Intersection theorems for finite sets

Dhruv Mubayi
Department of Mathematics, Statistics and Computer Science
University of Illinois
Chicago

ICTP, Trieste, September 11, 2012
A Puzzle

Suppose that a, b, x, y are positive real numbers such that

\[
ax \leq 50 \\
ay \leq 100 \\
bx \leq 100 \\
by \leq 100
\]

Prove that

\[
ax + ay + bx + by \leq 300
\]
A Puzzle

Suppose that a, b, x, y are positive real numbers such that

- $ax \leq 50$
Suppose that a, b, x, y are positive real numbers such that

- $ax \leq 50$
- $ay \leq 100$
A Puzzle

Suppose that a, b, x, y are positive real numbers such that

- $ax \leq 50$
- $ay \leq 100$
- $bx \leq 100$

Prove that $ax + ay + bx + by \leq 300$.

Dhruv Mubayi

Intersection theorems for finite sets
A Puzzle

Suppose that a, b, x, y are positive real numbers such that

- $ax \leq 50$
- $ay \leq 100$
- $bx \leq 100$
- $by \leq 100$

Prove that $ax + ay + bx + by \leq 300$.

Dhruv Mubayi

Intersection theorems for finite sets
A Puzzle

Suppose that a, b, x, y are positive real numbers such that

- $ax \leq 50$
- $ay \leq 100$
- $bx \leq 100$
- $by \leq 100$

Prove that

$$ax + ay + bx + by \leq$$
A Puzzle

Suppose that a, b, x, y are positive real numbers such that

- $ax \leq 50$
- $ay \leq 100$
- $bx \leq 100$
- $by \leq 100$

Prove that

$$ax + ay + bx + by \leq 300.$$
The Frankl-Rödl theorem

Let M be a set. A family of sets \mathcal{A} is M-intersecting if

$|A \cap B| \in M$ for every $A, B \in \mathcal{A}$
The Frankl-Rödl theorem

Let M be a set. A family of sets \mathcal{A} is M-intersecting if

$|A \cap B| \in M$ for every $A, B \in \mathcal{A}$

General Problem of Extremal Set Theory:

Given $\mathcal{A} \subset 2^{[n]}$ and $M \subset \{0, \ldots, n\}$, what is max $|\mathcal{A}|$?

Theorem (Frankl-Rödl (1987), 250 problem of Erdős)

Suppose that $\mathcal{A} \subset 2^{[n]}$ and $|A \cap B| \neq n/4$ for all $A, B \in \mathcal{A}$, and $n > n_0$. Then $|\mathcal{A}| < (1.99)^n$.
The Frankl-Rödl theorem

Let M be a set. A family of sets \mathcal{A} is M-intersecting if

$$|A \cap B| \in M \text{ for every } A, B \in \mathcal{A}$$

General Problem of Extremal Set Theory:

Given $\mathcal{A} \subset 2^{[n]}$ and $M \subset \{0, \ldots, n\}$, what is $\max |\mathcal{A}|$?

As M gets larger, $\max |\mathcal{A}|$ gets larger.
The Frankl-Rödl theorem

Let M be a set. A family of sets \mathcal{A} is M-intersecting if

$|A \cap B| \in M$ for every $A, B \in \mathcal{A}$

General Problem of Extremal Set Theory:

Given $\mathcal{A} \subset 2^{[n]}$ and $M \subset \{0, \ldots, n\}$, what is $\max |\mathcal{A}|$?

As M gets larger, $\max |\mathcal{A}|$ gets larger.

What if M misses only one number?
The Frankl-Rödl theorem

Let M be a set. A family of sets \mathcal{A} is M-intersecting if

$$|A \cap B| \in M \text{ for every } A, B \in \mathcal{A}$$

General Problem of Extremal Set Theory:

Given $\mathcal{A} \subset 2^{[n]}$ and $M \subset \{0, \ldots, n\}$, what is $\max |\mathcal{A}|$?

As M gets larger, $\max |\mathcal{A}|$ gets larger.

What if M misses only one number?

Theorem (Frankl-Rödl (1987), 250 problem of Erdős)

Suppose that $\mathcal{A} \subset 2^{[n]}$ and $|A \cap B| \neq n/4$ for all $A, B, \in \mathcal{A}$, and $n > n_0$. Then

$$|\mathcal{A}| < (1.99)^n.$$
Coding theory

- Q is an alphabet
- $q = |Q|$
- $C \subset Q^n$ is a code
Q is an alphabet

$q = |Q|$

$C \subset Q^n$ is a code

Hamming distance between codewords $C = (c_1, \ldots, c_n)$ and $D = (d_1, \ldots, d_n)$ is

$$d(C, D) := |\{i : c_i \neq d_i\}|$$
Q is an alphabet

\[q = |Q| \]

\(C \subset Q^n \) is a code

Hamming distance between codewords \(C = (c_1, \ldots, c_n) \) and \(D = (d_1, \ldots, d_n) \) is

\[d(C, D) := |\{ i : c_i \neq d_i \}| \]

\[d(C) = \{ d(C, D) : C, D \in C, C \neq D \} \]
Problem. Find upper and lower bounds for $\max |C|$ given $d(C)$.

Theorem (Blokhuis, Frankl (1984))
Suppose that p is prime and $d(C)$ is covered by t nonzero residue classes mod p. Then

$$|C| \leq t \sum_{i=0}^{\frac{n-1}{q}} \binom{n}{i}.$$

If $t > (1 + \varepsilon) \frac{n}{q}$, then concentration of the binomial distribution shows that the bound above is $q(1 - o(1))n$, which is rather weak.

