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Permanents

The permanent of an n × n matrix A = [ai ,j ] is defined by

per(A) =
∑
σ

n∏
i=1

ai ,σ(i)

where the sum is over all permutations σ of {1, 2, . . . , n}. In other
words we take the product of the entries along each diagonal, and
add up these products. This is the same definition as the
determinant, except we leave out the ±1’s.
Example:

per

1 2 3
4 5 6
7 8 9

 = 1.5.9+1.6.8+2.4.9+2.6.7+3.5.7+3.4.8 = 450



Basic properties

per(A) = per(AT ) for any A.
If k is any scalar and A has order n then per(kA) = kn per(A).

The permanent of a permutation matrix is 1.
The permanent is unaffected by permuting rows and/or columns.
So

per(AB) = per(A) per(B) (†)

if A or B is a permutation matrix.
However (†) does not hold for arbitrary A and B.

This is a devastating blow, since most of the nice properties of
determinants follow from det(AB) = det(A) det(B).

In particular, we cannot use Gaussian elimination to calculate
permanents. (There is strong evidence that there is no fast
algorithm to calculate permanents.)



“Determinants are angels and permanents are devils”
–Doron Zeilberger



Counting with permanents

For a square (0, 1)-matrix A the permanent counts the positive
diagonals of A. In other words, it counts the permutation matrices
P such that P 6 A (entrywise).

Example: In how many ways can n married couples dance so that
nobody dances with their spouse?
In other words, how many permutations are there with no fixed
point? Such a permutation is called a derangement.

Dn =
n∑

i=0

(−1)i
(
n

i

)
(n − i)!

D6 = per



0 1 1 1 1 1
1 0 1 1 1 1
1 1 0 1 1 1
1 1 1 0 1 1
1 1 1 1 0 1
1 1 1 1 1 0





More spouse avoidance

In how many ways can n married couples sit around a circular table
so that nobody sits next to their spouse? (Protocol insists that
sexes alternate around the table, and that ladies are seated first).
Once the ladies are seated, the gents can be seated according to a
permutation. The number of such permutations is called the n-th
Menagé number, Mn.
The Menagé numbers can be counted by permanents:
Example:

per



0 1 1 1 1 0
0 0 1 1 1 1
1 0 0 1 1 1
1 1 0 0 1 1
1 1 1 0 0 1
1 1 1 1 0 0

 = M6.

Mn =
∑
k

(−1)k
2n

2n − k

(
2n − k

k

)
(n − k)!



Biadjacency matrices

Any (0, 1)-matrix can be interpreted as the biadjacency matrix of a
bipartite graph B. The two colour classes of the graph are the
rows and columns respectively, and the 1’s record where the edges
occur between a row vertex and a column vertex.

A case of special importance in this talk will be when the bipartite
graph is regular, say each vertex has degree k . Then each row and
column of the biadjacency matrix sums to k .

We let Λk
n denote the set of (0, 1)-matrices of order n, where each

row and column sums to k .

Example: Our derangement example came from Λ5
6 and the

Menagé example came from Λ4
6.



Counting matchings with permanents

Theorem: For a bipartite graph G , the number of perfect
matchings in G is equal to the permanent of the biadjacency
matrix of G .

Matchings are vital in many pure and applied problems. eg. All the
problems discussed so far; assigning lecturers to classes, or drivers
to vehicles. We don’t always want perfect matchings.

Good news... Permanents can count k-matchings too!
Define the k-th subpermanent sum σk(A) to be the sum of the
permanents of all k × k submatrices of A.

Theorem: For a bipartite graph G , the number of k-matchings
in G is equal to σk of the biadjacency matrix of G .



Hall’s marriage theorem

Hall’s theorem (as introduced by Richard yesterday) is sometimes
known as the marriage theorem, because it can be phrased as the
answer to the following question:

Suppose that there is a group of eligible bachelors for a group of
single women to choose a husband from. Further, suppose that
each woman has a list of men she is willing to marry. Under what
conditions is it possible for each women to marry a man on her list?

We want an SDR from the women’s sets of potential husbands.
The number of these is σw (N) if there are w women and N is the
incidence matrix for their lists.



An application of Hall’s theorem

Theorem: Every regular bipartite graph has a perfect matching.

