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Part I



A zero-sum flow for a matrix N is a nowhere-zero vector in the

null space of N .

These are equivalent:

• N admits a zero-sum flow.

• The deletion of any column of N does not decrease the rank.

For a real matrix N , let P be the matrix of the orthogonal pro-

jection from Rm onto the row space of N , and Q = I − P the

matrix of the orthogonal projection onto the null space of N .

(When N has full row rank, P = N�(NN�)−1N .)



These are equivalent:

• N admits a zero-sum flow.

• The deletion of any column of N does not decrease the rank.

• The diagonal entries of Q are nonzero.

Part of a proof: Check that the deletion of the first column of

N reduces the rank if and only if (1,0,0, . . . ,0) ∈ row(N). This

is the case if and only if (1,0,0, . . . ,0)Q = (0,0, . . . ,0). �



Theorem 1. (W, 1982) Let N = Wtk be the incidence matrix

of t-subsets versus k-subsets of an n-set, and let Wtk be the

“disjointness matrix”. If t ≤ k ≤ n − t, then

P =
t∑

i=0
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Theorem qq. Let N = Ntk be the incidence matrix of t-dimensional

subspaces versus k-dimensional subspaces of an n-dimensional

space over Fq, and let Ntk be the “skewness matrix”. If t ≤ k ≤
n − t, then

P =
t∑

i=0
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Here bi
t denotes the number of k-subsets that contain t of the

points but none of i other points in Theorem 1, and has the

q-analogous meaning in Theorem q.

We can see that the diagonal terms of Q are positive when t <

k < n − t. Thus the “linear matrices” (or “projective matrices”)

Ntk admit zero-sum flows whenever they have more columns

than rows. This answers a question mentioned in the talk of S.

Shahriari.

In general, given a set of S columns, the drop in rank when

the columns S are deleted from N is the nullity of the principal

submatrix of Q with rows and columns indexed by S.



If N is the inidence matrix of a block design, then

r(r − λ)Q = r(r − λ)I − rN�N + λkJ

The diagonal entries are (r − k)(r − λ), and this is positive if

r > k, i.e. if b > v. Cf. Akbari, Khosrovshahi, Mofidi “Zero-sum

flows in designs”.

If we delete two columns of N , corresponding to blocks A and

B, the rank will decrease if and only if(
(r − k)(r − λ) kλ − rμ

kλ − rμ (r − k)(r − λ)

)

is singular, where μ = |A ∩ B|. That is, if and only if equality

hold in Connor’s Inequalities

|kλ − rμ| ≤ (r − k)(r − λ).



Part II



A zero-sum Ramsey-type problem.

For this talk, we motivate our results on diagonal forms of certain

incidence matrices by a zero-sum Ramsey-type problem of Alon

and Caro (1993).

What is the least integer R(H;m) so that if n ≥ R(H;m) and the

edges of the complete t-uniform hypergraph K
(t)
n on n vertices

are colored with integers from {0,1, . . . , m−1}, then there exists

a subhypergraph H′ isomorphic to H so that the sum of the

colors on the edges of H′ is 0 modulo m?

The classical Ramsey’s Theorem implies that such an integer

exists when the number of edges of H is ≡ 0 (mod m).



Caro proved (1996) that when
(
k
t

)
is even,

R(K(t)
k ; 2) ≤ k + t.

When t = 2, R(Kk; 2) = k + 2. (See the blackboard.)

Theorem 1 (W, 2002) When
(
k
t

)
is even, R(K(t)

k ; 2) is equal to

k + 2e where 2e is the least power of 2 that appears in the base

2 representation of t but not in the base 2 representation of k.

Theorem 2 (W, 2002) For any t-uniform hypergraph H with k

vertices and an even number of edges, R(H; 2) ≤ k + t.



Note that for a graph G on k vertices, R(G; 2) = k means that

no matter how the edges of Kk are colored with 0 and 1, there

is a copy of G in Kk that has an even number of edges of color

1. It is very common that R(G; 2) = k.



Theorem 3 (Y. Caro, 1994) For a simple graph G on k vertices

with an even number of edges, R(G; 2) = k unless (i) G = Kk,

(ii) G = Ka ∪Kb with a + b = k or (iii) all vertices of G have odd

degree.