Theorem (Frankl-Rödl (1987))
Let $0 < \delta < \frac{1}{2}$ and $\delta n < d < (1 - \delta)n$, and d is even if $q = 2$. If $d \not\in d(C)$, then

$$|C| < (q - \varepsilon)n,$$

where $\varepsilon = \varepsilon(\delta, q) > 0$.

Dhruv Mubayi
Intersection theorems for finite sets
Problem. Find upper and lower bounds for $\max |C|$ given $d(C)$.

Theorem (Blokhuis, Frankl (1984))

Suppose that p is prime and $d(C)$ is covered by t nonzero residue classes mod p. Then

$$|C| \leq \sum_{i=0}^{t} (q - 1)^{n-i} \binom{n}{i}.$$
Problem. Find upper and lower bounds for $\max |C|$ given $d(C)$.

Theorem (Blokhuis, Frankl (1984))

Suppose that p is prime and $d(C)$ is covered by t nonzero residue classes mod p. Then

$$|C| \leq \sum_{i=0}^{t} (q-1)^{n-i} \binom{n}{i}.$$

If $t > (1 + \varepsilon)n/q$, then concentration of the binomial distribution shows that the bound above is $q^{(1-o(1))n}$, which is rather weak.
Problem. Find upper and lower bounds for $\max |C|$ given $d(C)$.

Theorem (Blokhuis, Frankl (1984))

Suppose that p is prime and $d(C)$ is covered by t nonzero residue classes mod p. Then

$$|C| \leq \sum_{i=0}^{t} (q - 1)^{n-i} \binom{n}{i}.$$

If $t > (1 + \varepsilon)n/q$, then concentration of the binomial distribution shows that the bound above is $q^{(1-o(1))n}$, which is rather weak.

Theorem (Frankl-Rödl (1987))

Let $0 < \delta < 1/2$ and $\delta n < d < (1 - \delta)n$, and d is even if $q = 2$. If $d \not\in d(C)$, then $|C| < (q - \varepsilon)^n$, where $\varepsilon = \varepsilon(\delta, q) > 0$.

Dhruv Mubayi
Intersection theorems for finite sets
Borsuk’s Problem - decreasing the diameter

The Diameter of a set $S \subset \mathbb{R}^n$ is $\sup_{x, y \in S} \text{dist}(x, y)$.

Conjecture

Every bounded $S \subset \mathbb{R}^d$ can be partitioned into $d + 1$ sets S_1, \ldots, S_{d+1} of smaller diameter.

If true, then sharp by letting S be the vertices of a regular simplex, for example, $S = \{e_1, \ldots, e_d, v\}$ where e_i is the unit vector with 1 in position i, and $v = 1 - \sqrt{n+1} - \frac{1}{n}(1, \ldots, 1)$.

Dhruv Mubayi

Intersection theorems for finite sets
Borsuk’s Problem - decreasing the diameter

The Diameter of a set $S \subset \mathbb{R}^n$ is $\sup_{x,y \in S} \text{dist}(x,y)$
The Diameter of a set $S \subset R^n$ is $\sup_{x,y \in S} \text{dist}(x, y)$

Conjecture

Every bounded $S \subset R^d$ can be partitioned into $d + 1$ sets S_1, \ldots, S_{d+1} of smaller diameter.
Borsuk’s Problem - decreasing the diameter

The Diameter of a set $S \subset R^n$ is $\sup_{x,y \in S} \text{dist}(x, y)$

Conjecture

Every bounded $S \subset R^d$ can be partitioned into $d + 1$ sets S_1, \ldots, S_{d+1} of smaller diameter.

If true, then sharp by letting S be the vertices of a regular simplex, for example,

$$S = \{e_1, \ldots, e_d, v\}$$

where e_i is the unit vector with 1 in position i, and

$$v = \frac{1 - \sqrt{n+1}}{n}(1, \ldots, 1).$$
Borsuk (1932) \[d = 2 \]
Results

- Borsuk (1932) \(d = 2 \)
- Eggleston (1955) \(d = 3 \)
Results

- Borsuk (1932) \(d = 2 \)
- Eggleston (1955) \(d = 3 \)
- Hadwiger (1946) for all \(d \) if \(S \) is smooth and convex
Results

- Borsuk (1932) \(d = 2 \)
- Eggleston (1955) \(d = 3 \)
- Hadwiger (1946) for all \(d \) if \(S \) is smooth and convex
- Riesling (1971) for all \(d \) if \(S \) is centrally symmetric
Results

- **Borsuk (1932)** \(d = 2 \)
- **Eggleston (1955)** \(d = 3 \)
- **Hadwiger (1946)** for all \(d \) if \(S \) is smooth and convex
- **Riesling (1971)** for all \(d \) if \(S \) is centrally symmetric
- **Dekster (1995)** for all \(d \) if \(S \) is a body of revolution

Schramm (1988) number of pieces is at most \(\left(\frac{\sqrt{3}}{2} + \epsilon \right) d \), for all \(\epsilon > 0 \) and \(d > d(\epsilon) \).
Results

- Borsuk (1932) \(d = 2 \)
- Eggleston (1955) \(d = 3 \)
- Hadwiger (1946) for all \(d \) if \(S \) is smooth and convex
- Riesling (1971) for all \(d \) if \(S \) is centrally symmetric
- Dekster (1995) for all \(d \) if \(S \) is a body of revolution
- Schramm (1988) number of pieces is at most \((\sqrt{3/2} + \epsilon)^d \), for all \(\epsilon > 0 \) and \(d > d(\epsilon) \).
Counterexamples

Theorem (Kahn-Kalai (1993))

For large d, there exists a bounded $S \subset \mathbb{R}^d$ such that every partition of S into pieces of smaller diameter has at least $(1.2)^{\sqrt{d}}$ parts. In particular, Borsuk’s conjecture fails for $d = 1325$ and each $d > 2014$.