Proof: Suppose G is a k-regular bipartite graph with bipartition
(U,V ). Suppose that W ⊆ U. There are k|W | edges from W to
V and no vertex in V lies on more than k of them. Hence W has
at least k |W |/k = |W | neighbours, so by Hall’s theorem G has a
perfect matching. ut

NB. We need the condition that G is bipartite. eg.

The above theorem says per(A) > 1 for all A ∈ Λk
n with k > 1. As

a corollary, A can be written as the sum of k permutation matrices.



Latin rectangles

A k × n Latin rectangle is a matrix containing n different symbols
arranged so that each symbol occurs exactly once per row and at
most once per column. An n × n Latin rectangle is a Latin square.

Example: A 3× 6 Latin rectangle and a 5× 5 Latin square:

3 6 1 2 5 4
5 2 3 4 1 6
6 3 4 5 2 1




5 2 4 1 3
4 1 3 5 2
3 5 2 4 1
2 4 1 3 5
1 3 5 2 4



A natural way to build Latin squares is one row at a time. Let L be
a k × n Latin rectangle. Define R ∈ Λn−k

n to be the (0, 1)-matrix
that records a 1 in cell (i , j) if symbol i has not yet been used in
column j of L. Then per(R) counts the number of extensions of L
to a (k + 1)× n Latin rectangle.



Extending Latin rectangles

Since every regular bipartite graph contains a perfect matching, it
follows that every Latin rectangle can be extended to a Latin
square.

In fact we can say a little more:

Theorem: [Frobenius-Kőnig] A non-negative n × n matrix has
zero permanent if and only if it contains an r × s submatrix of
zeroes, for some r , s satisfying r + s = n + 1.

Using this, Brualdi and Csima [’86] showed that if k < n/2 we can
fix any n − 2k entries in the next row, and still be sure of
extending a k × n Latin rectangle to a (k + 1)× n Latin rectangle.



Brègman’s theorem

What is the maximum permanent over Λk
n?

Theorem: [Brègman] If A is a (0, 1) matrix with row sums
r1, r2, . . . , rn then perA 6

∏
i (ri !)

1/ri .

Example: The maximum permanent in Λ3
9 is achieved by

1 1 1 0 0 0 0 0 0
1 1 1 0 0 0 0 0 0
1 1 1 0 0 0 0 0 0
0 0 0 1 1 1 0 0 0
0 0 0 1 1 1 0 0 0
0 0 0 1 1 1 0 0 0
0 0 0 0 0 0 1 1 1
0 0 0 0 0 0 1 1 1
0 0 0 0 0 0 1 1 1





The complement of Brègman’s theorem

[McKay/W’98] It turns out the complement of Jk ⊕ Jk ⊕ · · · ⊕ Jk

0k Jk Jk Jk · · · Jk
Jk 0k Jk Jk · · · Jk
Jk Jk 0k Jk · · · Jk
Jk Jk Jk 0k · · · Jk
...

...
...

...
. . .

...
Jk Jk Jk Jk · · · 0k


maximises the permanent in Λn−k

n when n = mk for integer m

. . . at least it does when m = 2 or m > 5.
It doesn’t when m = 3.



Minimum permanent in Λk
n

Much less is known about the structure of matrices that minimise
the permanent in Λk

n .

Thanks to Schrijver [’98] and Gurvits [’08], we do know

perA >

(
(k − 1)k−1

kk−2

)n

for all A ∈ Λk
n .

The base constant is best possible in the sense that

lim
n→∞

( min
A∈Λk

n

perA)1/n =
(k − 1)k−1

kk−2
.



1 2 3 4 5 6

n identical balls in n labelled buckets on the back of a truck.
One ball per bucket.



1 2 3 4 5 6

The truck goes over a bump. . .



1 2 3 4 5 6

. . . then the balls fall back into the buckets.



1 2 3 4 5 6

(Or they may fall back neatly, one per bucket).



Suppose that a ball in bucket i has a probability pi ,j of being jolted
into bucket j . ∑

j

pi ,j = 1

The matrix P = [pi ,j ] is row stochastic.

What is the probability that the state is preserved (ie. we end up
with one ball per bucket)?

The balls must have been permuted by some permutation τ .
The probability of τ occurring is

∏n
i=1 pi ,τ(i).

The total probability is the sum over all possible τ , (since these
events are mutually exclusive).

Hence per(P) is the probability that the state is preserved.
ie. it is the “permanence” of the state.



