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Lensing - Lecture 1



Gravitational lensing
Henk Hoekstra



What is it good for?

Gravitational lensing has developed into a key tool to 
measure masses of objects, irrespective of their 
dynamical state.

Another important application is the study of the 
statistical properties of the matter distribution to 
constrain cosmological parameters.

Other useful applications are the detailed study of 
distant magnified objects and the clumpiness of halos 
through microlensing. The latter can also be used for 
population studies of planets.



Some history

That gravitational lensing occurs was long known: it was 
used by Eddington to test General Relativity. 

Its use for the study of galaxies/clusters was proposed in 
the ‘30s by Zwicky. 

Some theoretical work was done in the ‘60s,  but it was 
considered mostly a waste of time...

A major milestone was the discovery of the first lensed 
quasar in 1979.



First Lens

First lens QSO0957+561 was discovered in 1979 (Walsh et al.)



Rapidly changing...



Rapidly changing...

Number of refereed papers with “gravitational 
lensing” mentioned in the abstract in ADS.

1980 27
1985 35
1990 116
1995 220
2000 301
2005 315
2010 351
2011 333



Four lectures

• Introduction
• Cosmic shear/Interpretation
• Measurements/Tests
• Applications/Results



Useful resources

Lecture notes by P. Schneider for the 33rd 
SAAS-FEE Advanced Course:

http://www.astro.uni-bonn.de/~peter/SaasFee.html

http://www.astro.uni-bonn.de/~peter/SaasFee.html
http://www.astro.uni-bonn.de/~peter/SaasFee.html


Introduction

Light rays are deflected when they propagate through an 
inhomogenuous medium (following Fermat’s principle) 



Introduction
Light rays are deflected when they propagate 
through an inhomogenuous gravitational field.



Introduction

The cluster mass distribution causes a distortion in the shapes of 
background galaxies. The leads to spectacular lensing examples.



Introduction



Lensing=Optics

Let us assume:

- gravitational field is weak 
- deflection angles are small 
- deflection occurs on scales << scale of the Universe

dτ 2 = (c2 + 2Φ)dt2 − (1− 2Φ / c2 )ds2

We can define a coordinate system in which the GR 
line element is

and ! is the Newtonian potential



Lensing=Optics

We can now use Fermat’s principle: d! has to vanish

dt = 1− 2Φ / c2

c2 + 2Φ
ds ≈ 1
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Newtonian potential plays role of “index of refraction” 



Lensing=Optics

t = 1
c

n ⋅ds∫
Photons follow the path for which the light travel time

is stationary to small changes in the path.
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Lensing=Optics
Through variational analysis one can show that 
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Deflection by a point mass

GR weak field deflection is 2x Newtonian:

M
g⊥ =

GMb
b2 + z2( )

3/2

g = GM
b2 + z2

b

z"

α = 2× 1
c

dz
c∫ g⊥ =

4GM
bc2

Any mass distribution is just the sum of point masses, which 
leads to the previous result in terms of surface mass density.



Lens equation

If we introduce angular coordinates:

and define the scaled deflection 
angle, then we obtain the lens 
equation:



Lens equation

The mapping from image to source plane is easy. This is 
not the case for the mapping from source to image plane:

 A source with true position ! will be observed at 
all positions " that satisfy the lens equation. 
Multiple solutions are possible: a single source 
can be observed at several positions on the sky!



Strong lensing



Strong lensing



Convenient notation

It is convenient to rescale the surface density using

κ (θ ) = Σ
Σcrit

, Σcrit ≡
c2

4πG
Ds

DlsDl

If the convergence κ≥1 then the lens equation 
is guaranteed to have multiple solutions 
(sufficient but not necessary condition)



Source Redshifts

κ (θ ) = Σ
Σcrit

, Σcrit ≡
c2

4πG
Ds

DlsDl

To relate the lensing signal to physical quantities 
we need to know the redshifts of the sources.

Spectroscopy is expensive, but lensing kernel is 
broad and photometric redshift are sufficient.