Proof uses Frankl-Wilson (or Frankl-Rödl) theorem.
Counterexamples

Theorem (Kahn-Kalai (1993))

For large d, there exists a bounded $S \subseteq \mathbb{R}^d$ such that every partition of S into pieces of smaller diameter has at least $(1.2)^{\sqrt{d}}$ parts. In particular, Borsuk’s conjecture fails for $d = 1325$ and each $d > 2014$.

Proof uses Frankl-Wilson (or Frankl-Rödl) theorem.

Conjecture

There exists $c > 1$ such that for all d, there exists a bounded $S \subseteq \mathbb{R}^d$ such that every partition of S into pieces of smaller diameter has at least c^d parts.
More Geometry

How many vectors of the cube in \mathbb{R}^d can be pairwise non-orthogonal?

Conjecture (Larman-Rogers (1972))

Suppose that $d = 4n$. Does every set of $2^{d/2} \pm 1$ vectors in \mathbb{R}^d contain a pair of orthogonal vectors?

Theorem (Frankl-Rödl (1987))

Given $r \geq 2$ and $n = d/4 \geq r$, there exists $\varepsilon = \varepsilon(r) > 0$ such that every set of more than $(2^{r} - \varepsilon)$ vectors in \mathbb{R}^d contains r pairwise orthogonal vectors.
How many vectors of the cube in \mathbb{R}^d can be pairwise non-orthogonal?

Conjecture (Larman-Rogers (1972))

Suppose that $d = 4n$. Does every set of $2^d/d^2 \pm 1$ vectors in \mathbb{R}^d contain a pair of orthogonal vectors?
How many vectors of the cube in R^d can be pairwise non-orthogonal?

Conjecture (Larman-Rogers (1972))

Suppose that $d = 4n$. Does every set of $2^d/d^2 \pm 1$ vectors in R^d contain a pair of orthogonal vectors?

Theorem (Frankl-Rödl (1987))

Given $r \geq 2$ and $n = d/4 \geq r$, there exists $\varepsilon = \varepsilon(r) > 0$ such that every set of more than $(2 - \varepsilon)^d \pm 1$ vectors in R^d contains r pairwise orthogonal vectors.
A weak delta system is a collection of sets \(A_1, \ldots, A_r \) such that

\[|A_i \cap A_j| = |A_1 \cap A_2| \]

for \(1 \leq i < j \leq r \).
A weak delta system is a collection of sets A_1, \ldots, A_r such that

$$|A_i \cap A_j| = |A_1 \cap A_2|$$

for $1 \leq i < j \leq r$.

Conjecture (Erdős-Szemerédi (1978))

For every $\varepsilon > 0$, there is $n_0 = n_0(\varepsilon)$ such that if $n > n_0$ and $\mathcal{A} \subset 2^{[n]}$ with $|\mathcal{A}| > (2 - \varepsilon)^n$, then \mathcal{A} contains a weak delta system of size 3.
Theorem (Frankl–Rödl (1987))

Fix $r \geq 3$. Then there are $\eta = \eta(r)$ and $\varepsilon = \varepsilon(r)$ such that if $t = (1/4 \pm \eta)n$ and $A \subseteq 2^{[n]}$ with $|A| > (2 - \varepsilon)^n$, then there are $A_1, \ldots, A_r \in A$ with

$$|A_i \cap A_j| = t$$

for $1 \leq i < j \leq r$.

Conjecture (Erdős–Szemerédi (1978))

There exists $\varepsilon > 0$ such that if n is sufficiently large and $A \subseteq 2^{[n]}$ with $|A| > (2 - \varepsilon)^n$, then A contains a delta system (not weak!) of size 3.

Recent work of Alon–Shpilka–Umans gives connections between this conjecture and algorithms for Matrix multiplication.
Theorem (Frankl-Rödl (1987))

Fix $r \geq 3$. Then there are $\eta = \eta(r)$ and $\varepsilon = \varepsilon(r)$ such that if $t = (1/4 \pm \eta)n$ and $A \subset 2^{[n]}$ with $|A| > (2 - \varepsilon)^n$, then there are $A_1, \ldots, A_r \in A$ with

$$|A_i \cap A_j| = t$$

for $1 \leq i < j \leq r$.

Conjecture (Erdős-Szemerédi (1978))

There exists $\varepsilon > 0$ such that if n is sufficiently large and $A \subset 2^{[n]}$ with $|A| > (2 - \varepsilon)^n$, then A contains a delta system (not weak!) of size 3.
Theorem (Frankl-Rödl (1987))

Fix \(r \geq 3 \). Then there are \(\eta = \eta(r) \) and \(\varepsilon = \varepsilon(r) \) such that if \(t = (1/4 \pm \eta)n \) and \(A \subset 2^{[n]} \) with \(|A| > (2 - \varepsilon)^n \), then there are \(A_1, \ldots, A_r \in A \) with

\[
|A_i \cap A_j| = t
\]

for \(1 \leq i < j \leq r \).

Conjecture (Erdős-Szemerédi (1978))

There exists \(\varepsilon > 0 \) such that if \(n \) is sufficiently large and \(A \subset 2^{[n]} \) with \(|A| > (2 - \varepsilon)^n \), then \(A \) contains a delta system (not weak!) of size 3.