Doubly stochastic matrices

A matrix is row stochastic if its entries are non-negative real
numbers and each row has a total of 1. A matrix D is doubly
stochastic if both D and DT are row stochastic.

The set of doubly stochastic matrices of order n is traditionally
denoted Ωn.

The minimum permanent of a row stochastic matrix of order n > 1
is, trivially, zero.

However, finding the minimum permanent on Ωn was a famous
unsolved problem for more than 50 years.



van der Waerden’s conjecture

In 1926 B. L. van der Waerden conjectured that the minimum
permanent in Ωn is achieved (uniquely) by the matrix

1

n
Jn =


1
n

1
n · · · 1

n
1
n

1
n · · · 1

n
...

...
. . .

...
1
n

1
n · · · 1

n


which has permanent n!/nn. This conjecture was finally solved
(independently) by Egorychev and Falikman around 1980. Then in
1982 Friedland showed that 1

nJn also minimises σk on Ωn (for any
k), proving a conjecture of Tverberg.

Any matrix A ∈ Λk
n satisfies 1

kA ∈ Ωn and hence
per(A) > n!(k/n)n.



The number of Latin squares

The number of Latin squares is only known exactly for order
n 6 11. For n = 11 there are
776966836171770144107444346734230682311065600000.

Say Ln is the number of Latin squares of order n. We can get
bounds on Ln given that we know the number of extensions of a
k × n Latin rectangle to a (k + 1)× n Latin rectangle is the
permanent of some matrix in A ∈ Λn−k

n . Combining the
Egorychev/Falikman and Brègman bounds gives:

Theorem:
n!2n

nn2 6 Ln 6
( n∏

k=1

k!1/k
)n



Time to play chess!

In how many ways can 4 non-attacking rooks be placed on the
white squares of a chessboard?

Represent the chessboard as a (0, 1)-matrix C ∈ Λ4
8, with the 1’s

corresponding to the permissible positions (white squares).

Then σi (C ) counts the number of ways that i non-attacking rooks
can be placed on the permissible positions. In particular
σ4(C ) = 8304.



Rook polynomials

The problem can obviously be generalised in a number of ways.
Any (0, 1)-matrix can be interpreted as a ‘board’ with certain
allowed and other prohibited positions. In such a case σi will always
count the number of arrangements of i non-attacking rooks. It is
in this context that we define the rook polynomial of a matrix A by

ρ(A, x) = ρ(A) =
n∑

i=0

(−1)iσi (A)xn−i .

Example: If A ∈ Λ1
n then σi (A) =

(n
i

)
so

ρ(A) =
n∑

i=0

(−1)i
(
n

i

)
xn−i = (x − 1)n.

Take care! The mathematical literature contains several
polynomials closely related to our rook polynomial, and
unfortunately some of them are also known as “rook polynomials”.



Roots of rook polynomials

Suppose A ∈ Λk
n and consider the roots {λ1, λ2, . . . , λn} of ρ(A).

If k = 1 then ρ(A) = (x − 1)n so λi = 1 for each i .

For k > 2, Heilmann and Lieb showed that λi is real for each i , and

0 < λi < 4(k − 1).

In particular, since the roots of the rook polynomial are real, its
coefficients form a log-concave sequence. In fact

σi (A)

σi−1(A)
>

(i + 1)(m − i + 1)

i(m − i)

σi+1(A)

σi (A)
>
σi+1(A)

σi (A)
.



A remarkable integral

Theorem: [Joni&Rota,Godsil] For any A ∈ Λk
n ,

per(A) =

∫ ∞
0

e−xρ(A) dx

where A is the (bipartite) complement of A.

Proof: This can be viewed as an inclusion-exclusion result as
follows. The number of i-matchings in A is counted by σi (A), and
there are (n − i)! diagonals of A which include any given
i-matching. Now, per(A) is the number of diagonals of A which
contain no edges at all, so

per(A) = n!− (n− 1)!σ1(A) + (n− 2)!σ2(A)− . . . (−1)n0!σn(A).

Since
∫∞

0 e−xx i dx = i !, the right hand side turns out to be
precisely

∫∞
0 e−xρ(A) dx . ut



Counting with permanents (summary)

There are a number of important combinatorial problems that
involve counting permutations.
The permanent counts

I permutations with restricted positions

I perfect matchings in bipartite graphs

I systems of distinct representatives

I extensions to Latin rectangles

I placements of rooks

I and so on . . .