Theorem 4 (W. and Tony Wong, 2012) For a t-uniform hyper-

graph H on k vertices with an even number of edges, R(H; 2) = k

almost always.



The matrices Nt(h)

Fix t and consider integer column vectors h where the coordi-

nates of h are indexed by the t-subsets of an n-set X. We may

call such a vector h a t-vector based on the set X. As an im-

portant instance, h may be the characteristic (0,1)-vector of a

simple t-uniform hypergraph.

Given an integer t-vector h based on a n-set X, we consider the

matrix Nt(h), or simply Nt, whose columns are all images of h

under the symmetric group Sn. An example when n = 3 and



t = 1 is

N1 =

⎛
⎜⎝3 5 9 3 5 9
5 9 3 9 3 5
9 3 5 5 9 3

⎞
⎟⎠ .



Normally, one need only use the distinct images of h as the

columns of Nt, but, for our purposes, it will not matter if Nt has

repeated columns. In fact, it is sometimes convenient for the

purposes of induction to assume that Nt has n! columns indexed

by the set of all permutations of X.

Given a t-uniform hypergraph with vertex set X, let Nt(H) =

Nt(h) where h is the characteristic t-vector of H. Here Nt(H) is

a (0,1)-matrix.



Example: Let n = 4 and let G be the path of length 2 plus an

isolated vertex. Then N2(G) is the 6 × 12 matrix below.

{1,2}
{1,3}
{1,4}
{2,3}
{2,4}
{3,4}

213 214 314 123 124 324 132 234 134 . . .

1 1 0 1 1 . . .
1 0 1 0 0 . . .
0 1 1 0 0 . . .
0 0 0 1 0 . . .
0 0 0 0 1 . . .
0 0 0 0 0 . . .



W23(6) = N2(Δ + · · ·) Each column is a 2-vector.

{1,2}
{1,3}
{2,3}
{1,4}
{2,4}
{3,4}
{1,5}
{2,5}
{3,5}
{4,5}
{1,6}
{2,6}
{3,6}
{4,6}
{5,6}

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
1 0 1 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0
1 0 0 1 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0
0 1 1 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0
0 1 0 1 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0
0 0 1 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0
0 0 0 0 1 1 0 1 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 1 0 1 0 1 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 1 1 0 0 1 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 1 1 0 1 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠



Let H↑n denote the hypergraph obtained by adjoing isolated ver-

tices to H in order to obtain a total of n vertices.

Given a simple t-uniform hypergraph H on k vertices, the matrix

Nt(H↑n) has as columns the characteristic vectors of all subhy-

pergraphs of K
(t)
n isomorphic to H. A coloring of the edges of

K
(t)
n is a t-vector x based on V (K(t)

n ). The sum of the colors on

the edges of a copy H′ of H is the H′-coordinate of xNt(H↑n).
Thus R(H;m) is the least integer n so that the module generated

by the rows of Nt(H↑n) contains no vectors with all coordinates

�≡ 0 (mod m).



In particular, R(H; 2) is the least integer n so that the binary

code generated by Nt(H↑n) does not contain the vector of

all ones.



Diagonal form

Given a matrix A, a diagonal form for A is a diagonal matrix D of

the same dimensions as A so that for some unimodular matrices

E and F ,

EAF = D.

The diagonal entries d1, d2, . . . of D may be called (a set of)

diagonal factors for A. When the di’s are nonnegative and divide

one another successively, i.e. d1 | d2 | . . . , then D is the (integer)

Smith (normal) form of A and the diagonal entries are the in-

variant factors of A. (If j is greater that the number of rows or

columns of A, it is convenient to understand dj = 0.)



As a simple example, a diagonal form for A =
(

2 1 −1
4 7 3

)
is

D =
(

2 0 0
0 5 0

)
.

Another diagonal form for A is D =
(

1 0 0
0 10 0

)
.



Let A be given. For any unimodular matrix E, let D be the

diagonal matrix with di equal to the gcd of the elements of the

i-th row of EA. Then EA = DU for some integer matrix U. If U

is row-unimodular (in which case we call U a front for A), then

D is a diagonal form for A. As an illustration,

(
1 1
1 2

)(
2 1 −1
4 7 3

)
=

(
6 8 2
10 15 5

)
=

(
2 0
0 5

)(
3 4 1
2 3 1

)

=

(
2 0 0
0 5 0

)⎛⎜⎝3 4 1
2 3 1
0 0 1

⎞
⎟⎠ .