Convenient notation

The deflection angle is given by

α(θ ) = 1
π

d 2ϑ ⋅κ (ϑ∫ ) θ −ϑ
θ −ϑ

2 ≡ ∇

Ψ(θ )

Ψ(θ ) = 1
π

d 2ϑ∫ ⋅κ (ϑ )ln θ −ϑ

where the deflection potential is defined as

∇2Ψ(θ ) = 2κ (θ )Note the “Poisson equation”:



Effects of lensing

The 3 “D”s of gravitational lensing

1. Delay
2. Deflection
3. Distortion

There is a 4th one called “flexion”



Delay

longer path

“slowing down”



Time Delay

time delay of 417 days



Time Delay



Deflection



Differential deflection

M

Lens “pushes” sources away

radial squeezing: M



Distortion



Weak lensing

The effect of lensing is to remap the images of extended 
sources, while conserving surface brightness

If the source is small compared to the scale on which 
the deflection angle changes:



Weak lensing

Two effects: shearing and magnification



Observables

reduced shear:

magnification:



Magnification
Magnification has two effects:

observed skytrue sky

- true survey area is 1/μ times larger
- objects are  μ times larger/brighter



Magnification

magnitude

nu
m
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Magnification

magnitude
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r

reduction in volume



Magnification

magnitude

nu
m

be
r

reduction in volume

increase in flux

increase in counts



Magnification

magnitude

nu
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increase in counts decrease in counts



Magnification around galaxies

Hildebrandt et al. (2009)



Gravitational telescope



Gravitational telescope



We can ‘see’ dark matter

In the absence of noise we would be able to map the matter 
distribution in the universe (even “dark” clusters).
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Convenient notation

Ψ(θ ) = 1
π

d 2ϑ∫ ⋅κ (ϑ )ln θ −ϑ

∇2Ψ(θ ) = 2κ (θ )

α

(θ ) =∇


Ψ(θ )

Recall that:

but also that:

γ1 =
1
2
∂2Ψ
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−
∂2Ψ
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(
) and γ2 =

∂2Ψ
∂x1∂x2

The shear and the convergence are related



Mass reconstruction

Hence ɣ is a convolution of κ with a kernel D.
In Fourier space this becomes:



Mass reconstruction

With inversion:

The surface density can be recovered up to a 
constant: mass-sheet degeneracy

Kaiser & Squires (1993)



Mass reconstruction

The surface density is a real quantity and the 
imaginary part of the integral should vanish.

Both shear components are not independent: there is 
redundancy in the measurements, which can be used 
to check for residual systematics (see tomorrow). 

The integral extends to infinity, but data only for finite 
field. This is particularly important when the field-of-
view is small and finite field methods have been 
developed to solve this problem.



Mass reconstruction

We can “see” dark matter!

Clowe et al. (2006)



Tangential shear

γ t = −ℜ[γe
−2iφ ] and γ× = −ℑ[γe

−2iφ ]



Tangential shear

d 2ϑ ⋅∇•
0

θ

∫ ∇Ψ =θ dϕ∫ ∇Ψ •n


Gauss’ theorem:

m(θ ) = 1
π

d 2ϑ ⋅κ (ϑ )
0
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θ
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dΨ
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=
m
θ
+
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d 2Ψ
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=κ −γTwhere we used that



Tangential shear

m(θ ) =θ 2κ (θ ) ⇒ dm
dθ

= 2θκ (θ )

γ t (θ ) =κ (θ )− κ (θ )

The tangential shear provides a direct measure of the mass 
contrast. This can be used to estimate projected masses within a 
radius with minimal assumptions about the radial matter 
distribution.



Tangential shear

“mass contrast”

Aperture masses



Weak lensing S/N



Nature’s weighing scales



Mass-X-ray properties
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X-ray temperature

S<100 keV cm2

S>100 keV cm2



Testing X-ray masses

Mahdavi et al. (in prep): 
gas is not always in hydrostatic equilibrium.

“cool core”

“disturbed”

X-
ra
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s



Stacking signals

If the masses are too low, one can still learn about the 
cluster properties by stacking the signal of many systems. 
This is for instance done for galaxy groups (Hoekstra et al. 
2001; Parker et al. 2006).

Similarly, although SDSS imaging is not deep enough to 
study the masses of individual clusters, the signals of 
similar systems can be combined.

For instance this allows studies of the cluster mass profile 
out to large radii 



Lensing by groups

Parker et al. (2005)



Cluster density profiles

Johnston et al. (2007)



RCS2 - 28,000 clusters

van Uitert et al. (in prep)



RCS2 - 28,000 clusters
van Uitert et al. (in prep)

1



Around galaxies

RCS2: 800 square degrees (van Uitert, in prep.)



The signal (the galaxy-mass cross-correlation function) is the 
convolution of the dark matter distribution around galaxies 
and the clustering properties of the lenses.

We have some options to infer information about the properties 
of the dark matter halos around galaxies:

- interpret the data in the context of a model (simulations/analytical)
- deconvolve the correlation function
- look at isolated halos

How to interpret the signal?



Halo-model interpretation



Halo-model interpretation!"#$%&'$%()*%+,-".#



Signal vs stellar mass

Fig. 10. The measured tangential shear (scaled to zL = 0.2) is plotted as a function of physical distance from the lens. The stellar
mass is given in terms of solar masses. The cross shear is consistent with zero for all bins. The black line show the best fit halo
model.

