

2359-14

Joint ICTP-IAEA Workshop on Physics of Radiation Effect and its Simulation for Non-Metallic Condensed Matter

13 - 24 August 2012

Ion beam lithography - II

Paolo Olivero University of Turin Italy

Ion beam lithography - II

Paolo Olivero

Physics Department NIS Centre of Excellence University of Torino

INFN Section of Torino

CNISM Consortium

olivero@to.infn.it

ICTP-IAEA Workshop, Trieste, 13-24 August 2012

Outline

- Diamond
 - \rightarrow Synthesis
 - \rightarrow Properties
 - \rightarrow Applications
- IBL in diamond
 - → MeV ion lithography in diamond
 - → keV ion beam lithography in diamond
- Activities at the University of Torino
 - → Electrical features
 - \rightarrow Optical features
 - → Microfluidics

Outline

- Diamond
 - \rightarrow Synthesis
 - → Properties
 - → Applications
- IBL in diamond
 - → MeV ion lithography in diamond
 - → keV ion beam lithography in diamond
- Activities at the University of Torino
 - → Electrical features
 - → Optical features
 - → Microfluidics

αδάμας (indestructible)

diamond

londsaelite

graphite

amorphous carbon **4**

nanotube

fullerene

Carbon

Crystal structure

- Lattice: face-centered cubic
- Base: { (0, 0, 0); (¼a, ¼a, ¼a) }
- Crystal: diamond

- Bond length: 1.54 Å
- Cell parameter: 3.57 Å
- Atomic density: 1.77·10²³ atoms cm⁻³

Phase diagram of Carbon

Diamond – Synthesis

Natural diamond

At the litosphere (140-190 km below the Earth surface):

- pressure: 4.5 6 Gpa
- temperature: 900 1300 °C

Kimberley Mine, the largest human hole on Earth

Transport to Earth surface: volcanic eruption from deep regions.

Diamond: included in rocks.

- Primary sources: volcanoes
- Secondary sources: sites where diamonds are eroded from the rocks (kimberlite, lampronite)

Diamond – Synthesis

High pressure high temperature synthesis

HPHT growth system © Kobelco

1954: General Electric obtains systematic and comrercially viable synthesis of diamond by HPHT.

- growth from a diamond seed
- graphite with catalytic elments (Ni, Fe, ...)
- single-crystals: good structural properties, impurities

Diamond – Synthesis

Chemical Vapour Deposition

- deposition of C on a "cold" substrate from a plasma
- selective etching of non-sp3 C by H in the plasma
- heteroepitaxial growth of polycrystalline samples
- homoepitaxial growth of single-crystals with high purity

Classifications

Structure: single-crystal polycrystalline nanocrystalline

Impurities:type I: N in aggregatesIa: [N] = 100-1000 ppmIb: [N] = 10-100 ppmIb: [N] = 10-100 ppmtype II: substitutional BIIa: [N] < 1 ppm</td>IIb: [N] < 1 ppm, B doping</td>

Applications: thermal/mechanical grade optical grade electronic grade detector grade

Outline

• Diamond

→ Synthesis

\rightarrow Properties

- → Applications
- IBL in diamond
 - → MeV ion lithography in diamond
 - → keV ion beam lithography in diamond
- Activities at the University of Torino
 - → Electrical features
 - → Optical features
 - → Microfluidics

Diamond – Properties

Extreme physical properties

Other properties

- high carriers mobility
- high breakdown field
- radiation hardness
- wide band-gap \rightarrow broad transparency, low leakage currents
- chemical inertness
- bio-compatibility
- tissue-equivalence
- surface functionalization \rightarrow negative electron affinity, 2D hole gas
- efficient luminescent centers
- ...

