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Reza and Richard: Thanks for a wonderful meeting.

From now on: p is prime and q is a power of p.
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Codes

A q-ary linear [n, k , d ]-code C is a k-dimensional subspace of
the vector space Fn

q, of ordered n-tuples from the finite field of
order q, such that the minimum weight of a nonzero vector in
the code (a codeword) is d .

The Hamming-distance between two vectors u and v is the
number of coordinates in which they differ.

The weight of u is the number of nonzero coordinates, so the
Hamming-distance of u to the origin.

A vector of weight 3 in F5
3: u = (0, 1, 0, 2, 1).

Central problem: For which [n, k , d ] does a q-ary code exist.

Example: the Griesmer-bound: n ≥
k−1∑
i=0

dd/qie.

Aart Blokhuis Polynomials and Codes



Codes

A q-ary linear [n, k , d ]-code C is a k-dimensional subspace of
the vector space Fn

q, of ordered n-tuples from the finite field of
order q, such that the minimum weight of a nonzero vector in
the code (a codeword) is d .

The Hamming-distance between two vectors u and v is the
number of coordinates in which they differ.

The weight of u is the number of nonzero coordinates, so the
Hamming-distance of u to the origin.

A vector of weight 3 in F5
3: u = (0, 1, 0, 2, 1).

Central problem: For which [n, k , d ] does a q-ary code exist.

Example: the Griesmer-bound: n ≥
k−1∑
i=0

dd/qie.

Aart Blokhuis Polynomials and Codes



Codes

A q-ary linear [n, k , d ]-code C is a k-dimensional subspace of
the vector space Fn

q, of ordered n-tuples from the finite field of
order q, such that the minimum weight of a nonzero vector in
the code (a codeword) is d .

The Hamming-distance between two vectors u and v is the
number of coordinates in which they differ.

The weight of u is the number of nonzero coordinates, so the
Hamming-distance of u to the origin.

A vector of weight 3 in F5
3: u = (0, 1, 0, 2, 1).

Central problem: For which [n, k , d ] does a q-ary code exist.

Example: the Griesmer-bound: n ≥
k−1∑
i=0

dd/qie.

Aart Blokhuis Polynomials and Codes



Codes

A q-ary linear [n, k , d ]-code C is a k-dimensional subspace of
the vector space Fn

q, of ordered n-tuples from the finite field of
order q, such that the minimum weight of a nonzero vector in
the code (a codeword) is d .

The Hamming-distance between two vectors u and v is the
number of coordinates in which they differ.

The weight of u is the number of nonzero coordinates, so the
Hamming-distance of u to the origin.

A vector of weight 3 in F5
3: u = (0, 1, 0, 2, 1).

Central problem: For which [n, k , d ] does a q-ary code exist.

Example: the Griesmer-bound: n ≥
k−1∑
i=0

dd/qie.

Aart Blokhuis Polynomials and Codes



Codes

A q-ary linear [n, k , d ]-code C is a k-dimensional subspace of
the vector space Fn

q, of ordered n-tuples from the finite field of
order q, such that the minimum weight of a nonzero vector in
the code (a codeword) is d .

The Hamming-distance between two vectors u and v is the
number of coordinates in which they differ.

The weight of u is the number of nonzero coordinates, so the
Hamming-distance of u to the origin.

A vector of weight 3 in F5
3: u = (0, 1, 0, 2, 1).

Central problem: For which [n, k , d ] does a q-ary code exist.

Example: the Griesmer-bound: n ≥
k−1∑
i=0

dd/qie.

Aart Blokhuis Polynomials and Codes



The Generator Matrix

A linear [n, k , d ]-code can be represented as the row space of a
k × n matrix G of rank k . Such a matrix is called a generator
matrix of the code.

Codewords are all vectors xG , x ∈ Fk
q. We can also view xG as

the list of inner products of x with the columns of G . When
we view the columns of G as vectors in Fk

q, or better, as points
in P = PG (k − 1, q), and x as a vector defining a hyperplane
we find corresponding to the code a (multi-)set S of n points
in P having at most n − d points in every hyperplane.

This correspondence goes both ways.
Exercise: Prove the Griesmer-bound (by induction).
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First example

F3 = {0, 1, 2} arithmetic mod 3,

G =

0 0 0 1 1 1 2 2 2
0 1 2 0 1 2 0 1 2
1 1 1 1 1 1 1 1 1


is the generator matrix of a ternary [9, 3, 6] code (every
hyperplane contains at most 3 columns, so d = 6). The
Griesmer-bound gives n ≥ 6 + 6/3 + d6/9e = 9, so we have
equality.

The set S consists of all points of AG (2, 3).
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Second example

F4 = {0, 1, a, a2} arithmetic mod 2, a3 = a2 + a = 1.