For t ≤ k ≤ n, Let Wtk be the inclusion matrix of t-subsets of an

n-set versus k-subsets of the n-set. This is Ht((K
(t)
k )↑n), except

possibly for repeated columns.

It is possible to find unimodular matrices consisting of
(
n
t

)
rows

from the union of the rows of W0t, W1t, . . . , Wtt. E.g., when

n = 4, t = 2, one example is

E2(6) =

∅
{1}
{2}
{3}
{1,3}
{3,4}

⎛
⎜⎜⎜⎜⎜⎝

1 1 1 1 1 1
1 1 1 0 0 0
1 0 0 1 1 0
0 1 0 1 0 1
0 1 0 0 0 0
0 0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎠ .



Given j, k, v, j ≤ k ≤ v − t, let Ejk be obtained from Wjk by

deleting the rows of Wjk corresponding to a (j − 1, j)-basis. So

Ejk is of size
(
v
j

)
−
(

v
j−1

)
by

(
v
k

)
.



Theorem 5 (W, 1999, 2008) Given t, k, n, t ≤ k ≤ n− t, the
(
n
t

)
by

(
n
k

)
matrix

t⊔
j=0

Ejk =

E0k 1 row

E1k n − 1 rows

E2k

(
n
2

)
− n rows

...

Etk

(
n
t

)
−
(

n
t−1

)
rows

is row unimodular.



When 2t ≤ n, the matrix Et = 
t
j=0Ejt is unimodular.

Theorem 6 (W, 1999) If a t-uniform hypergraph H has at least

t isolated vertices, then Et is a front for Nt(H).

This means that one set of diagonal factors for Nt(H) is

(g0)
1, (g1)

n−1, (g2)
(n
2)−n . . . , (gt)

(n
t)−( n

t−1),

where gi is the gcd of all entries of EitNt(h) (this is the same

as the gcd of the entries of With), where h is the characteristic

vector of H. The number gi is the gcd of the ‘degrees’ of i-

subsets of the vertices of H. In particular, g0 is the number of

edges of H, g1 is the gcd of the degrees of the vertices, and gt

is 1 if H is simple with at least one edge.



Theorem 7 (W, Tony Wong, 2012) If a t-uniform hypergraph

H has the property that it and all of its shadows are primitive or

multiples of primitive hypergraphs, then Et is a front for Nt(H).

Theorem 8 (W, Tony Wong, 2012) A random t-uniform hy-

pergraph H almost surely has the property that it and all of its

shadows are primitive hypergraphs.

Primitivity and shadows (as we are using the terms here) will be

defined later.



We remark that any t-uniform hypergraph with at least one edge

and t isolated vertices has the property that it and all of its

shadows are primitive or multiples of primitive hypergraphs. A

simple t-uniform hypergraph with t−1 isolated vertices that is not

the union of a complete t-uniform hypergraph and t − 1 isolated

vertices also has the property.



Solutions of systems of congruences

H. J. S. Smith’s original paper on Smith form was concerned

with integer solutions of linear equations.

Lemma 9 Let A be an integer matrix and b a integer column

vector. Assume EAF = D where E and F are unimodular and

D diagonal with diagonal entries d1, d2, . . . . The system of equa-

tions Ax = b has an integer solution x if and only if the i-th

entry of Eb is divisible by di for j = 1,2, . . . , n.



Lemma 10 Let A be an integer matrix and c an integer row

vector. Suppose EAF = D where E and F are unimodular and

D is diagonal with diagonal entries d1, d2, . . . . The system of

congruences yA ≡ c (mod m) has an integer solution y if and

only if the j-th entry of cF is divisible by the gcd (dj, m) for

j = 1,2, . . . , n.

Proof. The congruences yA ≡ c (mod m) can be written as

(yE−1)EAF ≡ cF (mod m), and there is an integer solution y

of this system if and only if there is an integer solution z of

zD ≡ cF (mod m). �



We want to know if the vector (1,1, . . . ,1) is congruent modulo

2 to some vector yNt(H) with y an integer vector. If Et is a

front for Nt(H), then EtNt(H) = DF−1 as below, where g0 is the

number of edges of H.⎛
⎜⎜⎜⎝
1 1 · · · 1

⎞
⎟⎟⎟⎠Nt(H) =

⎛
⎜⎜⎜⎝

g0 0 · · · 0
⎞
⎟⎟⎟⎠
⎛
⎜⎜⎜⎝
1 1 1 1 1 · · ·⎞⎟⎟⎟⎠ .

