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Set of 3 talks

• Introduction to Molecular Dynamics for 
radiation effects in non-metallic systems

• Introduction to long time scale techniques 
with particular reference to non-metallic 
systems

• Applications..mainly oxides (MgO, ZnO, 
TiO2) and spinels MgAl2O4, and inverse and 
partially inverse spinels
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Landmarks in MD computer simulation

• 1782 A. L. Lavoisier postulated that classical theory 
could be used to model chemical phenomena

• 1957 First MD simulations using hard spheres by 
Alder and Wainwright

• 1960 MD simulations of radiation damage by 
Vineyard’s group at Brookhaven

• 1960 MD simulations of sputtering by Don 
Harrison

• 2012 Standard packages such as DLPOLY and 
LAMMPS are available for use.
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The Classical Molecular Dynamics Method

Given a system of N interacting particles, the ith of

which has mass mi and position vector ri, the system

evolves by Newton’s equations of motion

mi

d2ri

dt2
= Fi

where for non-dissipative systems

Fi = −∇ri
V (r1, r2, .........rN).

and V (r1, r2, .........rN) is a classical potential energy

function. When there is no dissipation then the sys-

tem is said to be a Hamiltonian system and can be

formulated in another way.

The same method can also be used in Quantum MD.

In this case the forces are determined from solving

Schrödinger’s equation.
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The Verlet algorithm

r(t + δt) = r(t) + v(t)δt +
1

2
a(t)δt2 + ......

v(t + δt) = v(t) + a(t)δt +
1

2
a′(t)δt2 + ....

a′(t) =
a(t + δt) − a(t)

δt
+ O(δt)

giving

v(t + δt) = v(t) +
1

2
(a(t + δt) + a(t))δt + O(δt3)

The algorithm updates the position vectors, calculates

the new accelerations from

a(t + δt) = −∇V (r[t + δt])/m,

then updates the velocities.

Thus ....only 1 force evaluation per timestep and a

local truncation error of O(δt3).
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Hamiltonian Systems

Hamilton’s principle : ‘The motion of a system from

time t1 to t2 is such that the line integral of the La-

grangian L is an extremum i.e.

δ

∫ t2

t1

Ldt = 0.

The Lagrangian L is the difference between the KE
and PE of the system. The Hamiltonian H is given by

H =
3N∑
i=1

q̇ipi − L,

(r1, ....rN) = (q1, ....q3N), (m1v1...mnvN) = (p1, ...p3N).

With generalised co-ordinated (p,q,t),

q̇i =
∂H
∂pi

, −ṗi =
∂H
∂qi

.

For modelling particle dynamics our Hamiltonians are

of the form H ≈ 1
2
p2 + V (q).
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Some properties of Hamiltonian Systems

(1) In principle, if we integrate forward in time, we

should be able to recover the initial state by integrat-

ing backwards in time.

(2) Defining x = (q, p)T , x(t) = TM(t)x(0) where

TM is called the transfer matrix. A map of this kind

is called sympletic iff the JacobianM of the transfor-

mation TM satisfies

MTJM = J where J =

(
0

−I

−I

0

)
.

Such maps preserve the area of phase space (Liou-

ville’s theorem). This is important because it means

that trajectories that start off close remain close after

the Hamiltonian system has evolved.

Radiation event MD simulations are inherently chaotic. Different computers can give different 
results for the trajectories after the initial stages of a simulation
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Why symplectic integrators ?

Figure 1: Energy v Time plot for the Fermi-Past-Ulam problem

Figure 2: Phase space plot (p2, q2) when q1 = 0 for the system H(q, p) = 1
2
(q2

1 + q2
2 + p2

1 +

p2
2) + q2

1q2 − 1
3
q3
2

Energy drift is a common problem in MD simulations that do not use the Verlet algorithm
Sunday, 19 August 12



Units for use in the MD simulation

The time step δt typically ranges from 0.1 to 1.5 fs.

(1 fs = 10−15 s)

A typical length scale is 1Å

The mass of an atom m ≈ Z × 1.627 × 10−27 kg

The potential function V has units of eV. Suitable

units of force are eV/Å.

