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A Puzzle

Suppose that a, b, x , y are positive real numbers such that

ax ≤ 50

ay ≤ 100

bx ≤ 100

by ≤ 100

Prove that
ax + ay + bx + by ≤ 300.
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The Frankl-Rödl theorem

Let M be a set. A family of sets A is M-intersecting if

|A ∩ B| ∈ M for every A,B ∈ A

General Problem of Extremal Set Theory:

Given A ⊂ 2[n] and M ⊂ {0, . . . , n}, what is max |A|?

As M gets larger, max |A| gets larger.

What if M misses only one number?

Theorem (Frankl-Rödl (1987), $250 problem of Erdős)

Suppose that A ⊂ 2[n] and |A ∩ B| 6= n/4 for all A,B,∈ A, and
n > n0. Then

|A| < (1.99)n.
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Coding theory

Q is an alphabet

q = |Q|
C ⊂ Qn is a code

Hamming distance between codewords C = (c1, . . . , cn) and
D = (d1, . . . , dn) is

d(C ,D) := |{i : ci 6= di}|

d(C) = {d(C ,D) : C ,D ∈ C,C 6= D}
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Problem. Find upper and lower bounds for max |C| given d(C).

Theorem (Blokhuis, Frankl (1984))

Suppose that p is prime and d(C) is covered by t nonzero residue
classes mod p. Then

|C| ≤
t∑

i=0

(q − 1)n−i
(
n

i

)
.

If t > (1 + ε)n/q, then concentration of the binomial distribution
shows that the bound above is q(1−o(1))n, which is rather weak.

Theorem (Frankl-Rödl (1987))

Let 0 < δ < 1/2 and δn < d < (1− δ)n, and d is even if q = 2. If
d 6∈ d(C), then |C| < (q − ε)n, where ε = ε(δ, q) > 0.
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Let 0 < δ < 1/2 and δn < d < (1− δ)n, and d is even if q = 2. If
d 6∈ d(C), then |C| < (q − ε)n, where ε = ε(δ, q) > 0.

Dhruv Mubayi Intersection theorems for finite sets



Problem. Find upper and lower bounds for max |C| given d(C).

Theorem (Blokhuis, Frankl (1984))

Suppose that p is prime and d(C) is covered by t nonzero residue
classes mod p. Then

|C| ≤
t∑

i=0

(q − 1)n−i
(
n

i

)
.

If t > (1 + ε)n/q, then concentration of the binomial distribution
shows that the bound above is q(1−o(1))n, which is rather weak.

Theorem (Frankl-Rödl (1987))
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Borsuk’s Problem - decreasing the diameter

The Diameter of a set S ⊂ Rn is supx ,y∈S dist(x , y)

Conjecture

Every bounded S ⊂ Rd can be partitioned into d + 1 sets
S1, . . . ,Sd+1 of smaller diameter.

If true, then sharp by letting S be the vertices of a regular simplex,
for example,

S = {e1, . . . , ed , v}

where ei is the unit vector with 1 in position i , and

v =
1−
√
n + 1

n
(1, . . . , 1).
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Results

Borsuk (1932) d = 2

Eggleston (1955) d = 3

Hadwiger (1946) for all d if S is smooth and convex

Riesling (1971) for all d if S is centrally symmetric

Dekster (1995) for all d if S is a body of revolution

Schramm (1988) number of pieces is at most (
√

3/2 + ε)d ,
for all ε > 0 and d > d(ε).

Dhruv Mubayi Intersection theorems for finite sets



Results

Borsuk (1932) d = 2

Eggleston (1955) d = 3

Hadwiger (1946) for all d if S is smooth and convex

Riesling (1971) for all d if S is centrally symmetric

Dekster (1995) for all d if S is a body of revolution

Schramm (1988) number of pieces is at most (
√

3/2 + ε)d ,
for all ε > 0 and d > d(ε).

Dhruv Mubayi Intersection theorems for finite sets



Results

Borsuk (1932) d = 2

Eggleston (1955) d = 3

Hadwiger (1946) for all d if S is smooth and convex

Riesling (1971) for all d if S is centrally symmetric

Dekster (1995) for all d if S is a body of revolution

Schramm (1988) number of pieces is at most (
√

3/2 + ε)d ,
for all ε > 0 and d > d(ε).

Dhruv Mubayi Intersection theorems for finite sets



Results

Borsuk (1932) d = 2

Eggleston (1955) d = 3

Hadwiger (1946) for all d if S is smooth and convex

Riesling (1971) for all d if S is centrally symmetric

Dekster (1995) for all d if S is a body of revolution

Schramm (1988) number of pieces is at most (
√

3/2 + ε)d ,
for all ε > 0 and d > d(ε).

