Continuous Quantum Walks

Chris Godsil University of Waterloo

Trieste, September 2012

Outline

1 Perfect State Transfer

- Physics 101
- State Transfer
- Basics of State Transfer

Pretty Good State Transfer

- Basics
- PGST on Paths

Outline

- State Transfer
- Basics of State Transfer
- Pretty Good State Transfer
 - Basics
 - PGST on Paths

Cosmology

Quote

"Hydrogen is a colorless, odorless gas which given sufficient time, turns into people." (Henry Hiebert)

It is just a bunch of axioms and:

It is just a bunch of axioms and:

Quote

"The axioms of quantum physics are not as strict as those of mathematics"

It is just a bunch of axioms and:

Quote

"The axioms of quantum physics are not as strict as those of mathematics"

Well, there's some linear algebra too, but you just need to remember that:

It is just a bunch of axioms and:

Quote

"The axioms of quantum physics are not as strict as those of mathematics"

Well, there's some linear algebra too, but you just need to remember that:

Quote

"a vector is not the same thing as the list of its components. The vector has a ... meaning."

Outline

A Transition Operator

Let A be the adjacency matrix of the graph X.

Definition

The transition operator U(t) is defined by

 $U(t) := \exp(itA)$

It determines a continuous quantum walk.

Perfect State Transfer

The basic question: is there a time t such that $|U(t)_{a,b}| = 1$?

Perfect State Transfer

The basic question: is there a time t such that $|U(t)_{a,b}| = 1$? If there is such a time, we say that we have perfect state transfer on X from a to b.

Pretty Good State Transfer

If perfect state transfer does not occur, perhaps for each $\epsilon > 0$ we can find a time t such that $|U(t)_{a,b}| > 1 - \epsilon$.

Pretty Good State Transfer

If perfect state transfer does not occur, perhaps for each $\epsilon>0$ we can find a time t such that $|U(t)_{a,b}|>1-\epsilon.$

If there is such a time, we say that we have pretty good state transfer on X from a to b.

An Example: K_2

If $X = K_2$, then

and

$$U(t) = \begin{pmatrix} \cos(t) & i\sin(t) \\ i\sin(t) & \cos(t) \end{pmatrix}.$$
$$U(\pi/2) = \begin{pmatrix} 0 & i \\ i & 0 \end{pmatrix}.$$

Composite Systems

• If X and Y are graphs and we run walks on them independently, the composite quantum system is controlled by

 $U_X(t) \otimes U_Y(t).$

Composite Systems

• If X and Y are graphs and we run walks on them independently, the composite quantum system is controlled by

 $U_X(t) \otimes U_Y(t).$

• The Cartesian product of X and Y has adjacency matrix $A_X \otimes I + I \otimes A_Y$. Since $A_X \otimes I$ and $I \otimes A_Y$ commute,

$$U_{X\square Y}(t) = U_X(t) \otimes U_Y(t).$$

Composite Systems

• If X and Y are graphs and we run walks on them independently, the composite quantum system is controlled by

 $U_X(t) \otimes U_Y(t).$

• The Cartesian product of X and Y has adjacency matrix $A_X \otimes I + I \otimes A_Y$. Since $A_X \otimes I$ and $I \otimes A_Y$ commute,

$$U_{X\Box Y}(t) = U_X(t) \otimes U_Y(t).$$

• Since we have pst at time $\pi/2$, we have pst at $\pi/2$ on the d-cube for all d.

Outline

$$U(t)^T = U(t).$$

1
$$U(t)^T = U(t).$$

2 $\overline{U(t)} = U(-t).$

•
$$U(t)^{T} = U(t).$$

• $\overline{U(t)} = U(-t).$
• $U(t)$ is unitary.

- $\underbrace{U(t)}^T = U(t).$
- U(t) is unitary.
- If $|U(t)_{a,b}| = 1$, then $|U(t)_{b,a}| = 1$ and so *ab*-pst implies *ba*-pst.