1 eV/Å= 1.602 nN (1.602 × 10−19 eV = 1 Joule)

Thus we can use units of Å, fs and eV/Å in

mi

d2ri

dt2
= Fi

if we scale the mass by replacing mi with
Z×1.627×102

1.602

Note a 1 fs time step means 1015 steps to simulate 1s of real time so MD simulations usually are restricted to 
~ nanoseconds
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Initial and boundary conditions

• Bulk Radiation Event initiated by a neutron : Impart a given energy  usually a 
few keV to an atom in a crystal and follow the evolution of the trajectory. 
Average over many such trajectories

• External Impact event (keV energies) : Impart energy to an atom above the 
surface of a crystal, directed towards the surface and follow the evolution 
(sputtering, crystal growth)

• Swift Heavy ion impact (GeV energies) : Set in motion atoms along an ion track 
and follow the evolution of the resulting cascade.

• Boundary Conditions : Periodic, Fixed or Free. Usually the simulation region is 
taken as a rectangular box. 
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Time step Control

δt =
α√

(α + β ∗ γ)
fs.

The time step depends on the parameter γ which is

given by:

γ = Emax
KE + |Emax

PE |, (0.1)

where Emax
KE and Emax

PE is the maximum kinetic energy

and potential energy of an atoms at time t. Typical

values for α and β are 1.5 and 0.1 respectively.
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Temperature control

1. Berendsen thermostat

The method of temperature control relies on the scal-

ing of the velocity vectors at every time step with a

factor λ

λ =

[
1 +

δt

τT

(
T0

T
− 1

)]1
2

, (0.2)

in which T and T0 are the actual and desired temper-

atures, δt is the time step of the integration algorithm

and τT is a coupling parameter between the heat bath

and the system. The system is brought towards the

desired temperature at a rate determined by τT .

(non-Hamiltonian)

Temperature T is defined by ∑mivi2 = 3 NkBT
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Temperature control

2. Nosé-Hoover thermostat

The Nosé-Hoover method uses a modified equation of

motion:

mi

d2ri

dt2
= F − ζ

dri

dt
. (0.3)

The rate of change of the coefficient ζ is given by

dζ

dt
=

1

Q

(
N∑
i

v2
i − 3NkBT0

)
(−ζ

dζ1

dt
), (0.4)

where Q describes the strength of the coupling be-

tween the system and the heat bath.

There is a modified Hamiltonian from which the equa-

tions of motion can be derived.

m
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Force Field Models

The Lennard-Jones potential acts pairwise

V (r) = 4ε

(
(
σ

r
)12 − (

σ

r
)6

)

The force is zero when r = 2
1
6σ and then V = −ε.

The quantities σ and ε are fitting parameters chosen

to match the lattice constant a and cohesive energy u

of the material. The bulk modulusB can also be found

in terms of σ and ε. For an fcc lattice u = −8.5ε,

a = 1.541σ and B = 75ε
σ3 .
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Table 1: Values of the fitting constants for the rare gases

element Ne Ar Kr Xe

ε (eV) 0.0031 0.0104 0.0140 0.0200

σ(Å3) 2.74 3.40 3.65 3.98

r0(Å) expt. 3.13 3.75 3.99 4.33

r0(Å) theory 2.99 3.71 3.98 4.34

u0(eV ) expt. -0.02 -0.08 -0.11 -0.17

u0(eV ) theory -0.027 -0.089 -0.12 -0.172

B(109pascals) expt. 1.1 2.7 3.5 3.6

B(109pascals) theory 1.81 3.18 3.46 3.81

The Lennard-Jones Pair-potential
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Screened Coulomb Potential Functions

The original Bohr Model (1948)

V = ZAZBe2exp(−r/a)

4πε0r

was used to determine the penetration depth of ions

in solids. Here a is called the screening length. This

is related to the Bohr radius a0.

exp(-r/a) ---screening function
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The origin of the ZBL potential

V = Vnn + Ven + Vee + Vk + Va

Vnn — electrostatic PE between nuclei

Vee — electrostatic PE between electron distributions

Ven — electrostatic PE between each nucleus and the

other electron distribution

Vk— increase in the KE of the electrons in the overlap

region due to Pauli exclusion (free electron gas model)

Va — increase in the exchange energy of these elec-

trons

V (r) calculated for 522 representative ion pairs and

the resulting data fit to a formula.