Recent work of Alon-Shpilka-Umans gives connections between this conjecture and algorithms for Matrix multiplication.
Computer Science Applications

- Communication Complexity (Sgall 1999)
- Quantum Computing (Buhrman-Cleve-Wigderson 1998)
The Frankl-Rödl theorem

Theorem (Frankl-Rödl (1987))

Let $0 < \eta < \frac{1}{4}$ and $\eta n < t < \left(\frac{1}{2} - \eta\right)n$. There is $\epsilon_0 = \epsilon_0(\eta)$ such that if $A \subset \mathcal{P}[n]$ and $|A \cap B| \neq t$ for all $A, B \in A$, then $|A| < \left(2 - \epsilon_0\right)n$.

How big is ϵ_0 (problem of Erdős)? Frankl-Rödl show it is about $\left(\frac{t}{n}\right)^{2/3}$.
Theorem (Frankl-Rödl (1987))

Let $0 < \eta < 1/4$ and $\eta n < t < (1/2 - \eta)n$. There is $\varepsilon_0 = \varepsilon_0(\eta)$ such that if $\mathcal{A} \subset 2^n$ and $|A \cap B| \neq t$ for all $A, B \in \mathcal{A}$, then

$$|\mathcal{A}| < (2 - \varepsilon_0)^n.$$
Theorem (Frankl-Rödl (1987))

Let $0 < \eta < 1/4$ and $\eta n < t < (1/2 - \eta)n$. There is $\varepsilon_0 = \varepsilon_0(\eta)$ such that if $\mathcal{A} \subset 2^{[n]}$ and $|A \cap B| \neq t$ for all $A, B \in \mathcal{A}$, then

$$|\mathcal{A}| < (2 - \varepsilon_0)^n.$$

How big is ε_0 (problem of Erdős)?
The Frankl-Rödl theorem

Theorem (Frankl-Rödl (1987))

Let $0 < \eta < 1/4$ and $\eta n < t < (1/2 - \eta)n$. There is $\varepsilon_0 = \varepsilon_0(\eta)$ such that if $\mathcal{A} \subset 2^{[n]}$ and $|A \cap B| \neq t$ for all $A, B \in \mathcal{A}$, then

$$|\mathcal{A}| < (2 - \varepsilon_0)^n.$$

How big is ε_0 (problem of Erdős)?

Frankl-Rödl show it is about $(t/n)^2/2$.

Katona’s Theorem

Suppose we forbid all numbers less than $t + 1$ as intersection sizes. Define $\mathcal{A}(n, t)$ to be

\[
\{ A \subseteq [n] : |A| \geq (n + t + 1)/2 \} \quad \text{if } n + t \text{ is odd}
\]

\[
\{ A \subseteq [n] : |A \cap ([n] - \{1\})| \geq (n + t)/2 \} \quad \text{if } n + t \text{ is even.}
\]
Katona’s Theorem

Suppose we forbid all numbers less than $t + 1$ as intersection sizes.

Define $\mathcal{A}(n, t)$ to be

$$
\begin{align*}
\{ A \subset [n] : |A| \geq (n + t + 1)/2 \} & \quad \text{if } n + t \text{ is odd} \\
\{ A \subset [n] : |A \cap ([n] - \{1\})| \geq (n + t)/2 \} & \quad \text{if } n + t \text{ is even}
\end{align*}
$$

Theorem (Katona)

Let $\mathcal{A} \subset 2^{[n]}$ and suppose that $|A \cap A'| > t$ for every $A, A' \in \mathcal{A}$. Then

$$|\mathcal{A}| \leq |\mathcal{A}(n, t)|.$$

Moreover, if $t \geq 1$ and $|\mathcal{A}| = |\mathcal{A}(n, t)|$, then $\mathcal{A} = \mathcal{A}(n, t)$.
The binary entropy function is

\[H(x) = -x \log_2 x - (1 - x) \log_2 (1 - x). \]
The binary entropy function is

\[H(x) = -x \log_2 x - (1 - x) \log_2 (1 - x). \]

Conjecture (M-Rödl)

Let \(0 < \eta < 1/2 \), \(\eta n < t < (1/2 - \eta)n \), and \(\mathcal{A} \subset 2^{[n]} \) with \(|A \cap B| \neq t \) for all \(A, B \in \mathcal{A} \). Then

\[|\mathcal{A}| \leq \left(\frac{n}{(n + t)/2} \right)^{2^{o(n)}} = 2^{H\left(\frac{1}{2} + \frac{t}{2n}\right)n + o(n)}. \]
The binary entropy function is

\[H(x) = -x \log_2 x - (1 - x) \log_2 (1 - x). \]

Conjecture (M-Rödl)

Let \(0 < \eta < 1/2\), \(\eta n < t < (1/2 - \eta)n\), and \(\mathcal{A} \subset 2^{[n]}\) with \(|A \cap B| \neq t\) for all \(A, B \in \mathcal{A}\). Then

\[|\mathcal{A}| \leq \left(\frac{n}{(n + t)/2} \right) 2^{o(n)} = 2^{H\left(\frac{1}{2} + \frac{t}{2n}\right)n + o(n)}. \]

If true, the conjecture is sharp as shown by \(\mathcal{A} = \binom{[n]}{>(n+t)/2}\).
The binary entropy function is

\[H(x) = -x \log_2 x - (1-x) \log_2 (1-x). \]

Conjecture (M-Rödl)

Let \(0 < \eta < 1/2 \), \(\eta n < t < (1/2 - \eta)n \), and \(\mathcal{A} \subseteq 2^{[n]} \) with \(|A \cap B| \neq t \) for all \(A, B \in \mathcal{A} \). Then

\[|\mathcal{A}| \leq \left(\begin{array}{c} n \\ (n+t)/2 \end{array} \right) 2^{o(n)} = 2^{H \left(\frac{1}{2} + \frac{t}{2n} \right)n + o(n)}. \]

If true, the conjecture is sharp as shown by \(\mathcal{A} = \binom{[n]}{> (n+t)/2} \).