Note that (1,1, . . . ,1)F = (1,0,0, . . . ). By Lemma 10, (1,1, . . . ,1)

is in the binary code generated by Nt(H) if and only if the gcd

of 2 and dj divides the j-th coordinate of (1,0,0, . . . ), which is

the case if and only if g0 is odd.



More generally, if g0 is even and there is a front with (1,1, . . . ,1)

as a row, then (1,1, . . . ,1) is not a codeword.



We can describe diagonal factors for any simple graph. For

example:

• N2 for the Petersen graph (n=10) has diagonal factors

135, 31, 08, 151.

• N2 for the Petersen graph plus an isolated vertex (n=11) has

diagonal factors 144, 310, 151.

We can reprove Caro’s characterization of simple graphs with

R(G; 2) = k.



Primitivity

A t-vector h will be said to be primitive when the gcd of 〈h, f〉
over all integer vectors f in the null space of Wt−1,t is 1.

Spanning sets over the integers for nullZ(Wjt) (the module of

“null designs” or “trades”) have been described circa 1970 by

Graham, Li, and Li, and by Graver and Jurkat. For any choice

of distinct points a1, a2, . . . , at, b1, b2, . . . , bt, consider the t-vector

f where f(T) is the coefficient of the monomial
∏

c∈T c in the

polynomial

(a1 − b1)(a2 − b2) · · · (at − bt).

We call t-vectors of this form t-pods, and they generate nullZ(Wt−1,t).



A 1-vector h based on X = {1,2, . . . , n} is primitive when the gcd

of the quantities h(i) − h(j) is 1.

A graph (or signed multigraph) G, or 2-vector g, is primitive

when the gcd of the quantities

g({a, b}) + g({c, d}) −
(
g({b, c}) + g({d, a})

)
over all choices of four distinct vertices a, b, c, d is 1.

A 3-uniform hypergraph H or 3-vector h is primitive when the

gcd of all quantities

h(a1, a2, a3) + h(a1, b2, b3) + h(b1, a2, b3) + h(b1, b2, a3)

−
(
h(b1, b2, b3) + h(b1, a2, a3) + h(a1, b2, a3) + h(a1, a2, b3)

)



over all choices of six distinct vertices a1, a2, a3, b1, b2, b3 is 1.

Theorem 11 (W, Wong) A simple graph G is primitive unless G

is isomorphic to a complete graph, an edgeless graph, a complete

bipartite graph, or the disjoint union of two complete graphs.

The shadow of a t-vector h is the (t− 1)-vector Wt−1,th and the

j-th shadow is Wt−j,th.

The shadow of a graph is its vector (1-vector) of its degrees.



Theorem 12 Let G be a primitive simple graph with m edges

and degrees δ1, δ2, . . . , δn. Let h denote the gcd of the degrees

δi and m; let g denote the gcd of all differences δi − δj, i, j =

1,2, . . . , n. Then the invariant factors of N2(G) are

(1)(
n
2)−n, (h)1, (g)n−2, (mg/h)1.

• N2 for the Petersen graph (n=10) has diagonal factors

135, 31, 08, 151.

• N2 for the Petersen graph plus an isolated vertex (n=11) has

diagonal factors 144, 310, 151.



Nonprimitive graphs may be considered separately. Here is one

case.

Theorem 13 Let G be the complete bipartite graph Kr,n−r,

where 2 ≤ r ≤ n − 2. Define m, g, and h as in the statement of

Theorem 12, so in this case

m = r(n − r), g = n − 2r, h = gcd{r, n − r}.
Then the diagonal entries of one diagonal form for N2(G) are

(1)n−2, (2)(
n
2)−2n+2, (h)1, (2g)n−2, (mg/h)1.

In the case r = 2, the matrix N2 is square; it is the adjacency

matrix of the line graph of the complete graph Kn, and we have

reproved a result of Brouwer and Van Eijl.