Dhruv Mubayi Intersection theorems for finite sets



Results

Borsuk (1932) d = 2

Eggleston (1955) d = 3

Hadwiger (1946) for all d if S is smooth and convex

Riesling (1971) for all d if S is centrally symmetric

Dekster (1995) for all d if S is a body of revolution

Schramm (1988) number of pieces is at most (
√

3/2 + ε)d ,
for all ε > 0 and d > d(ε).

Dhruv Mubayi Intersection theorems for finite sets



Results

Borsuk (1932) d = 2

Eggleston (1955) d = 3

Hadwiger (1946) for all d if S is smooth and convex

Riesling (1971) for all d if S is centrally symmetric

Dekster (1995) for all d if S is a body of revolution

Schramm (1988) number of pieces is at most (
√

3/2 + ε)d ,
for all ε > 0 and d > d(ε).

Dhruv Mubayi Intersection theorems for finite sets



Counterexamples

Theorem (Kahn-Kalai (1993))

For large d , there exists a bounded S ⊂ Rd such that every

partition of S into pieces of smaller diameter has at least (1.2)
√
d

parts. In particular, Borsuk’s conjecture fails for d = 1325 and
each d > 2014.

Proof uses Frankl-Wilson (or Frankl-Rödl) theorem.

Conjecture

There exists c > 1 such that for all d , there exists a bounded
S ⊂ Rd such that every partition of S into pieces of smaller
diameter has at least cd parts.
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More Geometry

How many vectors of the cube in Rd can be pairwise
non-orthogonal?

Conjecture (Larman-Rogers (1972))

Suppose that d = 4n. Does every set of 2d/d2 ±1 vectors in Rd

contain a pair of orthogonal vectors?

Theorem (Frankl-Rödl (1987))

Given r ≥ 2 and n = d/4 ≥ r , there exists ε = ε(r) > 0 such that
every set of more than (2− ε)d ±1 vectors in Rd contains r
pairwise orthogonal vectors.
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Given r ≥ 2 and n = d/4 ≥ r , there exists ε = ε(r) > 0 such that
every set of more than (2− ε)d ±1 vectors in Rd contains r
pairwise orthogonal vectors.

Dhruv Mubayi Intersection theorems for finite sets



More Geometry

How many vectors of the cube in Rd can be pairwise
non-orthogonal?

Conjecture (Larman-Rogers (1972))

Suppose that d = 4n. Does every set of 2d/d2 ±1 vectors in Rd

contain a pair of orthogonal vectors?

Theorem (Frankl-Rödl (1987))
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Combinatorics

A weak delta system is a collection of sets A1, . . . ,Ar such that

|Ai ∩ Aj | = |A1 ∩ A2|

for 1 ≤ i < j ≤ r .

Conjecture (Erdős-Szemerédi (1978))

For every ε > 0, there is n0 = n0(ε) such that if n > n0 and
A ⊂ 2[n] with |A| > (2− ε)n, then A contains a weak delta system
of size 3.
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Theorem (Frankl-Rödl (1987))

Fix r ≥ 3. Then there are η = η(r) and ε = ε(r) such that if
t = (1/4± η)n and A ⊂ 2[n] with |A| > (2− ε)n, then there are
A1, . . . ,Ar ∈ A with

|Ai ∩ Aj | = t

for 1 ≤ i < j ≤ r .

Conjecture (Erdős-Szemerédi (1978))

There exists ε > 0 such that if n is sufficiently large and A ⊂ 2[n]

with |A| > (2− ε)n, then A contains a delta system (not weak!)
of size 3.

Recent work of Alon-Shpilka-Umans gives connections between this
conjecture and algorithms for Matrix multiplication
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Fix r ≥ 3. Then there are η = η(r) and ε = ε(r) such that if
t = (1/4± η)n and A ⊂ 2[n] with |A| > (2− ε)n, then there are
A1, . . . ,Ar ∈ A with

|Ai ∩ Aj | = t

for 1 ≤ i < j ≤ r .
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Computer Science Applications

Communication Complexity (Sgall 1999)

Quantum Computing (Buhrman-Cleve-Wigderson 1998)

Semidefinite Programming (Goemans-Kleinberg 1998,
Hatami-Magen-Markakis 2009)
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The Frankl-Rödl theorem

Theorem (Frankl-Rödl (1987))

Let 0 < η < 1/4 and ηn < t < (1/2− η)n. There is ε0 = ε0(η)
such that if A ⊂ 2[n] and |A ∩ B| 6= t for all A,B ∈ A, then

|A| < (2− ε0)n.