For fixed \(t \) and \(n > n_0(t) \), conjectured by Frankl and proved by Frankl-Füredi.
Theorem (M-Rödl)

Let $0 < \varepsilon < \frac{1}{5}$ be fixed, $n > n_0(\varepsilon)$, $\varepsilon n < t < \frac{n}{5}$ and $A \subset 2^{[n]}$.

Suppose that $|A \cap B| \not\in (t, t + n_0^{25})$ for all $A, B \in A$.

Then $|A| < n \left(\frac{n + t}{n/2} \right)$.

The constant 0.525 is a consequence of the result of Baker-Harman-Pintz that there is a prime in every interval $(s - s_0^{0.525}, s)$ as long as s is sufficiently large.

If we assume the Riemann Hypothesis, then 0.525 could be improved to $\frac{1}{2} + o(1)$ using a result of Cramér.
Forbidding a small interval

Theorem (M-Rödl)

Let $0 < \varepsilon < 1/5$ be fixed, $n > n_0(\varepsilon)$, $\varepsilon n < t < n/5$ and $\mathcal{A} \subset 2^{[n]}$. Suppose that

$$|A \cap B| \notin (t, t + n^{0.525})$$

for all $A, B \in \mathcal{A}$. Then

$$|\mathcal{A}| < n\left(\binom{n}{(n + t)/2}\right).$$
Forbidding a small interval

Theorem (M-Rödl)

Let $0 < \varepsilon < 1/5$ be fixed, $n > n_0(\varepsilon)$, $\varepsilon n < t < n/5$ and $\mathcal{A} \subset 2^{[n]}$. Suppose that

$$|A \cap B| \notin (t, t + n^{0.525})$$

for all $A, B \in \mathcal{A}$. Then

$$|\mathcal{A}| < n\left(\frac{n}{(n + t)/2}\right).$$

The constant 0.525 is a consequence of the result of Baker-Harman-Pintz that there is a prime in every interval $(s - s^{0.525}, s)$ as long as s is sufficiently large.
Forbidding a small interval

Theorem (M-Rödl)

Let $0 < \varepsilon < 1/5$ be fixed, $n > n_0(\varepsilon)$, $\varepsilon n < t < n/5$ and $\mathcal{A} \subset 2^{[n]}$. Suppose that

$$|A \cap B| \not\in (t, t + n^{0.525})$$

for all $A, B \in \mathcal{A}$. Then

$$|\mathcal{A}| < n\left(\frac{n}{(n + t)/2}\right).$$

- The constant 0.525 is a consequence of the result of Baker-Harman-Pintz that there is a prime in every interval $(s - s^{0.525}, s)$ as long as s is sufficiently large.

- If we assume the Riemann Hypothesis, then 0.525 could be improved to $1/2 + o(1)$ using a result of Cramér.
More restricted intersections

Question. Can the upper bound for M-intersecting families be improved for more restrictive M?

\[\text{Eventown Theorem} \]

Suppose that $A \subset 2^{[n]}$ such that $|A|$ is even for every $A \in A$, $|A \cap B|$ is even for every $A, B \in A$.

Then $|A| \leq 2 \left\lfloor \frac{n}{2} \right\rfloor + 1$.

\[\text{Theorem (Berlekamp (1965), Graver (1975))} \]

Suppose that $A \subset 2^{[n]}$ is M-intersecting, where $M = \{0, 2, 4, \ldots\}$.

In other words, $|A \cap B|$ is even for all $A, B \in A$.

Then $|A| \leq 2 \left\lfloor \frac{n}{2} \right\rfloor + 1$.
Question. Can the upper bound for M-intersecting families be improved for more restrictive M?

Theorem (Berlekamp (1965), Graver (1975))

Suppose that $\mathcal{A} \subset 2^{[n]}$ is M-intersecting, where $M = \{0, 2, 4, \ldots \}$. In other words, $|A \cap B|$ is even for all $A, B \in \mathcal{A}$. Then $|\mathcal{A}| \leq 2^{\lfloor n/2 \rfloor} + 1$.
More restricted intersections

Question. Can the upper bound for M-intersecting families be improved for more restrictive M?

Theorem (Berlekamp (1965), Graver (1975))

Suppose that $\mathcal{A} \subset 2^{[n]}$ is M-intersecting, where $M = \{0, 2, 4, \ldots\}$. In other words, $|A \cap B|$ is even for all $A, B \in \mathcal{A}$. Then $|\mathcal{A}| \leq 2^{\lceil n/2 \rceil} + 1$.