Automorphisms

We identify the automorphism group $\operatorname{Aut}(X)$ with the set of permutation matrices that commute with A. If $a \in V(X)$, then $\operatorname{Aut}(X)_a$ denote the subgroup of all automorphisms of X that fix a. Note that $P \in \operatorname{Aut}(X)_a$ if and only if $Pe_a = e_a$.

Lemma

If we have perfect state transfer from a to b in X, then $Aut(X)_a = Aut(X)_b$.

Automorphisms

We identify the automorphism group $\operatorname{Aut}(X)$ with the set of permutation matrices that commute with A. If $a \in V(X)$, then $\operatorname{Aut}(X)_a$ denote the subgroup of all automorphisms of X that fix a. Note that $P \in \operatorname{Aut}(X)_a$ if and only if $Pe_a = e_a$.

Lemma

If we have perfect state transfer from a to b in X, then $Aut(X)_a = Aut(X)_b$.

It follows that if n > 2, we do not have pst on K_n .

Cospectral Vertices

Lemma

If we have perfect state transfer from a to b in X, then for all $m \ge 0$,

$$e_a^T A^m e_a = e_b^T A^m e_b.$$

Cospectral Vertices

Lemma

If we have perfect state transfer from a to b in X, then for all $m \ge 0$,

$$e_a^T A^m e_a = e_b^T A^m e_b.$$

Corollary

If we have perfect state transfer from a to b in X, then $X \setminus a$ and $X \setminus b$ are cospectral.

If A is a symmetric matrix with distinct eigenvalues $\theta_1, \ldots, \theta_m$, there are symmetric idempotent matrices E_1, \ldots, E_m such that, for any function f that is defined on the eigenvalues of A, we have

$$f(A) = \sum_{r} f(\theta_r) E_r$$

If A is a symmetric matrix with distinct eigenvalues $\theta_1, \ldots, \theta_m$, there are symmetric idempotent matrices E_1, \ldots, E_m such that, for any function f that is defined on the eigenvalues of A, we have

$$f(A) = \sum_{r} f(\theta_r) E_r$$

Consequences:

$$I = \sum_r E_r.$$

If A is a symmetric matrix with distinct eigenvalues $\theta_1, \ldots, \theta_m$, there are symmetric idempotent matrices E_1, \ldots, E_m such that, for any function f that is defined on the eigenvalues of A, we have

$$f(A) = \sum_{r} f(\theta_r) E_r$$

Consequences:

If A is a symmetric matrix with distinct eigenvalues $\theta_1, \ldots, \theta_m$, there are symmetric idempotent matrices E_1, \ldots, E_m such that, for any function f that is defined on the eigenvalues of A, we have

$$f(A) = \sum_{r} f(\theta_r) E_r$$

Consequences:

- $I = \sum_r E_r.$
- $e E_r E_s = 0 \text{ if } r \neq s.$
- $U(t) = \sum_{r} e^{i\theta_{r}t} E_{r}.$

Eigenvalue Support

Definition

If $u \in V(X)$, the eigenvalue support of u is the set of eigenvalues θ_r such that $E_r e_u \neq 0$.

Eigenvalue Support

Definition

If $u \in V(X)$, the eigenvalue support of u is the set of eigenvalues θ_r such that $E_r e_u \neq 0$.

• If X is vertex transitive, the eigenvalue support of a vertex consists of all eigenvalues of X.

Eigenvalue Support

Definition

If $u \in V(X)$, the eigenvalue support of u is the set of eigenvalues θ_r such that $E_r e_u \neq 0$.