χM(x) = 0.18175 exp(−3.1998x)+0.50986 exp(−0.94229x)

+0.28022 exp(−0.4029x)+0.028171 exp(−0.20162x)
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The ZBL Screened Coulomb Potential Functions
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Fixed charge pairwise ionic potentials
- Used for MgO, spinels and bixbyite simulations

φ(rij ) =

ZBL

Aij exp(−
rij
pij
) −

Cij

rij
6 +Vcoul (rij )

Vcoul (rij )

rij < ra;

ra ≤ rij < rb;

rb ≤ rij < rc;

rij ≥ r0,

{ h(rij ) × (Aij exp(−
rij
pij
) −

Cij

rij
6 ) +Vcoul (rij ) rc ≤ rij < r0;

h(rij ) =
1

2
(1+ cosπ

rij − rc
d

)

rij < rc;

rij ≥ r0,
{ rc ≤ rij < r0;

1

0

g(rij ) = e( f1 + f2rij + f3rij
2 + f4 rij

3 + f5rij
4 + f6rij

5 )

ionic potential are remarkable good compared to DFT results for bulk materials 
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Variable charge ionic potentials

Pioneered for MD simulations by Rappé and Goddard and van Duin (ReaXFF) and Streitz and Mintmire 

Rappe, A.; Goddard, W. A. J. Phys. Chem. 1991, 95, 3358-3363
F.H Streitz and J. Mintmire Phys. Rev. B 50, 11996–12003 (1994)
Halil et al PRB 73 165406 (2006) D. Raymand , A van Duin et al Surface Science 602 (2008) 1020–1031

FIG. 2. Atomic self-energy of ion �a� O, �b� Ti as a function of
charge.

Ei = Ei�0� + �i
0qi +

1

2
Ji

0qi
2

Ion self-energy:

Minimise Total QEq at each step 

EQEq =

∑
i

Ei +

∑
i

∑
j �=i

E
elec
ij

Electronegativity Hardness

Oxygen

Titanium

Fixed charge : Tiqt ;  Oqo ; qt = +4; qo = -2; 
Variable charge : qt and qo  depend on the local environment.
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Other potentials...covalent materials

Tersoff type bond order potentials..Si, Ge, C, 
GaN, multicomponent Si-C-H (Brenner, 
Beardmore)

V(ri) =∑∑(fR(rij) + bij fA(rij))

Stillinger-Weber type 3-body potentials..Si, CdTe

V(ri) =∑(Vij(rij) + ∑Vijk(rij, rik, rjk))

If each atom were to interact with every other atom in the system the force 
evaluations would scale as N2 for pair potentials.  This is unacceptably slow.
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Boxing and the use of neighbour lists for short-ranged 
potentials

The potential cut-off is rc.  Atoms in the brown and adjacent boxes are stored in a neighbour list
For a system of N atoms, the number of force evaluations at each times step is N x average number of 
neighbours (usually a small number relative to N),
 i.e. force evaluations scale linearly with the number of atoms.
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Parallelisation : Spatial decomposition and multiscale 
modelling

Here the force evaluations on atoms in each box are evaluated on separate processors. 
An atom in box 13 needs information from the 26 surrounding boxes. Data exchange is 
required so the communication time between processors needs to be small compared to 
the time of the force evaluations. Typically ~50,000 atoms per processor is optimal. So a 
one million atom simulation requires >~20 processors.

Length scales can be extended through the use of more and more processors

MPI is the 
standard 
parallel 
language
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Coulomb sum evaluation

Coulomb sums lead to conditionally convergent series and are long-ranged
e.g.  ln(2.0) = 1 - 1/2 + 1/3 -1/4 + 1/5 - 1/6 + 1/7 - 1/8 ..................... = 0.6931....

we need to take ~20,000 terms to get 4 figure accuracy
 Two methods commonly used:

(1) Ewald summation for periodic systems
(scales as N.log N)

(2) Fast multipole method for non-periodic systems (Greengard and Rhoklin)
(scales linearly with N)

You can also truncate the ionic potential. This is a relatively good approximation for 
systems that are charge neutral in the cut-off region ; 

e.g. ReaXFF truncates at 1 nm
The Fennel approximation does this smoothly
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Length and time scales to be bridged in atomistic 
molecular dynamics (MD) simulations

Time scales to be bridged
Integration time step ~ 1 x 10-15 s in an MD simulation
On a modern computer with say 2000 atoms we can advance time by around 
10 fs in 1 real second of computing time.  1 second would take 109 years. 

Length scales to be bridged:
2000 atoms    ~  3nm x 3nm x 3nm
2m atoms       ~  30nm x 30nm x 30nm (Parallel computing)

Radiation damage phenomena
Dose rates maybe 1000’s of dpa over a reactor lifetime so impossible using 
MD alone

Thin Film Growth
Rates are monolayers per second ~ time bridging a long way off with MD
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• Use DFT calculations, system sizes ~ 100’s 
of atoms to parameterise classical 
potentials for MD simulations (DFT-MD)

• Parallel Computing

- Solve Newton’s laws of motion numerically with forces derived from the 
parameterised potentials 

- Assuming 1027 atoms per cubic metre, i.e. 109 per cubic micron.  With 
105 atoms per processor in a typical MD simulation you need 104 
processors to simulate atomistically 1 cubic micron of material.