Outline

• Diamond

- → Synthesis
- → Properties

\rightarrow Applications

- IBL in diamond
 - → MeV ion lithography in diamond
 - → keV ion beam lithography in diamond
- Activities at the University of Torino
 - → Electrical features
 - → Optical features
 - → Microfluidics

Mechanical properties

Cutting tools

Tweeters

Scanning probe tips

Abrasive powders

Anvil cells

MEMS

Electronic properties

Particle detectors

Power diodes

UV diodes

Dosimeters

Field emitters

Optical properties

High-power laser windows

Heat sinks

Optical properties

Single photon sources

Quantum computing Luminescent markers

Bio-chemical properties

Molecular bio-sensors

Cellular bio-sensors

Companies in diamond synthesis

Outline

- Diamond
 - → Synthesis
 - → Properties
 - → Applications
- IBL in diamond

→ MeV ion lithography in diamond

- → keV ion beam lithography in diamond
- Activities at the University of Torino
 - → Electrical features
 - → Optical features
 - → Microfluidics

Diamond: a *hard* material for micro-fabrication:

- Mechanical hardness
- Chemical inertness
- Optical transparency

Ion beam lithography

Electronic energy loss \rightarrow

No effects (thermal spikes, coulomb explosions) reported so far

Nuclear energy loss \rightarrow

Significant structural effects on a meta-stable material

Atom displacement \rightarrow Formation of an sp²-bonded split interstitial

@ : Technion – Israel Institute of Technology

A crude linear approximation: $\rho_{vac} = ($ linear damage density $)_{SRIM} \times ($ fluence)

$$[#_{vac} cm^{-3}] [#_{vac} #_{ion}^{-1} cm^{-1}] [#_{ion} cm^{-2}]$$

- Non-linear effects (defect-defect interaction, self-annealing, ...) are ignored.
- At high implantation fluences the defect density is not realistic (over-estimated density of point-defects)
- More advanced approaches: Atomistic simulations

A crude linear approximation: $\rho_{vac} = ($ linear damage density $)_{SRIM} \times ($ fluence)

$$[#_{vac} cm^{-3}] [#_{vac} #_{ion}^{-1} cm^{-1}] [#_{ion} cm^{-2}]$$

- Non-linear effects (defect-defect interaction, self-annealing, ...) are ignored.
- At high implantation fluences the defect density is not realistic (over-estimated density of point-defects)
- More advanced approaches: Semi-analytical / empirical models

@: Institute of Ion Beam Physics and Materials Research (Dresden),

Department of Physics – University of Pretoria, Solid State Physics Group – University of Torino **26**

High fluence implantation → Formation of an amorphous carbon layer where the damage density exceeds a threshold value

@ : SRIM Monte Carlo code, Technion – Israel Institute of Technology

Graphitization threshold

Graphitization threshold

@: School of Physics – University of Melbourne

2·10²² #_{vac} cm⁻³

@: University of New South Wales

@ : Uni. of Florida & Australian National Uni.

@ : School of Physics – University of Melbourne **29**

Thermal annealing

• Above threshold: amorphous carbon

 \rightarrow polycrystalline graphite

- **Below** threshold: diamond with Frenkel defects
- \rightarrow diamond

Experimental evidences

Cross-sectional µ-Raman

@: School of Physics – University of Melbourne

The diamond lift-off Technique

Single-crystal diamond plate liftoff achieved by ion implantation and subsequent annealing

N. R. Parikh, J. D. Hunn, E. McGucken, and M. L. Swanson University of North Carolina, Chapel Hill, North Carolina 27599-3255

C. W. White Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-6048

R. A. Rudder, D. P. Malta, J. B. Posthill, and R. J. Markunas Research Triangle Institute, Research Triangle Park, North Carolina 27709-2194

Appl. Phys. Lett. 61 (26), 28 December 1992 3124

The diamond lift-off Technique

Single-crystal diamond plate liftoff achieved by ion implantation and subsequent annealing

N. R. Parikh, J. D. Hunn, E. McGucken, and M. L. Swanson University of North Carolina, Chapel Hill, North Carolina 27599-3255