- If X is vertex transitive, the eigenvalue support of a vertex consists of all eigenvalues of X.
- The eigenvalue support of *u* is the set of poles of the rational function

$$\frac{\phi(X \setminus u, t)}{\phi(X, t)}.$$

The Ratio Condition

Lemma

If we have pst on X at u and θ_r , θ_s , θ_k , θ_ℓ belong to the eigenvalue support of u and $\theta_k \neq \theta_\ell$, then

$$\frac{\theta_r - \theta_s}{\theta_k - \theta_\ell} \in \mathbb{Q}.$$

No PST on P_4

The eigenvalues $\theta_1, \ldots, \theta_4$ of P_4 are respectively

$$\frac{1+\sqrt{5}}{2}, \ \frac{-1+\sqrt{5}}{2}, \ \frac{1-\sqrt{5}}{2}, \ \frac{-1-\sqrt{5}}{2}.$$

and

$$\frac{\theta_1 - \theta_4}{\theta_1 - \theta_2} = 1 + \sqrt{5} \notin \mathbb{Q}.$$

The eigenvalue support of 1 is the spectrum of P_4 , and so we conclude that we do not have 12-pst on P_4 . With more work we can show that pst does not occur in P_n when $n \ge 4$.

Not Much PST

Theorem

There are only finitely many connected graphs with maximum valency at most k on which perfect state transfer occurs.

Outline

Perfect State TransferPhysics 101

- State Transfer
- Basics of State Transfer

Basics PGST on Paths

Pretty Good State Transfer

Definition

We have pretty good state transfer from a to b on X if, for each $\epsilon > 0$, there a time t and scalar γ such that

 $\|U(t)e_a - \gamma e_b\| \le \epsilon.$

Constraints

If we have ab-pgst on the graph X, then:

- We have pretty good state transfer from b to a.
- $\operatorname{Aut}(X)_a = \operatorname{Aut}(X)_b$.
- $X \setminus a$ and $X \setminus b$ are cospectral.

Outline

Perfect State Transfer

- Physics 101
- State Transfer
- Basics of State Transfer

Pretty Good State Transfer Basics

PGST on Paths

PGST on P_4

Let E_1, \ldots, E_4 be the idempotents in the spectral decomposition for $A(P_4)$. Then

$$E_1 - E_2 + E_3 - E_4 = \begin{pmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{pmatrix}$$

٠

PGST on P_4

Let E_1, \ldots, E_4 be the idempotents in the spectral decomposition for $A(P_4)$. Then

$$E_1 - E_2 + E_3 - E_4 = \begin{pmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{pmatrix}$$

lf

$$\frac{a}{b}\approx \frac{1+\sqrt{5}}{2}$$

and $a \equiv 3$ and $b \equiv 2$ modulo 4, then

$$U(b\pi/2) \approx -i(E_1 - E_2 + E_3 - E_4).$$

Basics PGST on Paths

PGST and Signs

lf

$$U(t)e_a \approx \gamma e_b$$

then, since $U(t)E_r = e^{i\theta_r t}E_r$,

$$\gamma E_r e_a \approx e^{i\theta_r t} E_r e_b$$

and, since $E_r e_a$ and $E_r e_b$ are real,

$$\gamma^{-1} e^{i\theta_r t} \approx \pm 1.$$

Denote the actual sign of $\gamma^{-1}e^{i\theta_r t}$ by σ_r .

• The set $G = \{ U(t) : t \in \mathbb{R} \}$ is an abelian group, a subgroup of the unitary group.

- The set $G = \{U(t) : t \in \mathbb{R}\}$ is an abelian group, a subgroup of the unitary group.
- G is isomorphic to the subgroup H of the torus \mathbb{T}^m formed by the vectors

$$(e^{i\theta_1 t}, \dots, e^{i\theta_m t}), \qquad (t \in \mathbb{R}).$$

- The set $G = \{ U(t) : t \in \mathbb{R} \}$ is an abelian group, a subgroup of the unitary group.
- G is isomorphic to the subgroup H of the torus \mathbb{T}^m formed by the vectors

$$(e^{i\theta_1 t}, \dots, e^{i\theta_m t}), \qquad (t \in \mathbb{R}).$$

• We have *ab*-pst if $(\sigma_1 \gamma, \ldots, \sigma_m \gamma)$ lies in *H*.