How big is ε0 (problem of Erdős)?

Frankl-Rödl show it is about (t/n)2/2.
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Katona’s Theorem

Suppose we forbid all numbers less than t + 1 as intersection sizes.

Define A(n, t) to be

{A ⊂ [n] : |A| ≥ (n + t + 1)/2} if n + t is odd

{A ⊂ [n] : |A ∩ ([n]− {1})| ≥ (n + t)/2} if n + t is even.

Theorem (Katona)

Let A ⊂ 2[n] and suppose that |A ∩ A′| > t for every A,A′ ∈ A.
Then

|A| ≤ |A(n, t)|.

Moreover, if t ≥ 1 and |A| = |A(n, t)|, then A = A(n, t).
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The optimal ε0

The binary entropy function is

H(x) = −x log2 x − (1− x) log2(1− x).

Conjecture (M-Rödl)

Let 0 < η < 1/2, ηn < t < (1/2− η)n, and A ⊂ 2[n] with
|A ∩ B| 6= t for all A,B ∈ A. Then

|A| ≤
(

n

(n + t)/2

)
2o(n) = 2H( 1

2
+ t

2n )n+o(n).

If true, the conjecture is sharp as shown by A =
( [n]
>(n+t)/2

)
.

For fixed t and n > n0(t), conjectured by Frankl and proved by
Frankl-Füredi.
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Let 0 < η < 1/2, ηn < t < (1/2− η)n, and A ⊂ 2[n] with
|A ∩ B| 6= t for all A,B ∈ A. Then

|A| ≤
(

n

(n + t)/2

)
2o(n) = 2H( 1

2
+ t

2n )n+o(n).

If true, the conjecture is sharp as shown by A =
( [n]
>(n+t)/2

)
.

For fixed t and n > n0(t), conjectured by Frankl and proved by
Frankl-Füredi.
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Let 0 < η < 1/2, ηn < t < (1/2− η)n, and A ⊂ 2[n] with
|A ∩ B| 6= t for all A,B ∈ A. Then

|A| ≤
(

n

(n + t)/2

)
2o(n) = 2H( 1

2
+ t

2n )n+o(n).

If true, the conjecture is sharp as shown by A =
( [n]
>(n+t)/2

)
.

For fixed t and n > n0(t), conjectured by Frankl and proved by
Frankl-Füredi.
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Forbidding a small interval

Theorem (M-Rödl)

Let 0 < ε < 1/5 be fixed, n > n0(ε), εn < t < n/5 and A ⊂ 2[n].
Suppose that

|A ∩ B| 6∈ (t, t + n0.525)

for all A,B ∈ A. Then

|A| < n

(
n

(n + t)/2

)
.

The constant 0.525 is a consequence of the result of
Baker-Harman-Pintz that there is a prime in every interval
(s − s0.525, s) as long as s is sufficiently large.

If we assume the Riemann Hypothesis, then 0.525 could be
improved to 1/2 + o(1) using a result of Cramér.
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More restricted intersections

Question. Can the upper bound for M-intersecting families be
improved for more restrictive M?

Theorem (Berlekamp (1965), Graver (1975))

Suppose that A ⊂ 2[n] is M-intersecting, where M = {0, 2, 4, . . .}.
In other words, |A ∩ B| is even for all A,B ∈ A. Then
|A| ≤ 2bn/2c + 1.

Eventown Theorem

Suppose that A ⊂ 2[n] such that

|A| is even for every A ∈ A
|A ∩ B| is even for every A,B ∈ A

Then |A| ≤ 2bn/2c.
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A Proof

Proof of Eventown:

To each A ∈ A, associate its incidence vector
vA = (v1, . . . , vn) where

vi =

{
1 i ∈ A

0 i 6∈ A

Let S be the subspace of F n
2 spanned by {vA}A∈A.

S is totally isotropic (meaning x · y = 0 for x , y ∈ S)
dim(S) ≤ bn/2c

So |A| ≤ |S | ≤ 2bn/2c = (1.4142..)n

Dhruv Mubayi Intersection theorems for finite sets



A Proof

Proof of Eventown:

To each A ∈ A, associate its incidence vector
vA = (v1, . . . , vn) where

vi =

{
1 i ∈ A

0 i 6∈ A

Let S be the subspace of F n
2 spanned by {vA}A∈A.

S is totally isotropic (meaning x · y = 0 for x , y ∈ S)
dim(S) ≤ bn/2c

So |A| ≤ |S | ≤ 2bn/2c = (1.4142..)n

Dhruv Mubayi Intersection theorems for finite sets



A Proof

Proof of Eventown:

To each A ∈ A, associate its incidence vector
vA = (v1, . . . , vn) where

vi =

{
1 i ∈ A

0 i 6∈ A

Let S be the subspace of F n
2 spanned by {vA}A∈A.