C. W. White Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-6048

R. A. Rudder, D. P. Malta, J. B. Posthill, and R. J. Markunas Research Triangle Institute, Research Triangle Park, North Carolina 27709-2194

Appl. Phys. Lett. 61 (26), 28 December 1992 3124

• MeV ion implantation

The diamond lift-off Technique

Single-crystal diamond plate liftoff achieved by ion implantation and subsequent annealing

N. R. Parikh, J. D. Hunn, E. McGucken, and M. L. Swanson University of North Carolina, Chapel Hill, North Carolina 27599-3255

C. W. White Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-6048

R. A. Rudder, D. P. Malta, J. B. Posthill, and R. J. Markunas Research Triangle Institute, Research Triangle Park, North Carolina 27709-2194

Appl. Phys. Lett. 61 (26), 28 December 1992 3124

- MeV ion implantation
- Thermal annealing

The diamond lift-off Technique

Single-crystal diamond plate liftoff achieved by ion implantation and subsequent annealing

N. R. Parikh, J. D. Hunn, E. McGucken, and M. L. Swanson University of North Carolina, Chapel Hill, North Carolina 27599-3255

C. W. White Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-6048

R. A. Rudder, D. P. Malta, J. B. Posthill, and R. J. Markunas Research Triangle Institute, Research Triangle Park, North Carolina 27709-2194

Appl. Phys. Lett. 61 (26), 28 December 1992 3124

• MeV ion implantation

• Selective graphite etching

• Thermal annealing
The diamond lift-off Technique

Single-crystal diamond plate liftoff achieved by ion implantation and subsequent annealing

N. R. Parikh, J. D. Hunn, E. McGucken, and M. L. Swanson University of North Carolina, Chapel Hill, North Carolina 27599-3255

C. W. White Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-6048

R. A. Rudder, D. P. Malta, J. B. Posthill, and R. J. Markunas Research Triangle Institute, Research Triangle Park, North Carolina 27709-2194

Appl. Phys. Lett. 61 (26), 28 December 1992 3124

- MeV ion implantation
- Thermal annealing

- Selective graphite etching
- Lift-out

Selective graphite etching

$C + 2O \rightarrow CO_2$

• Wet chemical etching

i.e.: 1:1:1 H_2SO_4 : HNO_3 : $HClO_4$ boiling acid

• Annealing in oxygen atmosphere

T = 550 – 580 °C in air

• Annealing in ozone atmosphere

T = 500 – 550 °C in air under UV illumination

• Electrochemical etching

 $\rm H_{3}BO_{3},$ non-contact Pt electrodes, $\rm V\cong200~V$

Lift-off + laser micro-cutting

Fabrication of single-crystal diamond microcomponents

John D. Hunn, S. P. Withrow, C. W. White, R. E. Clausing, and L. Heatherly Oak Ridge National Laboratory, Bldg 5500 MS-6376, Oak Ridge, Tennessee 37831-6376

C. Paul Christensen

Potomac Photonics, Lanham, Maryland 20705

(Received 26 August 1994; accepted for publication 7 October 1994)

We have combined a technique for the lift-off of thin diamond films from a bulk diamond with a technique for engraving diamond with a focused excimer laser to produce free-standing single-crystal diamond microstructures. One microcomponent that has been produced is a 12 tooth gear ~400 μ m in diameter and ~13 μ m thick. Other microstructures have also been demonstrated, showing the versatility of this method. This process should be applicable to producing diamond microcomponents down to spatial dimensions (width and thickness) of a few micrometers. © 1994 American Institute of Physics.