G1 =

1 1 1 1 0 0
0 1 a a2 0 1
0 1 a2 a 1 0


or, essentially equivalent

G2 =

0 1 a 1 0 a
0 a 1 1 a 0
1 1 1 1 1 1


are generator matrices of quaternary [6, 3, 4] codes. The
Griesmer-bound gives n ≥ 4 + 4/4 + b4/16c = 6.

The set S1 is a hyperoval in PG (2, 4) (and S2 in AG (2, 4)).
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If weights and length have a common divisor

Suppose there is an r dividing n and all weights, and that the
columns of G are (projectively) different. So we get a set S of
points in P = PG (k − 1, q) intersecting every hyperplane in a
multiple of r points.

A very annoying problem: Let S be a set of p2 points in
AG (3, p) (or PG (3, p)) which intersects every plane in 0 mod
p points, does it follow that S is a cylinder, the union of p
parallel lines (or, in the projective version a cone with the top
removed)?
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Point sets in the plane, k = 3.

Theorem

A set of points S in PG (2, q) which is incident with 0 mod r
points of every line has at least (r − 1)q + (p − 1)r points,
where 1 < r < q = ph.

A maximal r -arc in PG (2, q) is a set S intersecting every line
in 0 or r points. For q odd and 1 < r < q maximal arcs don’t
exist (Ball, B. and Mazzocca ’97) the above result strengthens
this: (r − 1)q + r < (r − 1)q + (p − 1)r for p > 2.

The proof uses the maximal arcs polynomial, the next slides
gives a flavour of the proof.
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The maximal arcs polynomial, I

The story begins with the (proof of the) following:

Theorem (B., Wilbrink ’87)

Let B be a set of q + 1 points in AG (2, q), and let A be a set
of points (nuclei) such that every line containing a point of A
contains a (unique) point of B. Then |A| ≤ q − 1.

Step 1: Identify AG (2, q) with Fq2 .
Step 2: a, b and c are collinear iff (a − b)q−1 = (a − c)q−1.
Step 3: Associate to B the polynomial
B(Y ) =

∑
b∈B(Y − b)q−1.

Step 4: Show that points of A are zeros of the polynomial B.
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The maximal arcs polynomial, II

The next step came from (the proof of) the following:

Theorem

Let S be a set of q + n points in AG (2, q), and let A be a set
of points such that every line containing a point of A contains
at least one point of S. Then |A| ≤ n(q − 1).

Step 3’: Associate to S the polynomial
R(X ,Y ) =

∏
b∈S(X − (Y − b)q−1) =

∑|S |
j=0 σj(Y )X |S|−j .

Step 4’: Show that points of A are zeros of the
’coefficientpolynomial’ σn(Y ) of degree n(q − 1): use that
R(X , a) is divisible by (X q+1 − 1).
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Back to point sets in the plane.

Theorem (Ball, B., Gács, Sziklai, Weiner, 2007)

A set of points S in PG (2, q) which is incident with 0 mod r
points of every line has at least (r − 1)q + (p − 1)r points,
where 1 < r < q = ph.

Step 0: Show that you may take S in AG (2, q).
Step 3’: Associate to S the polynomial
R(X ,Y ) =

∏
b∈S(X − (Y − b)q−1) =

∑|S |
j=0 σj(Y )X |S|−j .

Step 4”: Use that R(X , y) is divisible by X (X q+1 − 1)r−1 for
y ∈ S and that R(X , y) is an r -th power for y 6∈ S .
Step 5: Think for a couple of years, and finish the proof.
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Coding theory again

In terms of coding theory this reads as follows, where the dual
minimum distance of a code is the minimum distance of the
dual code, C⊥. The condition that the dimension is 3 can in
fact be deleted, but this takes some extra effort.

Theorem (BBGSzW)

A code of dimension 3 whose weights and length have a
common divisor 1 < r < q and whose dual minimum distance
is at least 3 has length at least (r − 1)q + (p − 1)r .
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Picture time I

Here are Péter Sziklai, András Gács (and my wife Ágnes).
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Picture time II

And here we have the Ball family, and Zsuzsa Weiner.
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Picture time III

Franco Mazzocca (on the right):
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Another problem, another polynomial.

Let again C be a q-ary [n, k , d ]-code, given n, k we want to
maximize d or given n, d we want to maximize k , or given k , d
we want to minimize n. In wat follows we will give bounds for
d in terms of m, the maximal weight of a codeword. Normally
m will be close to n of course, but we will only assume
m ≥ n − d + 1, for otherwize, by adding the all-one word we
make k larger without decreasing d .