Eventown Theorem

Suppose that $\mathcal{A} \subset 2^{[n]}$ such that

- $|A|$ is even for every $A \in \mathcal{A}$
- $|A \cap B|$ is even for every $A, B \in \mathcal{A}$

Then $|\mathcal{A}| \leq 2^{\lceil n/2 \rceil}$.
Proof of Eventown:

- To each $A \in \mathcal{A}$, associate its incidence vector $\nu_A = (\nu_1, \ldots, \nu_n)$ where

$$
\nu_i = \begin{cases}
1 & i \in A \\
0 & i \notin A
\end{cases}
$$

Let S be the subspace of \mathbb{F}^n_2 spanned by $\{\nu_A\}_{A \in \mathcal{A}}$. S is totally isotropic (meaning $x \cdot y = 0$ for $x, y \in S$) and

$$
\dim(S) \leq \left\lfloor \frac{n}{2} \right\rfloor
$$

So

$$
|\mathcal{A}| \leq |S| \leq 2^{\left\lfloor \frac{n}{2} \right\rfloor} = (1.4142^n...)
$$
Proof of Eventown:

- To each \(A \in \mathcal{A} \), associate its incidence vector \(v_A = (v_1, \ldots, v_n) \) where

\[
v_i = \begin{cases}
1 & i \in A \\
0 & i \notin A
\end{cases}
\]

- Let \(S \) be the subspace of \(F_2^n \) spanned by \(\{v_A\}_{A \in \mathcal{A}} \).
A Proof

Proof of Eventown:

- To each $A \in \mathcal{A}$, associate its incidence vector $v_A = (v_1, \ldots, v_n)$ where
 \[
 v_i = \begin{cases}
 1 & i \in A \\
 0 & i \notin A
 \end{cases}
 \]

- Let S be the subspace of \mathbb{F}_2^n spanned by $\{v_A\}_{A \in \mathcal{A}}$.
 - S is totally isotropic (meaning $x \cdot y = 0$ for $x, y \in S$)
 - $\text{dim}(S) \leq \lfloor n/2 \rfloor$
Proof of Eventown:

- To each $A \in \mathcal{A}$, associate its incidence vector $v_A = (v_1, \ldots, v_n)$ where

 $$v_i = \begin{cases}
 1 & i \in A \\
 0 & i \notin A
 \end{cases}$$

- Let S be the subspace of F_2^n spanned by $\{v_A\}_{A \in \mathcal{A}}$.
 - S is totally isotropic (meaning $x \cdot y = 0$ for $x, y \in S$)
 - $\dim(S) \leq \lceil n/2 \rceil$

- So $|\mathcal{A}| \leq |S| \leq 2^{\lceil n/2 \rceil} = (1.4142..)^n$
Between the extremes

Frankl-Rödl: $M = \{0, 1, \ldots, n\} \setminus \{n/4\} \quad - \quad |A| < (1.99)^n$
Between the extremes

Frankl-Rödl: \(M = \{0, 1, \ldots, n\} \setminus \{n/4\} \quad - \quad |A| < (1.99)^n \)

Eventown: \(M = \{0, 2, \ldots\} \quad - \quad |A| < (1.4142\ldots)^n \)
Between the extremes

Frankl-Rödl: $M = \{0, 1, \ldots, n\} \setminus \{n/4\} \quad - \quad |A| < (1.99)^n$

Eventown: $M = \{0, 2, \ldots\} \quad - \quad |A| < (1.4142..)^n$

What about M that are in between these two extremes?
Between the extremes

Frankl-Rödl: \(M = \{0, 1, \ldots, n\} \setminus \{n/4\} \quad \text{−} \quad |A| < (1.99)^n \)

Eventown: \(M = \{0, 2, \ldots\} \quad \text{−} \quad |A| < (1.4142\ldots)^n \)

What about \(M \) that are in between these two extremes?

Definition

The length \(\ell(M) \) of a set \(M \) is the maximum number of consecutive integers contained in \(M \).
Between the extremes

Frankl-Rödl: \(M = \{0, 1, \ldots, n\} \setminus \{n/4\} \quad − \quad |A| < (1.99)^n \)

Eventown: \(M = \{0, 2, \ldots\} \quad − \quad |A| < (1.4142..)^n \)

What about \(M \) that are in between these two extremes?

Definition

The length \(\ell(M) \) of a set \(M \) is the maximum number of consecutive integers contained in \(M \).

\[\ell(M) \leq \ell \quad \text{if and only if} \quad \overline{M} \quad \text{is} \quad (\ell + 1)\text{-syndetic}. \]
Theorem (M-Rödl)

Let $M \subset \{0, 1, \ldots, n\}$ with $\ell(M) = \ell$. Suppose that $\mathcal{A} \subset 2^{[n]}$ is an M-intersecting family. Then

$$|\mathcal{A}| < 1.622^n \times 100^\ell.$$
Theorem (M-Rödl)

Let $M \subset \{0, 1, \ldots, n\}$ with $\ell(M) = \ell$. Suppose that $\mathcal{A} \subset 2^{[n]}$ is an M-intersecting family. Then

$$|\mathcal{A}| < 1.622^n \times 100^\ell.$$

The result is nontrivial as long as, $\ell < n/10$ or so.
Theorem (M-Rödl)

Let $M \subset \{0, 1, \ldots, n\}$ with $\ell(M) = \ell$. Suppose that $\mathcal{A} \subset 2^n$ is an M-intersecting family. Then

$$|\mathcal{A}| < 1.622^n \times 100^\ell.$$

- The result is nontrivial as long as, $\ell < n/10$ or so
- For example, if $[n] \setminus M = \{0, n/10^4, 2n/10^4, \ldots, \}$, then

$$|\mathcal{A}| < 1.63^n.$$
Bounds for small $\ell(M)$

Theorem (M-Rödl)

Let $M \subseteq \{0, 1, \ldots, n\}$ with $\ell(M) = \ell$. Suppose that $A \subseteq 2^{[n]}$ is an M-intersecting family. Then

$$|A| < 1.622^n \times 100^\ell.$$

- The result is nontrivial as long as, $\ell < n/10$ or so
- For example, if $[n] \setminus M = \{0, n/10^4, 2n/10^4, \ldots, \}$, then

 $$|A| < 1.63^n.$$

- The 1.622 is probably not sharp, just a result of the proof
Theorem (M-Rödl)