3072 Appl. Phys. Lett. 65 (24), 12 December 1994

Surface smoothening

Phys. Status Solidi A 206, No. 9, 1955-1959 (2009) / DOI 10.1002/pssa.200982232

High surface smoothening of diamond HPHT (100) substrates

C. Mer-Calfati*1, N. Habka12, A. Ben-Younes1, M.-A. Pinault2, J. Barjon2, and P. Bergonzo1

Surface smoothening

Phys. Status Solidi A 208, No. 9, 2057-2061 (2011) / DOI 10.1002/pssa.201100038

Ultra-smooth single crystal diamond surfaces resulting from implantation and lift-off processes

T. N. Tran Thi^{*,1}, B. Fernandez¹, D. Eon¹, E. Gheeraert¹, J. Härtwig², T. Lafford², A. Perrat-Mabilon³, C. Peaucelle³, P. Olivero⁴, and E. Bustarret^{**,1}

Lift-off + CVD growth

Diamond & Related Materials 20 (2011) 616-619

Developments of elemental technologies to produce inch-size single-crystal diamond wafers $\overset{\ensuremath{\varphi}}{\sim}$

Hideaki Yamada *, Akiyoshi Chayahara, Yoshiaki Mokuno, Nobuteru Tsubouchi, Shin-ichi Shikata, Naoji Fujimori ¹

Repeat for an identical seed substrate

Lift-off + CVD growth

Diamond & Related Materials 24 (2012) 74-77

Lift-off + CVD growth

LETTER

pubs.acs.org/NanoLett

Ultrathin Single Crystal Diamond Nanomechanical Dome Resonators

Maxim K. Zalalutdinov,^{*,†} Matthew P. Ray,[‡] Douglas M. Photiadis,[†] Jeremy T. Robinson,[†] Jeffrey W. Baldwin,[†] James E. Butler,[§] Tatyana I. Feygelson,[§] Bradford B. Pate,[†] and Brian H. Houston[†]

Lift-off + Focused Ion Beam (FIB) milling

Ion-Beam-Assisted Lift-Off Technique for Three-Dimensional Micromachining of Freestanding Single-Crystal Diamond**

By Paolo Olivero,* Sergey Rubanov, Patrick Reichart, Brant C. Gibson, Shane T. Huntington, James Rabeau, Andrew D. Greentree, Joseph Salzman, David Moore, David N. Jamieson, and Steven Prawer

Adv. Mater. 2005, 17, 2427-2430

Lift-off + Focused Ion Beam (FIB) milling

Triangular nanobeam photonic cavities in single-crystal diamond

Igal Bayn^{1,3}, Boris Meyler¹, Joseph Salzman¹ and Rafi Kalish²

Lift-off + Focused Ion Beam (FIB) milling

Diamond & Related Materials 21 (2012) 16-23

Optical properties of single crystal diamond microfilms fabricated by ion implantation and lift-off processing

Brian R. Patton ^a, Philip R. Dolan ^a, Fabio Grazioso ^a, Matthew B. Wincott ^a, Jason M. Smith ^{a,*}, Matthew L. Markham ^b, Daniel J. Twitchen ^b, Yanfeng Zhang ^c, Erdan Gu ^c, Martin D. Dawson ^c, Barbara A. Fairchild ^d, Andrew D. Greentree ^d, Steven Prawer ^d

Lift-off (double implantation) + FIB

Fabrication of Ultrathin Single-Crystal Diamond Membranes**

By Barbara A. Fairchild,^{*} Paolo Olivero, Sergey Rubanov, Andrew D. Greentree, Felix Waldermann, Robert A. Taylor, Ian Walmsley, Jason M. Smith, Shane Huntington, Brant C. Gibson, David N. Jamieson, and Steven Prawer

Adv. Mater. 2008, 20, 4793-4798

Lift-off (double implantation) + FIB

Diamond & Related Materials 20 (2011) 937-943

Processing of photonic crystal nanocavity for quantum information in diamond

Igal Bayn ^{a,*}, Boris Meyler ^a, Alex Lahav ^a, Joseph Salzman ^a, Rafi Kalish ^b, Barbara A. Fairchild ^c, Steven Prawer ^c, Michael Barth ^d, Oliver Benson ^d, Thomas Wolf ^e, Petr Siyushev ^e, Fedor Jelezko ^e, Jorg Wrachtrup ^e