Fig. 12. The mean stellar mass versus the fitted satellite frac-
tion. In black is the satellite fraction for all galaxies, the red
symbols denote the satellite fraction for early types, and the
blue symbols denote the satellite fraction for late types.

type. Above 1011M! a clear difference between the halo
masses is visible: the early type galaxies have a central halo
mass that is 5-10 times larger than the halo mass of the late
types.

The satellite fraction of the late types is of the order of
0.1 for all the stellar mass bins. The satellite fraction of the
early type is close to 0.5 for the lowest stellar mass bins,
but decreases quickly with stellar mass. We also fitted the
halo models with a satellite truncation radius of 0.2r200

to the data, and show the best fit satellite fraction for
the four highest stellar mass bins in Figure 11 (thick solid
lines), compared to the previous fits (thin dashed lines). It
is clear that the satellite fraction is better constrained using
0.2r200.

Table 3. Definition of the stellar mass bins, including the num-
ber of lenses, the mean redshift, the average stellar mass and
the fraction of late type galaxies.

log(M∗) nlens < z > < M∗ > flate

[M"] [1010M"]

[9.00, 10.00] 1 723 0.06 0.45 0.72
[10.00, 10.50] 3 419 0.08 1.93 0.51
[10.50, 11.00] 5 979 0.11 5.72 0.28
[11.00, 11.25] 2 492 0.15 13.1 0.10
[11.25, 11.50] 1 670 0.20 23.7 0.05
[11.50, 11.75] 1 523 0.34 41.0 0.03
[11.75, 12.00] 403 0.41 68.3 0.04
[12.00, 12.50] 49 0.48 120 0.02

Table 4. Lensing results for the stellar mass bins

log(M∗)[M"] Mh,early αearly Mh,late αlate

[1010M"] [1010M"]

[9.00, 10.00] 109.6+84.3
−79.6 0.03+0.11

−0.03 1.0+18.2
−0.0 0.09+0.06

−0.07

[10.00, 10.50] 12.3+23.5
−11.7 0.43+0.14

−0.08 1.1+19.5
−0.1 0.07+0.06

−0.06

[10.50, 11.00] 89.1+25.6
−25.8 0.23+0.04

−0.03 115+56.4
−44.5 0.06+0.06

−0.06

[11.00, 11.25] 141+59.0
−43.6 0.25+0.06

−0.06 191+163
−179 0.04+0.22

−0.04

[11.25, 11.50] 881+103
−103 0.00+0.04

−0.00 195+298
−194 0.00+0.63

−0.00

[11.50, 11.75] 2818+448
−479 0.15+0.19

−0.15 513+921
−494 0.31+0.69

−0.31

[11.75, 12.00] 4571+648
−1068 0.00+0.44

−0.00 676+3430
−637 1.00+0.00

−1.00

[12.00, 12.50] 6166+1954
−3942 0.00+1.00

−0.00 - -

A more thorough comparison with previous analyses
will follow in Section 6.

6.1. Dependence on environment

To study the stripping of satellite galaxies in more detail, we
look at early type galaxies with 1010.5 < M∗ < 1011.75M!.
Galaxies more massive than the upper limit will almost ex-

overlap of RCS2 with SDSS



M200-Mstar relation

where m0 = β−1
l lj − αl/βl − σ2

m(γ − 1), σm = β−1
l σl

is the scatter in the halo mass and σl is the scatter in the
luminosities.

It follows that when we measure the average lensing
mass for a certain sample of galaxies, and want to relate
that to the mean halo mass, there are two effects that
counteract eachother. First, the halo mass function is a de-
clining function, biasing the measured mass low relative
to the mean mass, as is shown by the term σ2

m(γ − 1) in
m0. Second, the scatter in halo masses is log-normal, which
extends the halo mass distribution towardshigher masses.
This biases the measured mass high.

More et al. (2010) have studied the luminosity to halo
mass relation and the stellar mass to halo mass relation
using the kinematics of satellite galaxies that orbit central
galaxies. They asses the scatter in halo mass at fixed
stellar mass and fixed luminosity as function of galaxy
type, and we use these results to assign realistic values for
σlog Mh

. We note that only central galaxies are considered
in this study, so the actual scatter for a sample of galaxies
consisting of both centrals and satellites may be larger.
On the other hand, part of the scatter may be introduced
by uncertainties in the determination of the halo masses,
which would lower the intrinsic scatter.

