotation curves very well

Indirect Detection

At small r: $ho(r) \propto 1/r^{\gamma}$

6 profiles: cuspy: NFW, Moore mild: Einasto smooth: isothermal, Burkert **EinastoB** = steepened Einasto (effect of baryons?)

simulations:

DM halo	α	$r_s \; [\mathrm{kpc}]$	$\rho_s \; [{\rm GeV/cm^3}]$
NFW	_	24.42	0.184
Einasto	0.17	28.44	0.033
EinastoB	0.11	35.24	0.021
Isothermal	_	4.38	1.387
Burkert	_	12.67	0.712
Moore	_	30.28	0.105

DM halo profiles

Kuhlen, Diemand, Madau 2007

Propagated charged CRs

	Electrons or positrons		Antiprotons (and antideuterons)			
Model	δ	$\mathcal{K}_0 \; [\mathrm{kpc}^2/\mathrm{Myr}]$	δ	$\mathcal{K}_0 \; [\mathrm{kpc}^2/\mathrm{Myr}]$	$V_{\rm conv} [{\rm km/s}]$	$L [\mathrm{kpc}]$
MIN	0.55	0.00595	0.85	0.0016	13.5	1
MED	0.70	0.0112	0.70	0.0112	12	4
MAX	0.46	0.0765	0.46	0.0765	5	15

electrons/positrons

antiprotons

Propagated charged CRs

electrons/positrons

antiprotons

Positrons from PAMELA:

steep e⁺ excess
above 10 GeV!
very large flux!

positron fraction:

 e^+

 $+e^{-}$

Antiprotons from PAMELA:

- consistent with the background

Electrons + positrons adding FERMI and HESS:

- no $e^+ + e^-$ excess - spectrum $\sim E^{-3.04}$
- a (smooth) cutoff?

positron fraction

electrons + positrons

Are these signals of Dark Matter?

with huge $\langle \sigma v \rangle \approx 10^{-23} \, {\rm cm}^3/{
m sec}$

positron fraction

antiprotons

electrons + positrons

Are these signals of Dark Matter?

YES: few TeV, leptophilic DM with huge $\langle \sigma v \rangle \approx 10^{-23} \, \mathrm{cm}^3/\mathrm{sec}$

NO: a formidable 'background' for future searches

Gamma rays

FERMI

FERMI coll., 1108.3546

Gamma rays

Mmm.... A good fit requires [1] careful bkgd subtraction & [2] fitting energy spectra + angular spectra + associated signals.

Direct Detection Strategy #1: silence the Universe

Strategy #1: silence the Universe

measure two quantities to discriminate Sign & Bkgd, on event-by-event basis

Direct Detection Strategy #1: silence the Universe measure two quantities to discriminate Sign & Bkgd, on event-by-event basis E.g. Edelweiss:

Strategy #1: silence the Universe

measure two quantities to discriminate Sign & Bkgd, on event-by-event basis

E.g. Edelweiss:

ionization

Strategy #1: silence the Universe

measure two quantities to discriminate Sign & Bkgd, on event-by-event basis

Strategy #1: silence the Universe

measure two quantities to discriminate Sign & Bkgd, on event-by-event basis

Strategy #1: silence the Universe

measure two quantities to discriminate Sign & Bkgd, on event-by-event basis

Strategy #1: silence the Universe

measure two quantities to discriminate Sign & Bkgd, on event-by-event basis

E.g. Edelweiss:

20 mK

CDMS coll.

Strategy #1: silence the Universe

measure two quantities to discriminate Sign & Bkgd, on event-by-event basis

Direct Detection Strategy #2: ride the dark wave collect all events, and detect an annual modulation

DAMA Coll., 0804.2741, 2008

Time (day)

Recoil spectra

fixed M_{DM}

fixed M_{nucl}

Direct Detected?

CDMS

DAMA/Libra Annual modulation seen (8σ) :

Ge+Si Edelweiss 2 events seen (0.6 exp'd bkgd) 5 events seen (3 exp'd bkgd)

CRESST-II 67 events seen on Oxygen,

onization yie

ionization energy (keVee)

twice the exp'd background CRESST-II Coll., 1109.0702

Collider Searches

Production at colliders

Search strategy 1:

look for decay subproducts of particles in the same theory

'trigger on 4j+4l+MET...'

- well studied $(M_T^2...)$ - model dependent

huge literature

Search strategy 2: 'monojets'

e.g. J.Goodman et al., 1008.1783

'new' more model independent