Lift-off + Reactive Ion Etching (RIE)

Diamond waveguides fabricated by reactive ion etching

Mark P. Hiscocks¹, Kumaravelu Ganesan², Brant C. Gibson³, Shane T. Huntington², François Ladouceur¹, and Steven Prawer³

24 November 2008 / Vol. 16, No. 24 / OPTICS EXPRESS 19512

Lift-off + Reactive Ion Etching (RIE)

APPLIED PHYSICS LETTERS 99, 081913 (2011)

Fabrication of thin, luminescent, single-crystal diamond membranes

Andrew P. Magyar,¹ Jonathan C. Lee,¹ Andi M. Limarga,¹ Igor Aharonovich,¹ Fabian Rol,¹ David R. Clarke,¹ Mengbing Huang,² and Evelyn L. Hu^{1,a)}

Lift-off + CVD growth + RIE

Fabrication of suspended single crystal diamond devices by electrochemical etch

C. F. Wang^{a)}

Department of Physics, University of California, Santa Barbara, California 93106

E. L. Hu

Department of Electrical and Computer Engineering, University of California, Santa Barbara, California 93106 and Materials Department, University of California, Santa Barbara, California 93106

J. Yang

Gas/Surface Dynamics Section, Naval Research Laboratory, Washington, DC 20375 and NOVA research, Inc., Alexandria, Virginia 22308

J. E. Butler Gas/Surface Dynamics Section, Naval Research Laboratory, Washington, DC 20375

730 J. Vac. Sci. Technol. B 25(3), May/Jun 2007

Ion Implanted Layer

Lift-off + CVD growth + RIE

www.MaterialsViews.com

Suspended Single-Crystal Diamond Nanowires for High-Performance Nanoelectromechanical Switches

By Meiyong Liao,* Shunichi Hishita, Eiichiro Watanabe, Satoshi Koizumi, and Yasuo Koide

Adv. Mater. 2010, 22, 5393-5397

Lift-off + CVD growth + RIE

Coupling of silicon-vacancy centers to a single crystal diamond cavity

Jonathan C. Lee,* Igor Aharonovich, Andrew P. Magyar, Fabian Rol, and Evelyn L. Hu

9 April 2012 / Vol. 20, No. 8 / OPTICS EXPRESS 8891

Lift-off + CVD growth + RIE

OPTICAL MATERIALS _____ www.advopticalmat.de

Homoepitaxial Growth of Single Crystal Diamond Membranes for Quantum Information Processing

Igor Aharonovich,* Jonathan C. Lee, Andrew P. Magyar, Bob B. Buckley, Christopher G. Yale, David D. Awschalom, and Evelyn L. Hu

Outline

- Diamond
 - → Synthesis
 - → Properties
 - → Applications
- IBL in diamond
 - → MeV ion lithography in diamond

→ keV ion beam lithography in diamond

- Activities at the University of Torino
 - → Electrical features
 - → Optical features
 - → Microfluidics

Gas-assisted milling

Focused ion beam milling of diamond: Effects of H₂O on yield, surface morphology and microstructure

D. P. Adams,^{a)} M. J. Vasile, T. M. Mayer, and V. C. Hodges

2334 J. Vac. Sci. Technol. B 21(6), Nov/Dec 2003

Micro & nano-indenters

Use of the focused ion beam technique to produce a sharp spherical diamond indenter for sub-10 nm nanoindentation measurements