- The set $G = \{ U(t) : t \in \mathbb{R} \}$ is an abelian group, a subgroup of the unitary group.
- G is isomorphic to the subgroup H of the torus \mathbb{T}^m formed by the vectors

$$(e^{i\theta_1 t}, \dots, e^{i\theta_m t}), \qquad (t \in \mathbb{R}).$$

- We have *ab*-pst if $(\sigma_1\gamma, \ldots, \sigma_m\gamma)$ lies in *H*.
- We have *ab*-pgst if $(\sigma_1\gamma, \ldots, \sigma_m\gamma)$ lies in the closure of *H*.

PGST on Paths

Lemma

If n + 1 is a prime, or twice a prime, or a power of two, then we have pgst between the end vertices of the path P_n .

PGST on Paths

Lemma

If n + 1 is a prime, or twice a prime, or a power of two, then we have pgst between the end vertices of the path P_n .

Proof.

In the stated cases the positive eigenvalues of the path, together with 1, are linearly independent over \mathbb{Q} . Now apply Kronecker.

• The eigenvalues of
$$P_n$$
 are $\theta_r = 2\cos\left(\frac{k\pi}{n+1}\right)$.

- The eigenvalues of P_n are $\theta_r = 2\cos\left(\frac{k\pi}{n+1}\right)$.
- For P_n we have $\sigma_r = (-1)^{r-1}$.

• The eigenvalues of P_n are $\theta_r = 2\cos\left(\frac{k\pi}{n+1}\right)$.

• For
$$P_n$$
 we have $\sigma_r = (-1)^{r-1}$.

• If
$$n = 3k + 2$$
 then $\theta_1 = \theta_k + \theta_{k+2}$.

• The eigenvalues of P_n are $\theta_r = 2\cos\left(\frac{k\pi}{n+1}\right)$.

• For
$$P_n$$
 we have $\sigma_r = (-1)^{r-1}$.

• If
$$n = 3k + 2$$
 then $\theta_1 = \theta_k + \theta_{k+2}$.

• So if
$$e^{i\theta_r t} \approx (-1)^{r-1} \gamma$$
, then

$$\gamma \approx e^{i\theta_1 t} = e^{i\theta_k t} e^{i\theta_{k+2} t} \approx (-1)^{k-1} \gamma (-1)^{k+1} \gamma = \gamma^2.$$

• The eigenvalues of P_n are $\theta_r = 2\cos\left(\frac{k\pi}{n+1}\right)$.

• For
$$P_n$$
 we have $\sigma_r = (-1)^{r-1}$.

• If
$$n = 3k + 2$$
 then $\theta_1 = \theta_k + \theta_{k+2}$.

• So if
$$e^{i\theta_r t} \approx (-1)^{r-1} \gamma$$
, then

$$\gamma \approx e^{i\theta_1 t} = e^{i\theta_k t} e^{i\theta_{k+2} t} \approx (-1)^{k-1} \gamma (-1)^{k+1} \gamma = \gamma^2.$$

• Therefore $\gamma = 1$.

Phases for P_n

If we have ab-pgst, then

$$U(t) = \sum_{r} e^{i\theta_r t} E_r \approx \sum_{r} (-1)^{r-1} \gamma E_r.$$

Hence $\det(U(t)) \approx \gamma^n (-1)^{\lfloor n/2 \rfloor}$.

But det(U(t)) = 1 and this yields three cases:

- $n \equiv 1 \mod 4$ and $\gamma = 1$.
- $n \equiv 3 \mod 4$ and $\gamma = -1$.
- n is even and $\gamma = \pm i$.

The Result

Theorem (Godsil, Kirkland, Severini, Smith)

We have pgst between the end vertices of P_n if and only if n + 1 is a prime, twice a prime, or a power of two.

Questions

Are there infinitely many connected cubic graphs on which pretty good state transfer occurs?

Questions

- Are there infinitely many connected cubic graphs on which pretty good state transfer occurs?
- Suppose we use the Laplacian in place of the adjacency matrix: when do we get pretty good state transfer?

The End(s)