The mean satellite fraction for each luminosity bin is
plotted in Figure 9. The satellite fraction is roughly de-
creasing, but it is clear that the satellite fractions are not
well constrained for the highest luminosity bins. The rea-
son for this is illustrated in Figure 13. In the upper panel
we show the lensing signal of the [CHANGE IN LUMI]
log(M∗)=11.5-11.75 mass bin, together with the five terms
of the halo model, using a truncation radius of 0.4r200 for
the satellite galaxies. The shear signal on small scales that
comes from the satellites in the halo model is the sum of
stripped satellite term and the γ1h

t,sat term. It is clear that
the combined signal is very similar to the shear signal com-
ing from the central halo. Therefore the halo model cannot
discriminate between the two, and the error on the satellite
fraction becomes large.

In the lower panel of Figure 13 we show the same signal
again, but now using a truncation radius of 0.2r200 for the
stripped satellites. Note that the halo model parameters are
the same in both panels for illustrative purposes, and that
the model in the lower panel is not a fit. The shear signal
of the satellites at small scales is now clearly different from
the central halo term, and the satellite fraction can be bet-
ter constrained.

We already mentioned in the previous section that stud-
ies such as Limousin et al. (2010) suggest that massive ellip-
tical galaxies that reside in subhaloes are stripped of more
than 50% of their dark matter content. The assumption to
put the truncation radius at 0.2r200 is rather ad hoc how-
ever. In section 5.2.2 we return to this problem and see if
we can measure the truncation directly by selecting galax-
ies based on their environment.

The lens sample consists of a mix of early type and late
type galaxies. We split the sample and consider them sep-
arately, as different types of galaxies are known to follow
different trends [MORE SPECIFIC].

Table 2. Lensing results for the luminosity bins

Mr Mh,early αearly Mh,late αlate

[1010M!] [1010M!]

[−21.0,−20.0] 38.0+31.9
−26.9 0.46+0.10

−0.07 1.0+13.2
−0.0 0.15+0.05

−0.07

[−21.5,−21.0] 58.9+38.7
−33.2 0.15+0.06

−0.06 74.1+40.1
−33.9 0.00+0.03

−0.00

[−22.0,−21.5] 107.2+42.0
−36.9 0.26+0.06

−0.06 134.9+65.0
−52.3 0.00+0.04

−0.00

[−22.5,−22.0] 74.1+47.9
−36.2 0.26+0.07

−0.07 1.0+49.1
−1.0 0.30+0.14

−0.18

[−23.0,−22.5] 631.0+67.6
−87.0 0.00+0.05

−0.00 1.0+72.7
−0.0 0.70+0.28

−0.34

[−23.5,−23.0] 1380.4+293.2
−228.2 0.20+0.13

−0.13 234.4+548.0
−233.4 0.12+0.77

−0.12

[−24.0,−23.4] 4677+369.3
−591.7 0.00+0.18

−0.00 1479+2298
−1220 0.48+1.27

−1.18

[−24.5,−24.0] 4169+1685
−1390 0.60+0.40

−0.60 724.4+3250
−724.4 0.00+1.00

−0.00

Fig. 11. The mean stellar mass versus the fitted halo mass. In
black is the halo mass for all galaxies, the red symbols denote
the halo mass for early types, and the blue symbols denote the
halo mass for late types.

6. Stellar mass to halo mass

We divide our lens sample into eight stellar mass bins. The
number of lenses, the mean redshift, the mean stellar mass
and the fraction of spirals can be found in Table 1. We
measure the shear of the stacked lenses in each bin, which
is shown in Figure 7. The lensing signal clearly increases
with stellar mass.

We plot the mean stellar mass for each bin against the
fitted halo mass, which are the black symbols in Figure 8.
The errorbars on the stellar mass are the standard devi-
ations of the stellar masses in each bin, the errorbars on
the halo masses are the 1 σ deviations determined from
marginalizing over the satellite fraction. The central halo
mass increases with increasing stellar mass. We compare
the observed relation of stellar mass to halo mass with ana-
lytical predictions based on N-body simulations by Moster
et al. (2001) [PLOT AND COMPARE TO PREDICTION].

The lens sample is divided in early types and late types
using the frac deV parameter as before, and the fitted
halo mass and satellite fraction is plotted as function of
mean luminosity in respectively Figure 13 and 14. These
figures clearly demonstrate that the early types and late
types follow different trends, in agreement with the results
of Mandelbaum et al (2006). We find that below as stellar
mass of 1011M# the halo mass does not depend on galaxy



Conclusions

Weak lensing studies of clusters, groups and 
galaxies provide important information to link 
observations to simulations, which in turn leads to 
a better understanding of baryon physics.

Sample sizes are increasing rapidly (KiDS, DES, Euclid). 
Therefore it is important that the analyses become more 
sophisticated.