Ning Yu and Andreas A. Polycarpou^{a)}

668 J. Vac. Sci. Technol. B 22(2), Mar/Apr 2004

Micro- & nano-indenters

IOP PUBLISHING

JOURNAL OF MICROMECHANICS AND MICROENGINEERING

J. Micromech. Microeng. 18 (2008) 075017 (10pp)

doi:10.1088/0960-1317/18/7/075017

Fabrication of a micro-size diamond tool using a focused ion beam

X Ding¹, G C Lim¹, C K Cheng², David Lee Butler^{1,3}, K C Shaw¹, K Liu¹ and W S Fong¹

Micro-electrodes

Anal. Chem. 2009, 81, 5663-5670

Focused Ion Beam Fabrication of Boron-Doped Diamond Ultramicroelectrodes

Jingping Hu,[†] Katherine B. Holt,[‡] and John S. Foord^{*,†}

Micro-mechanical structures

Diamond & Related Materials 19 (2010) 742-747

Fabrication and characterisation of triangle-faced single crystal diamond micro-cantilevers

Benjamin Z. Kupfer, Rezal K. Ahmad, Aiman Zainal, Richard B. Jackman*

Diffractive optical elements

Investigation of diffractive optical element fabricated on diamond film by use of focused ion beam direct milling

Yongqi Fu Ngoi Kok Ann Bryan Opt. Eng. 42(8) 2214 (August 2003)

Integrated micro-optics

APPLIED PHYSICS LETTERS 97, 241901 (2010)

Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses

J. P. Hadden,^{a)} J. P. Harrison, A. C. Stanley-Clarke, L. Marseglia, Y.-L. D. Ho, B. R. Patton, J. L. O'Brien, and J. G. Rarity

Integrated micro-optics

APPLIED PHYSICS LETTERS 98, 133107 (2011)

Nanofabricated solid immersion lenses registered to single emitters in diamond

L. Marseglia,^{1,a)} J. P. Hadden,¹ A. C. Stanley-Clarke,¹ J. P. Harrison,¹ B. Patton,¹ Y.-L. D. Ho,¹ B. Naydenov,² F. Jelezko,² J. Meijer,³ P. R. Dolan,⁴ J. M. Smith,⁴ J. G. Rarity,⁴ and J. L. O'Brien

Photonic structures

One- and two-dimensional photonic crystal micro-cavities in single crystal diamond

Janine Riedrich-Möller¹, Laura Kipfstuhl¹, Christian Hepp¹, Elke Neu¹, Christoph Pauly², Frank Mücklich², Armin Baur³, Michael Wandt³, Sandra Wolff⁴, Martin Fischer⁵, Stefan Gsell⁵, Matthias Schreck⁵, and Christoph Becher¹*

Nature Nanotechnology 7, 69-74 (2012)

Photonic structures

Triangular nanobeam photonic cavities in single-crystal diamond

Igal Bayn^{1,3}, Boris Meyler¹, Joseph Salzman¹ and Rafi Kalish²

New Journal of Physics 13 (2011) 025018

Photonic structures

Design and Focused Ion Beam Fabrication of Single Crystal Diamond

Nanobeam Cavities

Thomas M. Babinec¹, Jennifer T. Choy¹, Kirsten J. M. Smith^{1,2}, Mughees Khan^{1,3}, Marko

Lončar¹

arXiv: 1008.1431

Direct-write negative lithography

Diamond & Related Materials 20 (2011) 707-710

A direct-write, resistless hard mask for rapid nanoscale patterning of diamond Warren McKenzie¹, John Pethica, Graham Cross*

Outline

- Diamond
 - → Synthesis
 - → Properties
 - → Applications
- IBL in diamond
 - → MeV ion lithography in diamond
 - → keV ion beam lithography in diamond
- Activities at the University of Torino
 - → Electrical features
 - → Optical features
 - → Microfluidics

Activities at the University of Torino

A <u>bio-compatible</u> and <u>transparent</u> diamond active substrate for interfacing with single excitable cells:

- <u>electrical</u> interfacing: sub-superficial microelectrodes
- <u>optical</u> interfacing: integrated waveguiding structures
- ✓ <u>chemical</u> interfacing: microfluidic devices