Let $M \subset \{0, 1, \ldots, n\}$ with $\ell(M) = \ell$. Suppose that $\mathcal{A} \subset 2^{[n]}$ is an M-intersecting family. Then

$$|\mathcal{A}| < 2^{n/2 + \ell \log^2 n}.$$
Bounds for very small $\ell(M)$

Theorem (M-Rödl)

Let $M \subset \{0, 1\ldots, n\}$ with $\ell(M) = \ell$. Suppose that $\mathcal{A} \subset 2^{[n]}$ is an M-intersecting family. Then

$$|\mathcal{A}| < 2^{n/2 + \ell \log^2 n}.$$

- For $\ell = o(n/ \log^2 n)$, this bound better than the first one; it is

 $$|\mathcal{A}| < 2^{n/2 + o(n)}.$$
Theorem (M-Rödl)

Let $M \subset \{0, 1, \ldots, n\}$ with $\ell(M) = \ell$. Suppose that $\mathcal{A} \subset 2^{[n]}$ is an M-intersecting family. Then

$$|\mathcal{A}| < 2^{n/2 + \ell \log^2 n}.$$

- For $\ell = o(n/\log^2 n)$, this bound better than the first one; it is

 $$|\mathcal{A}| < 2^{n/2 + o(n)}.$$

- This is the first non-linear-algebraic proof of an asymptotic version of the Eventown Theorem; it applies in more general scenarios though doesn’t give bounds as precise as $2^{n/2}$.

Dhruv Mubayi
Intersection theorems for finite sets
Proof Methods

- Prove the result for pairs of families \((A, B)\). This facilitates an induction argument.
Proof Methods

- Prove the result for pairs of families \((A, B)\). This facilitates an induction argument.

- \((A, B)\) is \(M\)-intersecting if

\[
|A \cap B| \in M
\]

for all \(A \in \mathcal{A}\) and \(B \in \mathcal{B}\)

\[\text{Theorem (M-Rödl)}\]

Let \(M \subset \{0, 1, \ldots, n\}\) with \(\ell(M) = \ell\). Suppose that \((A, B)\) is an \(M\)-intersecting pair of families in \(2^{[n]}\). Then

\[
|A| \cdot |B| < \min\{2 \cdot 631 \cdot n \times 10^4 \ell, 2^n + 2 \ell \log_2 n\}
\]
Proof Methods

- Prove the result for pairs of families \((A, B)\). This facilitates an induction argument.
- \((A, B)\) is \(M\)-intersecting if

\[
|A \cap B| \in M
\]

for all \(A \in A\) and \(B \in B\).

Theorem (M-Rödl)

Let \(M \subset \{0, 1 \ldots, n\} \) with \(\ell(M) = \ell\). Suppose that \((A, B)\) is an \(M\)-intersecting pair of families in \(2^{[n]}\). Then

\[
|A||B| < \min \left\{ 2.631^n \times 10^{4\ell}, \ 2^{n+2\ell \log^2 n} \right\}.
\]
Definition (Sgall)

Say that a function $h : 2^N \rightarrow N \cup \{\infty\}$ is a height function if the following four properties hold:

1. \[h(L) = 0 \text{ if and only if } L = \emptyset, \]
2. \[h(L) < \infty \text{ and } L' \subset L \Rightarrow h(L') \leq h(L), \]
3. \[h(L) < \infty \text{ and } L' \subset L - 1 \Rightarrow h(L') \leq h(L), \]
4. \[h(L), h(L') \leq s < \infty \Rightarrow \begin{cases} h(L' \cap L) \leq s - 1 \text{ or } h(L' \cap (L - 1)) \leq s - 1. \end{cases} \]
Say that a function $h : 2^N \rightarrow N \cup \{\infty\}$ is a height function if the following four properties hold:

- (A1) $h(L) = 0$ if and only if $L = \emptyset$,
- (A2) if $h(L) < \infty$ and $L' \subset L$, then $h(L') \leq h(L)$,
- (A3) if $h(L) < \infty$ and $L' \subset L - 1$, then $h(L') \leq h(L)$,
- (A4) if $h(L)$, $h(L') \leq s < \infty$, then either $h(L' \cap L) \leq s - 1$ or $h(L' \cap (L - 1)) \leq s - 1$.

Definition (Sgall)

Height functions
Definition (Sgall)

Say that a function \(h : 2^N \to N \cup \{\infty\} \) is a *height function* if the following four properties hold:

1. **(A1)** \(h(L) = 0 \) if and only if \(L = \emptyset \),
2. **(A2)** if \(h(L) < \infty \) and \(L' \subseteq L \), then \(h(L') \leq h(L) \),
3. **(A3)** if \(h(L) < \infty \) and \(L' \subseteq L - 1 \), then \(h(L') \leq h(L) \),
4. **(A4)** if \(h(L), h(L') \leq s < \infty \), then either \(h(L' \cap L) \leq s - 1 \) or \(h(L' \cap (L - 1)) \leq s - 1 \).
Height functions

Definition (Sgall)

Say that a function \(h : 2^N \to N \cup \\{\infty\} \) is a height function if the following four properties hold:

(A1) \(h(L) = 0 \) if and only if \(L = \emptyset \),

(A2) if \(h(L) < \infty \) and \(L' \subset L \), then \(h(L') \leq h(L) \),
Definition (Sgall)

Say that a function $h : 2^N \to N \cup \{\infty\}$ is a height function if the following four properties hold:

(A1) $h(L) = 0$ if and only if $L = \emptyset$,

(A2) if $h(L) < \infty$ and $L' \subset L$, then $h(L') \leq h(L)$,

(A3) if $h(L) < \infty$ and $L' \subset L - 1$, then $h(L') \leq h(L)$,
Definition (Sgall)

Say that a function \(h : 2^N \rightarrow N \cup \{\infty\} \) is a height function if the following four properties hold:

(A1) \(h(L) = 0 \) if and only if \(L = \emptyset \),

(A2) if \(h(L) < \infty \) and \(L' \subset L \), then \(h(L') \leq h(L) \),

(A3) if \(h(L) < \infty \) and \(L' \subset L - 1 \), then \(h(L') \leq h(L) \),

(A4) if \(h(L), h(L') \leq s < \infty \), then either

\[
 h(L' \cap L) \leq s - 1 \quad \text{or} \quad h(L' \cap (L - 1)) \leq s - 1.
\]
Sgall’s theorem

Theorem (Sgall (1999))

Suppose that (A, B) is an M-intersecting pair of families in $2^{[n]}$ and $h(M) \leq s \leq n + 1$. Then

$$|A||B| \leq 2^{n+s-1} \binom{n}{s-1}.$$
Sgall’s theorem

Theorem (Sgall (1999))

Suppose that \((A, B)\) is an \(M\)-intersecting pair of families in \(2^{[n]}\) and \(h(M) \leq s \leq n + 1\). Then

\[
|A||B| \leq 2^{n+s-1} \binom{n}{s-1}.
\]

Theorem (M-Rödl)

There exists a height function \(h\) such that for every \(M \subset \{0, 1, \ldots, n\}\),

\[
h(M) \leq 1 + 2\ell(M) \log n.
\]

Applying this bound in Sgall’s Theorem yields

\[
|A||B| < 2^{n+2\ell \log^2 n}.
\]
The Height function

- \(h(\emptyset) = 0 \)
The Height function

- $h(\emptyset) = 0$

- Suppose that $L \neq \emptyset$ and h has been defined on all sets of size less than $|L|$.
The Height function

- $h(\emptyset) = 0$

- Suppose that $L \neq \emptyset$ and h has been defined on all sets of size less than $|L|

- $T(L) = \{M : M \notin \{L, L+1\} \text{ and } 0 < |M| \leq |L|\}$
The Height function

- \(h(\emptyset) = 0 \)

- Suppose that \(L \neq \emptyset \) and \(h \) has been defined on all sets of size less than \(|L| \)

- \(T(L) = \{ M : M \notin \{L, L+1\} \text{ and } 0 < |M| \leq |L| \} \)

- \(A = h(L \cap (L + 1)) \)
The Height function

- \(h(\emptyset) = 0 \)

- Suppose that \(L \neq \emptyset \) and \(h \) has been defined on all sets of size less than \(|L|\)

- \(T(L) = \{ M : M \notin \{ L, L + 1 \} \text{ and } 0 < |M| \leq |L| \} \)

- \(A = h(L \cap (L + 1)) \)

- \(B = \max_{M \in T(L)} \min\{ h(L \cap M), h(L \cap (M - 1)) \} \)
The Height function

- \(h(\emptyset) = 0 \)
- Suppose that \(L \neq \emptyset \) and \(h \) has been defined on all sets of size less than \(|L| \)
- \(T(L) = \{ M : M \not\in \{L, L+1\} \text{ and } 0 < |M| \leq |L| \} \)
- \(A = h(L \cap (L+1)) \)
- \(B = \max_{M \in T(L)} \min\{ h(L \cap M), h(L \cap (M-1)) \} \)
- \(h(L) = 1 + \max\{ A, B \} \)
Lemma (Sgall)

Suppose that a, b, x, y, p, Q are positive real numbers such that

$$ax \leq p \leq Q$$
$$bx \leq Q$$

Then

$$(a + b)(x + y) \leq 2(p + Q).$$
Lemma (Sgall)

Suppose that a, b, x, y, p, Q are positive real numbers such that

- $ax \leq p$

Lemma (Sgall)

Suppose that a, b, x, y, p, Q are positive real numbers such that

- $ax \leq p$
- $ay \leq Q$
Sgall’s Lemma and the Puzzle

Lemma (Sgall)

Suppose that a, b, x, y, p, Q are positive real numbers such that

- $ax \leq p$
- $ay \leq Q$
- $bx \leq Q$

Then

$$(a + b)(x + y) \leq 2(p + Q).$$
Lemma (Sgall)

Suppose that a, b, x, y, p, Q are positive real numbers such that

- $ax \leq p$
- $ay \leq Q$
- $bx \leq Q$
- $by \leq Q$

Then

$$(a + b)(x + y) \leq 2(p + Q).$$
Lemma (Sgall)

Suppose that a, b, x, y, p, Q are positive real numbers such that

- $ax \leq p$
- $ay \leq Q$
- $bx \leq Q$
- $by \leq Q$

Then

$$(a + b)(x + y) \leq$$
Lemma (Sgall)

Suppose that a, b, x, y, p, Q are positive real numbers such that

- $ax \leq p$
- $ay \leq Q$
- $bx \leq Q$
- $by \leq Q$

Then

$$(a + b)(x + y) \leq 2(p + Q).$$
Lemma (Sgall)

Suppose that a, b, x, y, p, Q are positive real numbers such that

- $ax \leq p$
- $ay \leq Q$
- $bx \leq Q$
- $by \leq Q$

Then

$$(a + b)(x + y) \leq 2(p + Q).$$