S is totally isotropic (meaning x · y = 0 for x , y ∈ S)
dim(S) ≤ bn/2c

So |A| ≤ |S | ≤ 2bn/2c = (1.4142..)n

Dhruv Mubayi Intersection theorems for finite sets



A Proof

Proof of Eventown:

To each A ∈ A, associate its incidence vector
vA = (v1, . . . , vn) where

vi =

{
1 i ∈ A

0 i 6∈ A

Let S be the subspace of F n
2 spanned by {vA}A∈A.

S is totally isotropic (meaning x · y = 0 for x , y ∈ S)
dim(S) ≤ bn/2c

So |A| ≤ |S | ≤ 2bn/2c = (1.4142..)n

Dhruv Mubayi Intersection theorems for finite sets



Between the extremes

Frankl-Rödl: M = {0, 1, . . . , n} \ {n/4} − |A| < (1.99)n

Eventown: M = {0, 2, . . .} − |A| < (1.4142..)n

What about M that are in between these two extremes?

Definition

The length `(M) of a set M is the maximum number of
consecutive integers contained in M.

`(M) ≤ ` if and only if M is (`+ 1)-syndetic.
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Bounds for small `(M)

Theorem (M-Rödl)

Let M ⊂ {0, 1, . . . , n} with `(M) = `. Suppose that A ⊂ 2[n] is an
M-intersecting family. Then

|A| < 1.622n × 100`.

The result is nontrivial as long as, ` < n/10 or so

For example, if [n] \M = {0, n/104, 2n/104, . . . , }, then

|A| < 1.63n.

The 1.622 is probably not sharp, just a result of the proof
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Bounds for very small `(M)

Theorem (M-Rödl)

Let M ⊂ {0, 1 . . . , n} with `(M) = `. Suppose that A ⊂ 2[n] is an
M-intersecting family. Then

|A| < 2n/2+` log2 n.

For ` = o(n/ log2 n), this bound better than the first one; it is

|A| < 2n/2+o(n).

This is the first non-linear-algebraic proof of an asymptotic
version of the Eventown Theorem; it applies in more general
scenarios though doesn’t give bounds as precise as 2n/2.
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Proof Methods

Prove the result for pairs of families (A,B). This facilitates an
induction argument

(A,B) is M-intersecting if

|A ∩ B| ∈ M

for all A ∈ A and B ∈ B

Theorem (M-Rödl)

Let M ⊂ {0, 1 . . . , n} with `(M) = `. Suppose that (A,B) is an
M-intersecting pair of families in 2[n]. Then

|A||B| < min
{

2.631n × 104`, 2n+2` log2 n
}
.
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Height functions

Definition (Sgall)

Say that a function h : 2N → N ∪ {∞} is a height function if the
following four properties hold:

(A1) h(L) = 0 if and only if L = ∅,

(A2) if h(L) <∞ and L′ ⊂ L, then h(L′) ≤ h(L),

(A3) if h(L) <∞ and L′ ⊂ L− 1, then h(L′) ≤ h(L),

(A4) if h(L), h(L′) ≤ s <∞, then either

h(L′ ∩ L) ≤ s − 1 or h(L′ ∩ (L− 1)) ≤ s − 1.
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Sgall’s theorem

Theorem (Sgall (1999))

Suppose that (A,B) is an M-intersecting pair of families in 2[n]

and h(M) ≤ s ≤ n + 1. Then

|A||B| ≤ 2n+s−1
(

n

s − 1

)
.

Theorem (M-Rödl)

There exists a height function h such that for every
M ⊂ {0, 1 . . . , n},

h(M) ≤ 1 + 2`(M) log n.

Applying this bound in Sgall’s Theorem yields |A||B| < 2n+2` log2 n.
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The Height function

h(∅) = 0

Suppose that L 6= ∅ and h has been defined on all sets of size
less than |L|

T (L) = {M : M 6∈ {L, L + 1} and 0 < |M| ≤ |L|}

A = h(L ∩ (L + 1))

B = maxM∈T (L) min{h(L ∩M), h(L ∩ (M − 1))}

h(L) = 1 + max{A,B}
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Sgall’s Lemma and the Puzzle

Lemma (Sgall)

Suppose that a, b, x , y , p,Q are positive real numbers such that

ax ≤ p

ay ≤ Q

bx ≤ Q

by ≤ Q

Then
(a + b)(x + y) ≤ 2(p + Q).

Thank You
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