Three-dimensional particle detectors

A novel geometry for induced charge collection in diamond detectors

Single photon sources

Outline

- Diamond
 - → Synthesis
 - → Properties
 - → Applications
- IBL in diamond
 - → MeV ion lithography in diamond
 - → keV ion beam lithography in diamond
- Activities at the University of Torino
 - → Electrical features
 - → Optical features
 - → Microfluidics

Electrical features

Implantation with a scanning MeV ion micro-beam through graded-thickness mask

✓ definition of buried graphitic microchannels in single-crystal diamond
Ion implantation performed at the MP2-UniMelb, LNL-AN200 and Ruđer Bošković Institute ion microbeam lines

Structural TEM characterization

Cellular bio-sensing 3D particle detectors

0.5 MeV He⁺ F=1·10¹⁷ cm⁻² **1.8 MeV He⁺** F=1·10¹⁶ - 1·10¹⁷cm⁻² 6 MeV C³⁺ F=4·10¹⁶ cm⁻²

3D particle detectors

73

Amperometric detection of exocytosis activity from neuroendocrine cells

• 3×3×1.5 mm² type Ib single crystal diamond grown by HPHT technique

Cyclic voltammetry: oidation of catecholamines (adrenaline, noradrenaline, etc.) at the biased electrode Preliminary sensitivity test: micro-effusion of adrenaline with a syringe

Saline solution: NaCl (128 mM), MgCl₂ (2 mM), glucose (10 mM), HEPES (10 mM, CaCl₂ (10 mM), KCl (4 mM) Adrenaline solution: saline solution, adrenaline (10 mM)

Ameprometric detection of exocytosis (quantal release of molecules) from chromaffin cells (neuroendocrine cells located into the medulla part of the renal gland): oxidation of adrenalie at the 0.8 V biased micro-electrode

Chromaffine cells: $\varnothing \sim 10 \ \mu m$

containing 50-300 nm chromaffin granules adrenaline concentration in the granules: 0.5 . 1 M exocytosis: process related to synaptic transmission

Signal detection: good performance (i.e. comparable to standard carbon fibers) in a fully miniaturized, bio-compatible and *transparent* device

*F. Picollo et al., "*Fabrication of a Diamond-Based Cellular Biosensor by Ion Beam Lithogaphy to detect quantal exocytic events from chromaffin cells*", in preparation (2012)*

Buried graphitic electrodes in 3D particle detectors

implantation @ LNL

Implantation conditions:

1.8 MeV He⁺ (F = 3·10¹⁷ cm⁻²) at LNL 6 MeV C³⁺ (F = 4·10¹⁶ cm⁻²) at RBI

Charge collection characterization with Ion Beam Induced Charge (IBIC) measurements

78

Outline

- Diamond
 - → Synthesis
 - → Properties
 - → Applications
- IBL in diamond
 - → MeV ion lithography in diamond
 - → keV ion beam lithography in diamond
- Activities at the University of Torino
 - → Electrical features
 - \rightarrow Optical features
 - → Microfluidics

Optical features

Ion implantation performed at the LABEC external ion microbeam line

2, 3 MeV H implantation at increasing fluences (F = $10^{13} - 10^{17}$ cm⁻²) over 100×100 μ m² areas

Optical features

Laser interferometric characterization

- \checkmark sub-linear trend at high fluences
- ✓ different trends for 2 & 3 MeV protons

P. Olivero et al., **Diamond and Related Materials 19**, 428 (2010) S. Lagomarsino et al., **Optics Express 20 (17)**, 19382 (2012)

84

Ellipsometric characterization of shallow-ion-implanted diamond

180 keV B implantation at increasing fluences ($F = 10^{13} - 5 \cdot 10^{14} \text{ cm}^{-2}$) over the whole sample surface