The general result is rather technical, and it’s usefulness will
only be illustrated in a number of special cases. In the next
slide we’ll state the (also rather technical) special case that
q(= p), the order of the field, is a prime.
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A bound for the maximum weight

Theorem (Ball, B. 2012)

Let C be a p-ary [n, k , d ]-code with a word of weight m, then
m ≤ (n − d)p − e(p − 1), where 0 ≤ e ≤ k − 2 satisfies(

n − d

e

)
6= 0 (mod pk−1−e).

In particular, if C contains a codeword of weight n, then
n ≥ d/(p − 1) + d + e.

Let us recall the Griesmer-bound: n ≥
k−1∑
i=0

dd/pie.
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Polynomials again

Where does this strange condition with the binomial
coefficient come from?

What we prove in fact is that:

If there is a q-ary [n, k , d ]-code with maximum weight
m ≥ n − d + 1,

then for all ε ≥ 1, the coefficient of X (n−d)q−m+ε in the real
polynomial, or better, formal power series,

(1 + X )−m(1 + X p)(n−d)q/p

is divisible by qk−1.
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Why is this useful (and interesting) ?

When we translate the results back to statements about point
sets S in projective or affine space we obtain (in many cases
improved) bounds for (n, t)-arcs and t-fold blocking sets of
hyperplanes in AG (k − 1, q).

The best existing bounds in these cases were also obtained
using polynomials, either the Rédei-polynomial or the maximal
arcs polynomial, but these are polynomials with coefficients in
a finite field, and at some point binomial coefficients vanish,
and so does the use of the polynomial. The difference is that
this time we look at real polynomials and formal power series.
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Intermezzo: A curious hypercongruence.

A curious byproduct of our investigations is the following
hypercongruence: The sum

p−1∑
k=0

(
p3 + p2 − p − 1

p2 − p − pk

)(
−p2

k

)
is (exactly) divisible by pp+1 (more precisely, it equals −pp+1

mod pp+4). A nice one for your advanced problem solving
course.
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Application I: Arcs in affine space

An (n, t)-arc is a set S of size n with at most t points in a
hyperplane.

Theorem

If there is an (n, t)-arc in AG (s, q), then for all ε ≥ 1 the
coefficient of X tq−n+ε in (1 + X )−n(1 + X p)tq/p is divisible by
qs .

Theorem

If there is an (n, t)-arc in AG (s, p), then n ≤ (t − e)p + e,

where 0 ≤ e < s and

(
t

e

)
6= 0 (mod ps−e).
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Application I: Arcs in the affine plane

An (n, t)-arc in the plane is a set S of size n with at most t
points on a line.

Theorem

If there is an (n, t)-arc in AG (2, q), then for all ε ≥ 1 the
coefficient of X tq−n+ε in (1 + X )−n(1 + X p)tq/p is divisible by
q2.

Theorem

If there is an (n, t)-arc in AG (2, p), then n ≤ (t − e)p + e,

where 0 ≤ e < 2 and

(
t

e

)
6= 0 (mod p2−e).
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Application II: Blocking sets in affine space

A t-fold blocking set (of hyperplanes) is a set B with at least
t points in a hyperplane, the complement of a |H | − t-arc.

Theorem

If S is a t-fold blocking set of AG (s, q), then for all ε ≥ 1 the
coefficient of X |S |−tq+ε in (1 + X )|S |−q

s
(1 + X p)(q

s−1−t)q/p is
divisible by qs .

Theorem

If S is a t-fold blocking set in AG (s, p), then

|S | ≥ (t + e)p − e, where 0 ≤ e < s and

(
−t

e

)
6= 0 (mod

ps−e).
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Application II: Blocking sets in affine space

A t-fold blocking set in the plane is a set B with at least t
points on every line, the complement of a |H | − t-arc.
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2
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divisible by q2.
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Some history, the Rédei polynomial

Let S be a set of points in AG (2, q). The Rédei polynomial
associated to S is the product:

R(T ,V1,V2) =
∏
u∈S

(T + u1V1 + u2V2).

If v1X1 + v2X2 = c stands for a parallel class of lines, then the
specialization

R(T , v1, v2) =
∏
u∈S

(T + u1v1 + u2v2) =
∏
c∈Fq

(T + c)m(c),

where m(c) counts the number of points of S on the line
v1X1 + v2X2 = c .

This polynomial is extremely useful for the study of blocking
sets and directions, but: it is defined over Fq, so sometimes
coefficients vanish because binomial coefficients are zero.
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sets and directions, but: it is defined over Fq, so sometimes
coefficients vanish because binomial coefficients are zero.

Aart Blokhuis Polynomials and Codes



Thank you Rédei!
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Intermezzo: Group characters

G = (Fk−1
q ,+, 0) the additive group of the vector space, Ĝ the

(multiplicative) group of characters, explicitly:
Ĝ = {χu | u ∈ G}, with χu(x) = exp(2πiTr(x · u)/p), where
Tr is the tracefunction from Fq to Fp.