• Embed an atomistic region in a continuum 
(MD-FE)

Bridging Length Scales in atomistic simulations
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Atomistics to finite elements

• This extends the system size 
without the same increase in 
computational cost.

• The MD region is embedded 
in a FE mesh.

• Imaginary atoms (green and 
blue) make up the neighbours 
of real atoms.

• The first layer of elements 
overlaps with the imaginary 
atoms.

Continuum Region

Atomistic Region

1 μm

10 nm Continuum

Atomistic

E. Mcgee, S.D. Kenny and R. Smith Int. J. Mater. Res.  98 430 (2007)
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Communication FE to MD

• Linear interpolation is used to position 
imaginary atoms according to nodal 
displacements.

• An atom p with fractional 
coordinates (ξp,ηp,ζp) has 
displacements (up,vp,wp).

• These equations keep the fractional 
coordinates constant.

• This provides feedback from the FE 
model to the MD region.

up = u14ξp + u24ηp + u34ζp + u4

vp = v14ξp + v24ηp + v34ζp + v4

wp = w14ξp + w24ηp + w34ζp + w4.

ξ

η

ζ

1 (1,0,0)

2 (0,1,0)

3 (0,0,1)

4 (0,0,0)

p
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Communication
MD to FE

• Forces are present on imaginary 
atoms due to real atoms.

• The forces are assigned to 
nodes according to shape 
function values.

• The nodal force is then used in 
the dynamical FE update.

• FE calculations on one 
processor; spatial 
decomposition for the atomic 
system 

Fnde =
na∑
i=1

Nnde |i Fi

1 2

3

1 2

3

1 2

3

1

0

0

1/2

1/2

0

1/3

1/3

1/3

1

2

3
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Electronic energy loss
(non-Hamiltonian)

Simplest models due to Lindhard, Scharff and Shiott, also Firsov.

Implemented in MD easily by rescaling the positions and velocities at each time step or by the 
introduction of a damping coefficient (-gamma x velocity) extracted from the models.
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2-Temperature model

Rutherford and Duffy JPCM for metals currently being extended for insulators but conductivities and 
specific heats are not known with accuracy.
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Analysis Tools
Defect Identification in crystallographic systems:

Interstitials : An atom that is greater than a distance rint from a 
lattice site. Typically rint  is chosen as ~ one third of the nearest 
neighbour distance.
Vacancy : A lattice site that has no atom within a distance rint. 

q4 Parameter : A parameter based on evaluating the spherical 
harmonics Ylm(rij) for each neighbouring atom j of i. 
Lechner and Dellago J. Chem Phys. 129 114707 (2008)
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Visualisation Tools

Pov-Ray : http://www.povray.org/
PDB visualisers : http://www.bernstein-plus-sons.com/
software/rasmol/
Write your own with vtk.

Lots of free software

HEADER    pKc =2.4   pKn =9.8                     13-JUL-93   
COMPND    glycine   GLY    MW = 57

ATOM      1  N   GLY     1      -1.476   0.232   0.252  1.00  0.00
ATOM      2  CA  GLY     1      -0.012   0.296   0.348  1.00  0.00
ATOM      3  C   GLY     1       0.596  -0.652  -0.648  1.00  0.00
ATOM      4  O   GLY     1      -0.124  -1.320  -1.368  1.00  0.00

  ATOM      5  OXT GLY     1       1.916  -0.760  -0.740  1.00  0.00
ATOM      6  H3  GLY     1      -1.736  -0.252  -0.592  1.00  0.00
ATOM      7  HA2 GLY     1       0.292   0.020   1.364  1.00  0.00
ATOM      8  HA1 GLY     1       0.320   1.320   0.132  1.00  0.00
ATOM      9  H9  GLY     1      -1.636  -0.236   1.132  1.00  0.00
ATOM     10  H1  GLY     1      -1.916   1.136   0.272  1.00  0.00

TER      11      GLY     1 
END

          8
    

       1     7.17     4.42     3.45                0.0000               -4.2208               -0.6967
       2     7.01     4.38     4.38                0.0000               -4.2208                0.3204
       3     6.27     4.40     3.09                0.0000               -4.2208                0.3740
       4     9.51     4.30     1.69                0.0000               -4.2208               -0.6906
       5     9.61     5.23     1.47                0.0000               -4.2208                0.3181
       6     8.74     4.29     2.27                0.0000               -4.2208                0.3830
       7     2.87     1.04     2.93                0.0000               -4.2208                0.3233
       8     0.93     1.34     2.54                0.0000               -4.2208                0.2552