Woollam M2000-FI variable-angle spectroscopic ellissometer (246 – 1690 nm)

Ellipsometric characterization of shallow-ion-implanted diamond

- Linear trend at low damage levels, sub-linear trend at higher fluences
- Similar changes are observed over the entire spectral range under investigation

Optical features

Direct writing of waveguiding structures with 5 MeV H microbeam

Optical features

Interferometric characterization

Interferometric image

Phase shift map

Phase shift reconstruction

Finite element method

S. Lagomarsino et al., Physical Review Letters 105, 233903 (2010)

Laser-coupling characterization

$\lambda = 532 \text{ nm}$, optical objectives coupled at both the input and output points

No waveguide coupling

Waveguide coupling

As-implanted samples: annealing can help reducing absorption losses while maintaining a suitable refractive-index contrast

Outline

- Diamond
 - → Synthesis
 - → Properties
 - → Applications
- IBL in diamond
 - → MeV ion lithography in diamond
 - → keV ion beam lithography in diamond
- Activities at the University of Torino
 - → Electrical features
 - → Optical features
 - → Microfluidics

Fabrication of micro-fluidic channels

- ✓ direct ion microbeam writing of buried amorphized channels
- ✓ high temperature thermal annealing (1200 ÷ 1400 °C): graphitization
- \checkmark FIB milling of access holes
- ✓ selective etching of graphite with an electrochemical process

Ion implantation performed at the RBI-LIBI and LNL-AN2000 ion microbeam lines

18 MeV C @ F=2·10¹⁶ cm⁻²

1.8 MeV He @ F=1·10¹⁷ cm⁻²

Fabrication of micro-fluidic channels

- ✓ complete graphite removal from channels implanted at the highest fluence
- ✓ different etching rates for channels implanted at different fluences
- ✓ possibility of creating buried microfluidic channels with a monolithic approach

mm-long microfluidic channels

before etching

after etching

liquid injection system: mechanically clamped PDMS structure

Acknowledgments

Sample processing and characterization University of Torino A. Battiato, F. Bosia, V. Carabelli, E. Carbone, J. Forneris, D. Gatto Monticone, A. Gilardino, A. Lo Giudice, S. Gosso, D. Lovisolo, A. Marcantoni, F. Picollo, A. Re, E. Vittone FIB micromachining and optical characterization National Institute of Metrologic Research G. Amato, L. Boarino, G. Brida, I. Degiovanni, E. Enrico, M. Genovese, P. Traina **MeV ion implantation & IBIC measurements** National Laboratories of Legnaro (INFN) LABEC laboratory (INFN) INFN D. Ceccato, L. La Torre, V. Rigato S. Calusi, L. Giuntini, M. Massi Ruđer Bošković Institute **RUBION Laboratory** V. Grilj, M. Jakšić, Ž. Pastuović, N. Skukan S. Pezzagna, J. Meijer FIB microfabrication, cross-sectional TEM MARC group, University of Melbourne B. Fairchild, S. Prawer, S. Rubanov **Optical / morphological characterization National Institute of Optics** 120 R. Mercatelli, F. Quercioli, A. Sordini, S. Soria, M. Vannoni **Optical absorption characterization ENEA "La Casaccia"** A. Sytchkova **Optical modeling Department of Energetics, University of Florence** S. Lagomarsino, S. Sciortino Waveguides characterization CIBA – National University of Singapore A. Bettiol, V. S. Kumar High-resolution X-ray diffraction Department of Physics, University of Padova N. Argiolas, M. Bazzan **CVD diamond growth Department of Mechanical Engineering, University of Rome Tor Vergata** M. Marinelli, C. Verona, G. Verona-Rinati TOR VERGAT

96

Content sources

- www.srim.org
- www.wikipedia.org
- Australian National University
- School of Physics University of Melbourne
- Solid State Physics Group University of Torino
- University of Florida
- University of New South Wales
- Technion Israel Institute of Technology