On Rank of Graphs

B. Tayfeh-Rezaie

School of Mathematics, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran

(A joint work with E. Ghorbani and A. Mohammadian)

Trieste, September 2012

Theorem

For any graph G, rank $(G) \geqslant \omega(G)$.

Theorem

For any graph G, rank $(G) \geqslant \omega(G)$.

Theorem (Omidi (2009)):

For any bipartite graph G with no cycle of length a multiple of 4 as a subgraph, ${\rm rank}(G)\geqslant \frac{2e}{\triangle}.$

Theorem (Alon et al. (2010)):

For any G with no $K_{2,r}$ as a subgraph, $\operatorname{rank}(G) \geqslant \frac{2e}{r \wedge}$.

Definition

Reduced graph: No isolated vertices and no two vertices with the same neighborhood.

A General Problem

C: A given class of reduced graphs

For any r, find the maximum order of graphs from C which are of rank r.

[or equivalently, for any n, find the maximum nullity of graphs of order n from C.]

C:=The class of reduced P_4 -free graphs (cographs)

Theorem (Royle (2003)):

Any graph of rank r from C has r vertices.

C:=The class of reduced trees

Theorem (Ghorbani, Mohammadian and B. T):

Every reduced tree of rank r has at most 3r/2-1 vertices.

C:=The class of reduced bipartite graphs

Theorem (Ghorbani, Mohammadian and B. T):

Every reduced bipartite graph of rank r has at most $2^{r/2} + r/2 - 1$ vertices.

C:=The class of reduced non-bipartite triangle-free graphs

Theorem (Ghorbani, Mohammadian and B. T):

Every reduced non-bipartite triangle-free graph of rank r has at most $3 \cdot 2^{[r/2]-2} + [r/2]$ vertices.

Main Problem

C:=The class of all reduced graphs

For any r, find the maximum order of reduced graphs with rank r.

It is straightforward to show that every reduced graph of rank r has at most $2^r - 1$ vertices.

It is straightforward to show that every reduced graph of rank r has at most $2^r - 1$ vertices.

For r even, Godsil and Royle constructed a graph of order 2^r-1 and rank r over the field \mathbb{F}_2 .

It is straightforward to show that every reduced graph of rank r has at most $2^r - 1$ vertices.

For r even, Godsil and Royle constructed a graph of order 2^r-1 and rank r over the field \mathbb{F}_2 .

Kotlov and Lovász (1996):

There exists a constant c such that any reduced graph of rank r has at most $c \cdot 2^{r/2}$ vertices.

Let

$$m(r) = \begin{cases} 2^{(r+2)/2} - 2 & \text{if } r \text{ is even,} \\ 5 \cdot 2^{(r-3)/2} - 2 & \text{if } r > 1 \text{ is odd.} \end{cases}$$

Conjecture (Akbari, Cameron, Khosrovshahi (200?)):

A reduced graph of rank r has at most m(r) vertices.

Constructions for graphs of rank r and order m(r)

Construction 1 (Kotlov and Lovász):

Let G be a reduced graph of order n, adjacency matrix A and rank r. Then the graph with adjacency matrix

$$\left(egin{array}{cccc} A & A & 1 & 0 \ A & A & 0 & 0 \ 1 & 0 & 0 & 1 \ 0 & 0 & 1 & 0 \end{array}
ight)$$

is reduced of order 2n + 2 and rank r + 2.

Construction 2 (Akbari, Cameron, Khosrovshahi):

Let G be a reduced regular graph of order n with degree n/2, adjacency matrix A and rank r. Then the graph with adjacency matrix

$$\left(egin{array}{cccc} A & A & 1 & 0 \ A & A & 0 & 1 \ 1 & 0 & 0 & 1 \ 0 & 1 & 1 & 0 \end{array}
ight)$$

is reduced of order 2n + 2 and rank r + 2.

Construction 3 (Haemers and Peeters):

Let G be a reduced graph of order n, adjacency matrix A and rank r. Then the graph with adjacency matrix

$$\left(egin{array}{cccc} A & \overline{A} & 1 & 0 \ \overline{A} & A & 0 & 1 \ 1 & 0 & 0 & 1 \ 0 & 1 & 1 & 0 \end{array}
ight)$$

is reduced of order 2n + 2 and rank r + 2.

Known results

- (i) The conjecture is verified for graphs with rank at most 9.
- (ii) A reduced graph of rank r and with an induced matching of size r/2 or a disjoint union of an induced matching of size (r-3)/2 and a triangle has at most m(r) vertices. (Haemers and Peeters (2010))
- (ii) The conjecture is true for specific families of graphs like cographs, trees, bipartite graphs, triangle-free graphs, line graphs, ...

Theorem (Ghorbani, Mohammadian and B. T):

Suppose that the conjecture is true for graphs of rank $r \leq 47$. Then the conjecture holds for all r.

Theorem (Ghorbani, Mohammadian and B. T):

A reduced graph of rank r has at most 8m(r) + 14 vertices.

Notation

 $\rho(G)$:= The minimum number of vertices whose removal results in a graph with a smaller rank.

$$t(G):=\min\{|N(u)\triangle N(v)|\,|\,u,v\in V(G)\text{ and distinct}\}.$$

 $\tau(G):=\min\{|N(u)\triangle N(v)|\,|\,u,v\in V(G)\text{ and nonadjacent}\}.$

$$\rho(G) \le t(G) \le \tau(G)$$

Definition:

An (r, n, φ) -spherical code C is a set of n unit vectors of \mathbb{R}^r such that

$$\langle x, y \rangle \leqslant \cos \varphi,$$

holds for any two distinct elements x and y of C.