       

pdb file                                                              xyz file
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0.4 keV cascade snapshots

MgAl2O4

MgGa2O4

B
O
Mg

B3+

O2-

Mg2+

BMg

MgB

Interstitials

Vacancies

Cation antisites

MgIn2O4
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Defects in amorphous systems e.g. glasses

• Use Voronoi tesselation to study defects in amorphous structures

• Investigate by use of a short range ordering parameter  cij = pij/pij0 -1, 
where pij is the probability of finding atoms i and j as neighbours and 
pij0 is the unirradiated probability

• Can also monitor the cascades by visualising the displaced atoms.

Three possible approaches : but more work required
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Other considerations not mentioned

• Optimisation algorithms

- Conjugate gradient, steepest descents, quasi-Newton

• Potential construction

- Fitting methods e.g. neural networks

• Constant pressure MD and implementation of constraints

• ab initio methods

- use hellman-Feynman theorem to determine forces
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Some Examples
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Structure of spinel

Normal spinel Inverse spinel

Voids

Mg2+

X3+

O2-

Unit cell: 8 formula units of MgX2O4 (X= Al, Ga, In)
Spinels can exhibit appreciable disordering of cations within 
their structures - site exchange
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Defects in normal spinel, MgAl2O4

Mg split interstitial

Anion split interstitial

O                O vacancy

Mg Mg vacancy

Perfect structure

〈101 〉

〈101〉

〈101〉

〈101 〉
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Example :  10 keV PKA cascade in magnesium aluminate spinel
(fixed charge ionic potential)

B
O
Mg

B3+

O2-

Mg2+

BMg
MgB

Interstitials

Vacancies

Cation antisites
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Example :  10 keV PKA cascade in magnesium aluminate spinel
(fixed charge ionic potential)

B
O
Mg

B3+

O2-

Mg2+

BMg
MgB

Interstitials

Vacancies

Cation antisites
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Diebold, Ulrich "The surface science of titanium dioxide" Surface Science Reports 48 pp. 53-229

•Rutile (110) surface

•5-coord Ti atoms

•6-coord Ti atoms

•3-coord O atoms

•2-coord O atom
“bridges” along [001]

Rutile (110) Surface
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Example:  The oxidation of the TiO2 rutile {110} surface
(variable charge potential)

O dimer added to the trench                           
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Ti extraction from a subsurface layer          
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Etching of the surface with more  O addition
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MD deposition of C60 onto Si{100} (2 x 1) at 600K 
(Tersoff-Brenner potential)

Question :  What is physically unrealistic about this movie ?
Answer : Unrealistic deposition rates
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Example : Particle moving in a 2-D potential field

π
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Conclusions
MD simulations can now be run routinely on systems 
containing millions of atoms

Potentials are now so refined that they can model both teh 
close interactions and the chemical bonding with reasonable 
accuracy

The length scale problem is almost solved by using parallel 
computing and embedding in a finite element region

The time scale problem is not yet solved but will be effectively 
solved within the next decade (see next lecture)
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For a 2 × 2 system where

M =

(
a

c

b

d

)

The condition for sympecticity MTJM = J gives(
a

b

c

d

)(
0

−1

1

0

)(
a

c

b

d

)
=

(
0

−1

1

0

)
i.e. (

0

bc − ad

ad − bc

0

)
=

(
0

−1

1

0

)

i.e. det M = 1.
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What is special about the Verlet algorithm

Consider the problem of simple harmonic motion. In

Hamiltonian form this can be written

H =
1

2
(p2 + k2q2) q̇ = p ṗ = −k2q

A second order Runge-Kutta method could be given

by

k1 = f(tn, yn), k2 = f(tn + h, yn + hk1),

yn+1 = yn + f(tn + h, yn + 1
2
h(k1 + k2))

Applying this method to the SHM problem gives(
qn+1
pn+1

)
=

(
1−1

2(hk)2

−h

−hk2

1−1
2(hk)2

)(
qn

pn

)
whereas the Verlet algorithm gives(

qn+1
pn+1

)
=

(
1−1

2(hk)2

−hk2(1+1
2(hk)2)

h
1−1

2(hk)2

)(
qn

pn

)

For the R-K case det M = 1 + 1
4
(hk)4

For the Verlet case det M = 1

Sunday, 19 August 12