Lemma

Let g(x) =
∑
χ∈Ĝ

cχχ(x), where cχ ∈ Z. If g(x) = 0 for all

x ∈ G \ {0}, then qk−1 divides g(0).

The oneline proof:

g(0) =
∑
x∈G

g(x) =
∑
x∈G

∑
χ∈Ĝ

cχχ(x) =
∑
χ∈Ĝ

∑
x∈G

χ(x) = cχ0|G |.
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Group characters, the case q = p, prime

G = (Fk−1
p ,+, 0) the additive group of the vector space, Ĝ the

(multiplicative) group of characters, explicitly:
Ĝ = {χu | u ∈ G}, with χu(x) = ηx ·u, η = exp 2πi/p

Lemma

Let g(x) =
∑
χ∈Ĝ

cχχ(x), where cχ ∈ Z. If g(x) = 0 for all

x ∈ G \ {0}, then pk−1 divides g(0).

Aart Blokhuis Polynomials and Codes



Polynomial time again

On the background we have a p-ary [n, k , d ]-code C ,
containing a word of (full) weight n, say the all one word. If
we put this as the last row in the generator matrix G , then the
columns define a set S ⊂ AG (k − 1, p) ' Fk−1

p ' G . We
associate to C , or better to the point set S the following
quasi-polynomial (η = exp(2πi/p)):

f (X , x) =
∏
u∈S

(X + χu(x)) =
∏
u∈S

(X + ηu·x).

So for every x ∈ G this defines a polynomial in C[X ].
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f (X , x) =
∏

u∈S(X + χu(x)); χu(x) = ηx ·u; η = exp(2πi/p).

We may define a formal inverse g(X , x) =
∞∑
j=0

gj(x)X j ,

satisfying f (X , x)G (X , x) = 1.

The ’coefficients’ gj will be integral linear combinations of
characters: gj(x) =

∑
χ∈Ĝ cχχ(x), and cχ ∈ Z.

f (X , 0) = (X + 1)n, and for x0 6= 0 the multi-set
{χu(x0) | u ∈ S} contains each p-th root of unity at most
(n − d)q/p times, so f (X , x0) | (X p + 1)γq/p if γ ≥ n − d .
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The last slide!

f (X , 0) = (X + 1)n, and for x0 6= 0 the multi-set
{χu(x0) | u ∈ S} contains each p-th root of unity at most
(n − d)q/p times, so f (X , x0) | (X p + 1)γq/p if γ ≥ n − d .

It follows that h(X , x) := (X p + 1)γq/pg(X , x) is a polynomial
of degree γq/p − n for each x ∈ G \ {0}, finally in the formal
power series h(X , 0) = (1 + X )−n(1 + X p)γq/p the coefficients
of all X>γq/p−n are divisible by qk−1 by the characterlemma.

Aart Blokhuis Polynomials and Codes



The last slide!

f (X , 0) = (X + 1)n, and for x0 6= 0 the multi-set
{χu(x0) | u ∈ S} contains each p-th root of unity at most
(n − d)q/p times, so f (X , x0) | (X p + 1)γq/p if γ ≥ n − d .

It follows that h(X , x) := (X p + 1)γq/pg(X , x) is a polynomial
of degree γq/p − n for each x ∈ G \ {0}, finally in the formal
power series h(X , 0) = (1 + X )−n(1 + X p)γq/p the coefficients
of all X>γq/p−n are divisible by qk−1 by the characterlemma.

Aart Blokhuis Polynomials and Codes



The last slide!

f (X , 0) = (X + 1)n, and for x0 6= 0 the multi-set
{χu(x0) | u ∈ S} contains each p-th root of unity at most
(n − d) times, so f (X , x0) | (X p + 1)γ if γ ≥ n − d .

It follows that h(X , x) := (X p + 1)γg(X , x) is a polynomial of
degree γ − n for each x ∈ G \ {0}, finally in the formal power
series h(X , 0) = (1 + X )−n(1 + X p)γ the coefficients of all
X>γ−n are divisible by pk−1 by the characterlemma.

Aart Blokhuis Polynomials and Codes



The last slide!

f (X , 0) = (X + 1)n, and for x0 6= 0 the multi-set
{χu(x0) | u ∈ S} contains each p-th root of unity at most
(n − d) times, so f (X , x0) | (X p + 1)γ if γ ≥ n − d .

It follows that h(X , x) := (X p + 1)γg(X , x) is a polynomial of
degree γ − n for each x ∈ G \ {0}, finally in the formal power
series h(X , 0) = (1 + X )−n(1 + X p)γ the coefficients of all
X>γ−n are divisible by pk−1 by the characterlemma.

Aart Blokhuis Polynomials and Codes