Bounding the order of a graph by spherical codes

Let G be a reduced graph of order n and rank r.

Then

there is a $(r+1, n, \varphi)$ -spherical code with

$$\varphi = \arccos(\frac{n - 2t(G)}{n}).$$

Theorem

Let $r\geqslant 46$ and $\varphi=\arccos(\sqrt{2}-1)$. If there exists an $(r+1,n,\varphi)$ -spherical code, then

$$n < 5 \cdot 2^{(r-3)/2} - 2.$$

Recall that
$$m(r) = \begin{cases} 2^{(r+2)/2} - 2 & \text{if } r \text{ is even,} \\ 5 \cdot 2^{(r-3)/2} - 2 & \text{if } r > 1 \text{ is odd.} \end{cases}$$

Theorem

Let $r\geqslant 46$ and $\varphi=\arccos(\sqrt{2}-1)$. If there exists an $(r+1,n,\varphi)$ -spherical code, then

$$n < 5 \cdot 2^{(r-3)/2} - 2$$
.

Corollary

Let G be graph of order n and rank $r \geq 46$. If $n \geq 5 \cdot 2^{\frac{r-3}{2}} - 2$, then $t(G) < (1 - \frac{\sqrt{2}}{2})n$.

Lemma. Let G be a reduced graph and H be an induced subgraph of G with the maximum possible order subject to H has duplication classes. Assume that $\operatorname{rank}(H) \geqslant \operatorname{rank}(G) - 3$ Then

- (i) If w is an isolated vertex of H, then $N(w) = V(G) \setminus V(H)$.
- (ii) Each duplication class of H has two elements and H has at most one isolated vertex.
- (iii) If H is not reduced and $\{v_1, v_1'\}, \ldots, \{v_s, v_s'\}$ are all the duplication classes of H, then there exist two disjoint sets T_1, T_2 such that $V(G) \setminus V(H) = T_1 \cup T_2$, $T_1 \subseteq N(v_i) \setminus N(v_i')$ and $T_2 \subseteq N(v_i') \setminus N(v_i)$, for $i = 1, \ldots, s$.

Lemma. Let G be a counterexample to the conjecture with the minimum possible order and let $r = \operatorname{rank}(G)$. Let H be an induced subgraph of G with the maximum possible order subject to H has duplication classes. Assume that $\operatorname{rank}(H) \geqslant r-3$. Let S be the graph induced on v_1, \ldots, v_s as of the previous lemma. Then H has no isolated vertices and one of the following holds.

(i)
$$S = K_1$$
 and $|V(G) \setminus V(H)| \ge m(r-2) + 2$.

(ii)
$$S = K_2$$
 and $|V(G) \setminus V(H)| \ge m(r-2) + 1$.

(iii)
$$S = K_3$$
 and $|V(G) \setminus V(H)| = m(r-2)$.

Definition

G: A graph of order n

 μ : An eigenvalue with multiplicity k

 μ -rank of G is defined as n-k.

Or equivalently

 μ -rank of G is defined as the rank of $\mu I - A$.

Let

$$m(r) = \begin{cases} 2^{(r+2)/2} - 2 & \text{if } r \text{ is even,} \\ 5 \cdot 2^{(r-3)/2} - 2 & \text{if } r > 1 \text{ is odd.} \end{cases}$$

Conjecture

A coreduced graph of (-1)-rank r has at most m(r) vertices. Moreover, there is a unique graph meeting this bound.

What about $\mu \neq 0, -1$?

Theorem (Bell and Rowlinson, 2003)

Let G be a graph of order n>4 and μ -rank t. If $\mu \not\in \{-1,0\}$, then

$$n \leq \frac{1}{2}t(t+1).$$

Theorem (Bell and Rowlinson, 2003)

Let G be a graph of order n>4 and μ -rank t. If $\mu \not\in \{-1,0\}$, then

$$n \leq \frac{1}{2}t(t+1).$$

The bound is attained for example when G is the graph obtained from $L(K_9)$ by switching with respect to a clique of order 8; here $\mu=-2$, t=8 and n=36.

Theorem (Bell and Rowlinson, 2003)

Let G be an r-regular graph of order n and μ -rank t>2. If $\mu\not\in\{-1,0,r\}$, then

$$n \le \frac{1}{2}t(t+1) - 1.$$

The regular graphs attaining the bound are precisely the extremal strongly regular graphs.

Theorem

Let G be a strongly regular graph which is not extremal, pentagon, Clebsch, complete multipartite or their complements.

If G has μ -rank t, then

$$n \leq \frac{1}{2}t(t-1).$$

Our Problem

For any r, find the maximum order of reduced graphs with exactly r positive and negative eigenvalues.

Similar Problems

For any r, find the maximum order of reduced graphs with exactly r negative eigenvalues (Torgasev, 1985).

Torgasev proved that the maximum M(r) is finite and M(2)=6, M(3)=14, M(4)=30.

We conjecture that $M(r) = 2^{r+1} - 2$.

If we take positive eigenvalues instead of negative eigenvalues, then the maximum is infinite.

Similar Problems

For any r, find the maximum order of graphs with exactly r negative and zero eigenvalues (Charles, Farber, Johnson, Kennedy-Shaffer, 2011).

They proved that the maximum N(r) is finite and N(1)=2, N(2)=5, N(3)=9, N(4)=15.

They also showed that

$$\binom{r+1}{2} \le N(r) < R(r+1,r+2).$$